A Robust Sparse Adaptive Filtering Algorithm with a Correntropy Induced Metric Constraint for Broadband Multi-Path Channel Estimation
<p>Convergence comparisons of the proposed CIM-LMMN algorithm with previously-reported sparse channel estimation algorithms.</p> "> Figure 2
<p>Channel estimation behavior of the CIM-LMMN algorithm compared with the LMS/F algorithm for <math display="inline"> <semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>.</p> "> Figure 3
<p>Channel estimation behavior of the CIM-LMMN algorithm compared with the LMS/F algorithm for <math display="inline"> <semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math>.</p> "> Figure 4
<p>Channel estimation behavior of the CIM-LMMN algorithm compared with the LMS/F algorithm for <math display="inline"> <semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics> </math>.</p> "> Figure 5
<p>Channel estimation behavior of the CIM-LMMN algorithm compared with the LMS algorithm for <math display="inline"> <semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>.</p> "> Figure 6
<p>Channel estimation behavior of the CIM-LMMN algorithm compared with the LMS algorithm for <math display="inline"> <semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math>.</p> "> Figure 7
<p>Channel estimation behavior of the CIM-LMMN algorithm compared with the LMS algorithm for <math display="inline"> <semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics> </math>.</p> "> Figure 8
<p>Channel estimation behavior of the CIM-LMMN algorithm compared with the LMF algorithm for <math display="inline"> <semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>.</p> "> Figure 9
<p>Channel estimation behavior of the CIM-LMMN algorithm compared with the LMF algorithm for <math display="inline"> <semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math>.</p> "> Figure 10
<p>Channel estimation behavior of the CIM-LMMN algorithm compared with the LMF algorithm for <math display="inline"> <semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics> </math>.</p> "> Figure 11
<p>Tracking behavior of the proposed CIM-LMMN algorithm.</p> ">
Abstract
:1. Introduction
2. Traditional LMMN Algorithm and ZA Technique
2.1. Traditional LMMN Algorithm
2.2. ZA Technique
3. Proposed Sparse CIM-LMMN Algorithm
4. Channel Estimation Performance Investigation
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Haykin, S. Adaptive Filter Theory, 2nd ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 1991. [Google Scholar]
- Diniz, P.S.R. Adaptive Filtering: Algorithms and Practical Implementation, 4th ed.; Spring: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Sayed, A.H. Fundamentals of Adaptive Filtering, 1st ed.; Wiley: Hoboken, NJ, USA, 2003; p. 1168. [Google Scholar]
- Chen, Y.; Gu, Y.; Hero, A.O. Sparse LMS for system identification. In Proceedings of the IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP’09), Taipei, Taiwan, 19–24 April 2009; pp. 3125–3128.
- Gu, Y.; Jin, J.; Mei, S. L0 norm constraint LMS algorithms for sparse system identification. IEEE Signal Process. Lett. 2009, 16, 774–777. [Google Scholar]
- Taheri, O.; Vorobyov, S.A. Sparse channel estimation with Lp-norm and reweighted L1-norm penalized least mean squares. In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2011), Prague, Czech Republic, 22–27 May 2011.
- Tibshirani, R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Candes, E.J.; Wakin, M.B.; Noyd, S.P. Enhancing sparsity by reweighted l1 minimization. J. Fourier Anal. Appl. 2008, 14, 877–905. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Jiang, T. Sparse channel estimation based on a p-norm-like constrained least mean fourth algorithm. In Proceedings of the 2015 International Conference on Wireless Communications and Signal Processing (WCSP 2015), Nanjing, China, 15–17 October 2015.
