More Realistic, More Better? How Anthropomorphic Images of Virtual Influencers Impact the Purchase Intentions of Consumers
<p>Chart showing the degrees of anthropomorphization of the images of virtual influencers. (<b>a</b>) Cartoon image. (<b>b</b>) Medium-realistic image. (<b>c</b>) Hyper-realistic image.</p> "> Figure 2
<p>Proposed model.</p> "> Figure 3
<p>Graphs of relationships. (<b>a</b>) Curvilinear relationship between image anthropomorphization and purchase intention. (<b>b</b>) Curvilinear relationship between image anthropomorphization and algorithmic aversion.</p> "> Figure 4
<p>Moderating role of self-efficacy in the relationship between the degree of image anthropomorphism and algorithmic aversion.</p> ">
Abstract
:1. Introduction
2. Theoretical Foundations and Synthesis of Research
2.1. Image Anthropomorphism
2.2. Algorithmic Aversion
2.3. Self-Efficacy
3. Research Hypotheses and Modeling
3.1. Effects of Anthropomorphization of Virtual Influencers on Consumers’ Purchase Intention
3.2. Effects of Anthropomorphization of Virtual Influencers on Algorithmic Aversion
3.3. The Moderating Role of Self-Efficacy
4. Research Design
4.1. Questionnaire Design and Variable Measurement
4.2. Pre-Testing
4.3. Data Collection and Sampling
5. Empirical Results and Analysis
5.1. Analysis of Reliability and Validity
5.2. Descriptive Statistical Analysis
5.3. Hypothesis Testing
5.4. Results
6. Discussion and Insights
6.1. Theoretical Significance
6.2. Practical Implications
6.3. Limitations and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, Z. A brief analysis of the new pattern of China’s virtual streamer enabling Webcast—Taking Jiaran as an example. Front. Art Res. 2023, 5, 21–25. [Google Scholar]
- Gao, W.; Jiang, N.; Guo, Q. How do virtual streamers affect purchase intention in the live streaming context? A presence perspective. J. Retail. Con. Serv. 2023, 73, 103356. [Google Scholar] [CrossRef]
- Conti, M.; Gathani, J.; Tricomi, P.P. Virtual influencers in online social media. IEEE Commun. Mag. 2022, 60, 86–91. [Google Scholar] [CrossRef]
- Miao, F.; Kozlenkova, I.V.; Wang, H.; Xie, T.; Palmatier, R.W. An emerging theory of avatar marketing. J. Mark. 2022, 86, 67–90. [Google Scholar] [CrossRef]
- Thomaz, F.; Salge, C.; Karahanna, E.; Hulland, J. Learning from the Dark Web: Leveraging conversational agents in the era of hyper-privacy to enhance marketing. J. Acad. Mark. Sci. 2020, 48, 43–63. [Google Scholar] [CrossRef]
- Deng, F.; Jiang, X. Effects of human versus virtual human influencers on the appearance anxiety of social media users. J. Retail. Con. Serv. 2023, 71, 103233. [Google Scholar] [CrossRef]
- Xiao, L.; Kumar, V. Robotics for customer service: A useful complement or an ultimate substitute? J. Serv. Res. 2021, 24, 9–29. [Google Scholar] [CrossRef]
- Adamopoulou, E.; Moussiades, L. Chatbots: History, technology, and applications. Mach. Learn. Appl. 2020, 2, 100006. [Google Scholar] [CrossRef]
- Blut, M.; Wang, C.; Wünderlich, N.V.; Brock, C. Understanding anthropomorphism in service provision: A meta-analysis of physical robots, chatbots, and other AI. J. Acad. Mark. Sci. 2021, 49, 632–658. [Google Scholar] [CrossRef]
- Batat, W. Phygital customer experience in the metaverse: A study of consumer sensory perception of sight, touch, sound, scent, and taste. J. Retail. Con. Serv. 2024, 78, 103786. [Google Scholar] [CrossRef]
- Kim, I.; Ki, C.W.; Lee, H.; Kim, Y.K. Virtual influencer marketing: Evaluating the influence of virtual influencers’ form realism and behavioral realism on consumer ambivalence and marketing performance. J. Bus. Res. 2024, 176, 114611. [Google Scholar] [CrossRef]
- Song, B.; Zhang, M.; Wu, P. Driven by technology or sociality? Use intention of service robots in hospitality from the human–robot interaction perspective. Int. J. Hosp. Manag. 2022, 106, 103278. [Google Scholar] [CrossRef]
