Infrared and Visible Image Fusion with Significant Target Enhancement
<p>Residual block structure.</p> "> Figure 2
<p>Flowchart for extracting salient targets with FT++.</p> "> Figure 3
<p>Comparison of different feature extraction methods for infrared images.</p> "> Figure 4
<p>The image fusion framework of our method.</p> "> Figure 5
<p>Detail comparison of MLGCF and RGF.</p> "> Figure 6
<p>Five typical infrared and visible images on the TNO dataset.</p> "> Figure 7
<p>Five typical infrared and visible images on the MSRS dataset.</p> "> Figure 8
<p>Typical fusion results of five infrared and visible images on the TNO dataset. (<b>a</b>) GTF, (<b>b</b>) WLS, (<b>c</b>) MLGCF, (<b>d</b>) ResNet50, (<b>e</b>) RFN-Nest, (<b>f</b>) DenseFuse, (<b>g</b>) U2Fusion, (<b>h</b>) FusionGAN, (<b>i</b>) GANMcC, (<b>j</b>) Ours.</p> "> Figure 9
<p>Typical fusion results of five infrared and visible images on the MSRS dataset. (<b>a</b>) GTF, (<b>b</b>) WLS, (<b>c</b>) MLGCF, (<b>d</b>) ResNet50, (<b>e</b>) RFN-Nest, (<b>f</b>) DenseFuse, (<b>g</b>) U2Fusion, (<b>h</b>) FusionGAN, (<b>i</b>) GANMcC, (<b>j</b>) Ours.</p> "> Figure 10
<p>Twenty groups of infrared images and visible image different objective evaluation metric statistical broken line graph on the TNO dataset.</p> "> Figure 11
<p>Twenty groups of infrared images and visible image different objective evaluation metric statistical broken line graph on the MSRS dataset.</p> "> Figure 11 Cont.
<p>Twenty groups of infrared images and visible image different objective evaluation metric statistical broken line graph on the MSRS dataset.</p> ">
Abstract
:1. Introduction
- (1)
- We propose a novel infrared and visible fusion method, which can effectively retain detailed information and maintain the target saliency. This method can be widely used in the military, target detection, and other fields.
- (2)
- More abundant details can be obtained from the source image by employing MLGCF and ResNet50 to extract features.
- (3)
- A new approach to constructing saliency map (FT++) is proposed, which can productively retain the thermal radiation information. Extensive qualitative and quantitative experiments demonstrate the superiority of our method compared to the latest alternatives. Compared with other competitors, our approach could generate fused images looking like high-quality visible images with highlighted targets.
2. Correlation Theory
2.1. Residual Network
2.2. FT Significance Detection
3. Proposed Fusion Framework
3.1. Image Decomposition
- (1)
- Using GF to smooth small structure information:
- (2)
- Using GCF for the edge recovery process:
- (3)
- Combining GF with GCF using a hybrid multiscale approach for a three-stage decomposition:
3.2. Image Fusion
3.2.1. Fusion Strategy for the Base Layer
- (1)
- FT++ method: The FT++ method in this paper only processes infrared images, so the input image for this process is the infrared image . An improvement is made using the RGF instead of the GF in the original FT algorithm, as shown in Figure 2.
- (2)
- Normalizing the significance map to obtain the base layer fusion weights :
- (3)
- Fusion of base layers using a weighted average strategy:
3.2.2. Fusion Strategy for Small-Scale Layers
3.2.3. Fusion Strategy for Large-Scale Layers
- (1)
- Feature extraction: First, the large-scale layer is input into ResNet50 to extract features. The texture features and edge features extracted to layer are denoted as , where denotes the t-th convolutional block, and we take . denotes the c-th channel of the output feature, and is the number of channels at level , .