- Gui, G.; Adachi, F. Improved least mean square algorithm with application to adaptive sparse channel estimation. EURASIP J. Wirel. Commun. Netw. 2013, 2013, 204. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Wang, S. Low-complexity non-uniform penalized affine projection algorithm for sparse system identification. Circuits Syst. Signal Process. 2016, 35, 1611–1624. [Google Scholar] [CrossRef]
- Li, Y.; Li, W.; Yu, W.; Wan, J.; Li, Z. Sparse adaptive channel estimation based on lp-norm-penalized affine projection algorithm. Int. J. Antennas Propag. 2014, 2014, 434659. [Google Scholar]
- Proakis, J.G. Digital Communications, 4th ed.; McGraw-Hill: New York, NY, USA, 2000. [Google Scholar]
- Cotter, S.F.; Rao, B.D. Sparse channel estimation via matching pursuit with application to equalization. IEEE Trans. Commun. 2002, 50, 374–377. [Google Scholar] [CrossRef]
- Ariyavisitakul, S.; Sollenberger, N.R.; Greenstein, L.J. Tap-selectable decision feedback equalization. In Proceedings of the 1997 IEEE International Conference on Communications, Towards the Knowledge Millennium (ICC’97), Montreal, QC, Canada, 12 June 1997.
- Vuokko, L.; Kolmonen, V.-M.; Salo, J.; Vainikainen, P. Measurement of large-scale cluster power characteristics for geometric channel models. IEEE Trans. Antennas Propag. 2007, 55, 3361–3365. [Google Scholar] [CrossRef]
- Korowajczuk, L. LTE, WiMAX and WLAN Network Design, Optimization and Performance Analysis; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Schafhuber, D.; Matz, G.; Hlawatsch, F. Adaptive Wiener filters for time-varying channel estimation in wireless OFDM systems. In Proceedings of the 2003 IEEE International Conference on Acoustic, Speech, and Signal Processing (ICASSP’03), Hong Kong, China, 6–10 April 2003.
- Duttweiler, D.L. Proportionate normalized least-mean-squares adaptation in echo cancelers. IEEE Trans. Speech Audio Process. 2000, 8, 508–518. [Google Scholar] [CrossRef]
- Deng, H.; Doroslovacki, M. Improving convergence of the PNLMS algorithm for sparse impulse response identification. IEEE Signal Process. Lett. 2005, 12, 181–184. [Google Scholar] [CrossRef]
- Li, Y.; Hamamura, M. An improved proportionate normalized least-mean-square algorithm for broadband multipath channel estimation. Sci. World J. 2014, 2014, 572969. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hamamura, M. Zero-attracting variable-step-size least mean square algorithms for adaptive sparse channel estimation. Int. J. Adapt. Control Signal Process. 2015, 29, 1189–1206. [Google Scholar] [CrossRef]
- Gui, G.; Adachi, F. Sparse least mean fourth algorithm for adaptive channel estimation in low signal-to-noise ratio region. Int. J. Commun. Syst. 2014, 27, 3147–3157. [Google Scholar] [CrossRef]
- Gui, G.; Xu, L.; Matsushita, S. Improved adaptive sparse channel estimation using mixed square/fourth error criterion. J. Frankl. Inst. 2015, 352, 4579–4594. [Google Scholar] [CrossRef]
- Gui, G.; Mehbodniya, A.; Adachi, F. Least mean square/fourth algorithm for adaptive sparse channel estimation. In Proceedings of the 2013 IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), London, UK, 8–11 September 2013.
- Li, Y.; Wang, Y.; Jiang, T. Norm-adaption penalized least mean square/fourth algorithm for sparse channel estimation. Signal Process. 2016, 128, 243–251. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Jiang, T. Sparse-aware set-membership NLMS algorithms and their application for sparse channel estimation and echo cancelation. AEU Int. J. Electron. Commun. 2016, 70, 895–902. [Google Scholar] [CrossRef]
- Albu, F.; Gully, A.; de Lamare, R. Sparsity-aware pseudo affine projection algorithm for active noise control. In Proceedings of the 2014 Annual Summit and Conference on Asia-Pacific Signal and Information Processing Association (APSIPA), Chiang Mai, Thailand, 9–12 December 2014.