- (2)
- The extracted features are ZCA processed to obtain the new features , then the L1-norm of is calculated, and finally, we deploy the average operator to calculate the activity level measurement:
- (3)
- Construction of initial weight maps using Softmax:
- (4)
- Using a maximum weight construction method based on average operator (MWAO) method: In order to obtain as much detail information as possible, the largest pixel value in Equation (13) is taken on each large-scale layer as the fusion weight for that layer. Finally, the obtained weight is used to reconstruct the large-scale layer of fusion image:
3.3. Reconstructing Fusion Image
4. Experimental Results and Comparisons
4.1. Experimental Datasets
4.2. Fusion Metrics
4.3. Subjective Evaluation
4.3.1. Subjective Evaluation on the TNO Datasets
4.3.2. Subjective Evaluation on the MSRS Datasets
4.4. Objective Evaluation
4.4.1. Objective Evaluation on the TNO Datasets
4.4.2. Objective Evaluation on the MSRS Datasets
4.5. Ablation Experiments
4.6. Fusion Performance Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, L.F.; Yuan, J.T.; Ma, J.Y. Image fusion in the loop of high-level vision tasks: A semantic-aware real-time infrared and visible image fusion network. Inf. Fusion 2022, 82, 28–42. [Google Scholar] [CrossRef]
- Chen, J.; Li, X.J.; Luo, L.B.; Mei, X.G.; Ma, J.Y. Infrared and visible image fusion based on target-enhanced multiscale transform decomposition. Inf. Sci. 2020, 508, 64–78. [Google Scholar] [CrossRef]
- Zhou, S.Y.; Yang, P.X.; Xie, W.L. Infrared image segmentation based on Otsu and genetic algorithm. In Proceedings of the 2011 International Conference on Multimedia Technology, Hangzhou, China, 26–28 July 2011; pp. 5421–5424. [Google Scholar]
- Zhao, Y.F.; Cheng, J.C.; Zhou, W.; Zhang, C.X.; Pan, X. Infrared pedestrian detection with converted temperature map. In Proceedings of the 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Lanzhou, China, 18–21 November 2019; pp. 2025–2031. [Google Scholar]
- Ma, J.Y.; Tang, L.F.; Fan, F.; Huang, J.; Mei, X.G.; Ma, Y. SwinFusion: Cross-domain long-range learning for general image fusion via swin transformer. IEEE/CAA J. Autom. Sin. 2022, 9, 1200–1217. [Google Scholar] [CrossRef]
- Li, G.F.; Lin, Y.J.; Qu, X.D. An infrared and visible image fusion method based on multi-scale transformation and norm optimization. Inf. Fusion 2021, 71, 109–129. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Liu, A.P.; Ward, R.K.; Wang, Z.J. Recent advances in sparse representation based medical image fusion. IEEE Instrum. Meas. Mag. 2021, 24, 45–53. [Google Scholar] [CrossRef]
- Wang, D.; Liu, J.Y.; Fan, X.; Liu, R.S. Unsupervised Misaligned Infrared and Visible Image Fusion via Cross-Modality Image Generation and Registration. arXiv 2022, arXiv:2205.11876. [Google Scholar]
- Burt, P.J.; Adelson, E.H. The Laplacian pyramid as a compact image code. In Readings in Computer Vision; Morgan Kaufmann: Burlington, MA, USA, 1987; pp. 671–679. [Google Scholar]
- Chipman, L.J.; Orr, T.M.; Graham, L.N. Wavelets and image fusion. Int. Conf. Image Process. 1995, 3, 248–251. [Google Scholar]
- Shao, Z.F.; Liu, J.; Cheng, Q.M. Fusion of infrared and visible images based on focus measure operators in the curvelet domain. Appl. Opt. 2012, 51, 1910–1921. [Google Scholar]
- Li, H.; Manjunath, B.S.; Mitra, S.K. Multisensor image fusion using the wavelet transform. Graph. Model. Image Process. 1995, 57, 235–245. [Google Scholar] [CrossRef]
- Li, S.T.; Kang, X.D.; Hu, J.W. Image fusion with guided filtering. IEEE Trans. Image Process. 2013, 22, 2864–2875. [Google Scholar]
- Zhou, Z.Q.; Wang, B.; Li, S.; Dong, M.J. Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters. Inf. Fusion 2016, 30, 15–26. [Google Scholar] [CrossRef]
- He, K.M.; Sun, J.; Tang, X.O. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 1397–1409. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.B.; Song, Z.H.; Li, Z.G. Multi-scale Fusion of Stretched Infrared and Visible Images. Sensors 2022, 22, 6660. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chan, T.N.; Qi, X.B.; Xie, W.Y. Detail-preserving multi-exposure fusion with edge-preserving structural patch decomposition. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 4293–4304. [Google Scholar] [CrossRef]
- Do, M.N.; Vetterli, M. The contourlet transform: An efficient directional multiresolution image representation. IEEE Trans. Image Process. 2005, 14, 2091–2106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Chen, X.; Peng, H.; Wang, Z.F. Multi-focus image fusion with a deep convolutional neural network. Inf. Fusion 2017, 36, 191–207. [Google Scholar] [CrossRef]
- Li, H.; Wu, X.J.; Kittler, J. Infrared and visible image fusion using a deep learning framework. In Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018; pp. 2705–2710. [Google Scholar]
- Chen, J.; Yang, Z.F.; Chan, T.N.; Li, H.; Hou, J.H.; Chau, L.P. Attention-Guided Progressive Neural Texture Fusion for High Dynamic Range Image Restoration. IEEE Trans. Image Process. 2022, 31, 2661–2672. [Google Scholar] [CrossRef]
- Bai, H.R.; Pan, J.S.; Xiang, X.G.; Tang, J.H. Self-Guided Image Dehazing Using Progressive Feature Fusion. IEEE Trans. Image Process. 2022, 31, 1217–1229. [Google Scholar] [CrossRef] [PubMed]
- Li, H.F.; Cen, Y.L.; Liu, Y.; Chen, X.; Yu, Z.T. Different Input Resolutions and Arbitrary Output Resolution: A Meta Learning-Based Deep Framework for Infrared and Visible Image Fusion. IEEE Trans. Image Process. 2021, 30, 4070–4083. [Google Scholar] [CrossRef]
- Ma, J.Y.; Xu, H.; Jiang, J.J.; Mei, X.G.; Zhang, X.P. DDcGAN: A Dual-Discriminator Conditional Generative Adversarial Network for Multi-Resolution Image Fusion. IEEE Trans. Image Process. 2020, 29, 4980–4995. [Google Scholar] [CrossRef]
- Li, H.; Wu, X.J. DenseFuse: A fusion approach to infrared and visible images. IEEE Trans. Image Process. 2018, 28, 2614–2623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Wu, X.J.; Kittler, J. RFN-Nest: An end-to-end residual fusion network for infrared and visible images. Inf. Fusion 2021, 73, 72–86. [Google Scholar] [CrossRef]
- Xu, H.; Ma, J.Y.; Jiang, J.J.; Guo, X.J.; Ling, H.B. U2Fusion: A unified unsupervised image fusion network. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 502–518. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Zhou, H.X.; Song, J.L.Q.; Li, H.; Yu, Y.; Du, J. Infrared and visible image perceptive fusion through multi-level Gaussian curvature filtering image decomposition. Appl. Opt. 2019, 58, 3064–3073. [Google Scholar] [CrossRef] [PubMed]
- He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June-1 July 2016; pp. 770–778. [Google Scholar]
- Achanta, R.; Hemami, S.; Estrada, F.; Susstrunk, S. Frequency-tuned salient region detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 1597–1604. [Google Scholar]
- Hou, R.C.; Nie, R.C.; Zhou, D.M.; Cao, J.D.; Liu, D. Infrared and visible images fusion using visual saliency and optimized spiking cortical model in non-subsampled shearlet transform domain. Multimed. Tools Appl. 2019, 78, 28609–28632. [Google Scholar] [CrossRef]
- Wang, S.; Ai, H.; He, K. Difference-image-based multiple motion targets detection and tracking. J. Image Graph. 1999, 4, 470–475. [Google Scholar]
- Ochotorena, C.N.; Yamashita, Y. Anisotropic guided filtering. IEEE Trans. Image Process. 2019, 29, 1397–1412. [Google Scholar] [CrossRef]
- Li, H.; Wu, X.; Durrani, T.S. Infrared and visible image fusion with ResNet and zero-phase component analysis. Infrared Phys. Technol. 2019, 102, 103039. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://figshare.com/articles/TNO_Image_Fusion_Dataset/1008029 (accessed on 28 September 2022).