- Chambers, J.A.; Tanrikulu, O.; Constantinides, A.G. Least mean minxed-norm adaptive filtering. Electron. Lett. 1994, 30, 1574–1575. [Google Scholar] [CrossRef]
- Tanrikulu, O.; Chambers, J.A. Convergence and steady-state properties of the least-mean mixed-norm (LMMN) adaptive algorithm. IEE Proc. Vis. Image Signal Process. 1996, 143, 137–142. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Jiang, T. Sparse least mean mixed-norm adaptive filtering algorithms for sparse channel estimation application. Int. J. Commun. Syst. 2016. [Google Scholar] [CrossRef]
- Chen, B.; Principe, J.C. Maximum correntropy estimation is a smoothed MAP estimation. IEEE Signal Process. Lett. 2012, 19, 491–494. [Google Scholar] [CrossRef]
- Chen, B.; Xing, L.; Liang, J.; Zheng, N.; Principe, J.C. Steady-state mean-square error analysis for adaptive filtering under the maximum correntropy criterion. IEEE Signal Process. Lett. 2014, 21, 880–884. [Google Scholar]
- Wu, Z.; Peng, S.; Chen, B.; Zhao, H. Robust Hammerstein adaptive filtering under maximum correntropy criterion. Entropy 2015, 17, 7149–7166. [Google Scholar] [CrossRef]
- Huijse, P.; Estevez, P.A.; Zegers, P.; Principe, J.C.; Protopapas, P. Period estimation in astronomical time series using slotted correntropy. IEEE Signal Process. Lett. 2011, 18, 371–374. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y. Sparse SM-NLMS algorithm based on correntropy criterion. Electron. Lett. 2016, 52, 1461–1463. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, B.; Principe, J.C. Kernel adaptive filtering with maximum correntropy criterion. In Proceedings of the 2011 International Joint Conference on Neural Networks (IJCNN), San Jose, CA, USA, 31 July–5 August 2011.
- Chen, B.; Xing, L.; Zhao, H.; Zheng, N.; Principe, J.C. Generalized correntropy for robust adaptive filtering. IEEE Trans. Signal Process. 2016, 64, 3376–3387. [Google Scholar] [CrossRef]
- Chen, B.; Wang, J.; Zhao, H.; Zheng, N.; Principe, J.C. Convergence of a fixed-point algorithm under maximum correntropy criterion. IEEE Signal Process. Lett. 2015, 22, 1723–1727. [Google Scholar] [CrossRef]
- Seth, S.; Principe, J.C. Compressed signal reconstruction using the correntropy induced metric. In Proceedings of the 2008 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP’08), Las Vegas, NV, USA, 31 March–4 April 2008.
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Jin, Z.; Wang, Y.; Yang, R. A Robust Sparse Adaptive Filtering Algorithm with a Correntropy Induced Metric Constraint for Broadband Multi-Path Channel Estimation. Entropy 2016, 18, 380. https://doi.org/10.3390/e18100380
Li Y, Jin Z, Wang Y, Yang R. A Robust Sparse Adaptive Filtering Algorithm with a Correntropy Induced Metric Constraint for Broadband Multi-Path Channel Estimation. Entropy. 2016; 18(10):380. https://doi.org/10.3390/e18100380
Chicago/Turabian StyleLi, Yingsong, Zhan Jin, Yanyan Wang, and Rui Yang. 2016. "A Robust Sparse Adaptive Filtering Algorithm with a Correntropy Induced Metric Constraint for Broadband Multi-Path Channel Estimation" Entropy 18, no. 10: 380. https://doi.org/10.3390/e18100380
APA StyleLi, Y., Jin, Z., Wang, Y., & Yang, R. (2016). A Robust Sparse Adaptive Filtering Algorithm with a Correntropy Induced Metric Constraint for Broadband Multi-Path Channel Estimation. Entropy, 18(10), 380. https://doi.org/10.3390/e18100380