- Tang, L.F.; Yuan, J.T.; Zhang, H.; Jiang, X.Y.; Ma, J.Y. PIAFusion: A progressive infrared and visible image fusion network based on illumination aware. Inf. Fusion 2022, 83, 79–92. [Google Scholar] [CrossRef]
- Roberts, J.W.; Van Aardt, J.A.; Ahmed, F.B. Assessment of image fusion procedures using entropy, image quality, and multispectral classification. J. Appl. Remote Sens. 2008, 2, 023522. [Google Scholar]
- Jin, X.; Jiang, Q.; Yao, S.W.; Zhou, D.M.; Nie, R.; Lee, S.; He, K.J. Infrared and visual image fusion method based on discrete cosine transform and local spatial frequency in discrete stationary wavelet transform domain. Infrared Phys. Technol. 2018, 88, 1–12. [Google Scholar] [CrossRef]
- Cui, G.M.; Feng, H.J.; Xu, Z.H.; Li, Q.; Chen, Y.T. Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition. Opt. Commun. 2015, 341, 199–209. [Google Scholar] [CrossRef]
- Li, H.; Wu, X.J.; Kittler, J. MDLatLRR: A novel decomposition method for infrared and visible image fusion. IEEE Trans. Image Process. 2020, 29, 4733–4746. [Google Scholar] [CrossRef] [Green Version]
- Qu, G.H.; Zhang, D.L.; Yan, P.F. Information measure for performance of image fusion. Electron. Lett. 2002, 38, 313–315. [Google Scholar] [CrossRef] [Green Version]
- Haghighat, M.B.A.; Aghagolzadeh, A.; Seyedarabi, H. A non-reference image fusion metric based on mutual information of image features. Comput. Electr. Eng. 2011, 37, 744–756. [Google Scholar] [CrossRef]
- Ma, J.Y.; Chen, C.; Li, C.; Huang, J. Infrared and visible image fusion via gradient transfer and total variation minimization. Inf. Fusion 2016, 31, 100–109. [Google Scholar] [CrossRef]
- Ma, J.L.; Zhou, Z.Q.; Wang, B.; Zong, H. Infrared and visible image fusion based on visual saliency map and weighted least square optimization. Infrared Phys. Technol. 2017, 82, 8–17. [Google Scholar] [CrossRef]
- Ma, J.Y.; Yu, W.; Liang, P.W.; Li, C.; Jiang, J.J. FusionGAN: A generative adversarial network for infrared and visible image fusion. Inf. Fusion 2019, 48, 11–26. [Google Scholar] [CrossRef]
- Ma, J.Y.; Zhang, H.; Shao, Z.F.; Liang, P.W.; Xu, H. GANMcC: A Generative Adversarial Network with Multi-classification Constraints for Infrared and Visible Image Fusion. IEEE Trans. Instrum. Meas. 2020, 70, 1–14. [Google Scholar] [CrossRef]
SD | MI | AG | CE | |
---|---|---|---|---|
Weight Map | 56.8479 | 14.5510 | 3.6330 | 0.4770 |
MWAO | 57.2314 | 14.5519 | 4.0634 | 0.4578 |
ResNet50 | FT++ | FT | EN | SD | AG | VIF | MI | CE | |
---|---|---|---|---|---|---|---|---|---|
(i) | - | √ | - | 7.1781 | 46.2157 | 4.7924 | 0.9593 | 3.9047 | 0.9390 |
(ii) | - | - | √ | 7.1761 | 48.6513 | 4.9052 | 0.9387 | 3.9015 | 0.7440 |
(iii) | - | - | - | 6.8387 | 37.4755 | 4.5438 | 0.7360 | 2.2591 | 1.2590 |
(iv) | √ | - | - | 6.8216 | 35.9339 | 4.2283 | 0.7613 | 2.2544 | 1.5441 |
(v) | √ | - | √ | 7.1637 | 48.2857 | 4.6031 | 0.9209 | 3.6287 | 0.7625 |
(vi) | √ | √ | - | 7.1796 | 49.1417 | 5.4928 | 0.8774 | 3.2227 | 0.7122 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huo, X.; Deng, Y.; Shao, K. Infrared and Visible Image Fusion with Significant Target Enhancement. Entropy 2022, 24, 1633. https://doi.org/10.3390/e24111633
Huo X, Deng Y, Shao K. Infrared and Visible Image Fusion with Significant Target Enhancement. Entropy. 2022; 24(11):1633. https://doi.org/10.3390/e24111633
Chicago/Turabian StyleHuo, Xing, Yinping Deng, and Kun Shao. 2022. "Infrared and Visible Image Fusion with Significant Target Enhancement" Entropy 24, no. 11: 1633. https://doi.org/10.3390/e24111633