- Bartneck, C.; Kanda, T.; Mubin, O.; Mahmud, A.A. The perception of animacy and intelligence based on a robot’s embodiment. In Proceedings of the 7th IEEE-RAS International Conference on Humanoid Robots, Pittsburgh, PA, USA, 29 November–1 December 2007; Volume 2007, pp. 300–305. [Google Scholar]
- MacDorman, K.F.; Green, R.D.; Ho, C.C.; Koch, C.T. Too real for comfort? Uncanny responses to computer generated faces. Comput. Hum. Behav. 2009, 25, 695–710. [Google Scholar] [CrossRef] [PubMed]
- van Pinxteren, M.M.E.; Wetzels, R.W.H.; Rüger, J.; Pluymaekers, M.; Wetzels, M. Trust in humanoid robots: Implications for services marketing. J. Serv. Mark. 2019, 33, 507–518. [Google Scholar] [CrossRef]
- Yu, C.E. Humanlike robots as employees in the hotel industry: Thematic content analysis of online reviews. J. Hosp. Mark. Manag. 2020, 29, 22–38. [Google Scholar] [CrossRef]
- Hu, H.; Ma, F. Human-like bots are not humans: The weakness of sensory language for virtual streamers in livestream commerce. J. Retail. Con. Serv. 2023, 75, 103541. [Google Scholar] [CrossRef]
- Kim, H.; Park, M. Virtual influencers’ attractiveness effect on purchase intention: A moderated mediation model of the product–endorser fit with the brand. Comput. Hum. Behav. 2023, 143, 107703. [Google Scholar] [CrossRef]
- Batista Da Silva Oliveira, A.; Chimenti, P. “Humanized robots”: A proposition of categories to understand virtual influencers. Australas. J. Inf. Syst. 2021, 25, 1–25. [Google Scholar] [CrossRef]
- Zhan, J.; Zhang, N. Exploring the impact of virtual streamer features and live content on viewers’ willingness to pay for ‘Superchat’. In Exploring the Impact of Virtual Streamer Features and Live Content on Viewers’ Willingness to Pay for “Superchat”; Live Entertainment Scenarios: Singapore, 2023; p. 17. [Google Scholar]
- Stein, J.P.; Linda Breves, P.; Anders, N. Parasocial interactions with real and virtual influencers: The role of perceived similarity and human-likeness. New Media Soc. 2024, 26, 3433–3453. [Google Scholar] [CrossRef]
- Gao, W.; Liu, Y.; Liu, Z.; Li, J. How does presence influence purchase intention in online shopping markets? An explanation based on self-determination theory. Behav. Inf. Technol. 2018, 37, 786–799. [Google Scholar] [CrossRef]
- Go, E.; Sundar, S.S. Humanizing chatbots: The effects of visual, identity and conversational cues on humanness perceptions. Comput. Hum. Behav. 2019, 97, 304–316. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, J. Virtual influencers: The effects of controlling entity, appearance realism and product type on advertising effect. In Design, Operation and Evaluation of Mobile Communications; Salvendy, G., Wei, J., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 298–305. [Google Scholar]
- Burgoon, J.K.; Bonito, J.A.; Bengtsson, B.; Cederberg, C.; Lundeberg, M.; Allspach, L. Interactivity in human–computer interaction: A study of credibility, understanding, and influence. Comput. Hum. Behav. 2000, 16, 553–574. [Google Scholar] [CrossRef]
- Duffy, B.R. Anthropomorphism and the social robot. Robot. Auton. Syst. 2003, 42, 177–190. [Google Scholar] [CrossRef]
- Dabiran, E.; Farivar, S.; Wang, F.; Grant, G. Virtually human: Anthropomorphism in virtual influencer marketing. J. Retail. Con. Serv. 2024, 79, 103797. [Google Scholar] [CrossRef]
- Kim, S.Y.; Schmitt, B.H.; Thalmann, N.M. Eliza in the uncanny valley: Anthropomorphizing consumer robots increases their perceived warmth but decreases liking. Mark. Lett. 2019, 30, 1–12. [Google Scholar] [CrossRef]
- Mende, M.; Scott, M.L.; van Doorn, J.; Grewal, D.; Shanks, I. Service robots rising: How humanoid robots influence service experiences and elicit compensatory consumer responses. J. Mark. Res. 2019, 56, 535–556. [Google Scholar] [CrossRef]
- Dietvorst, B.J.; Simmons, J.P.; Massey, C. Overcoming algorithm aversion: People will use imperfect algorithms if they can (even slightly) modify them. Manag. Sci. 2018, 64, 1155–1170. [Google Scholar] [CrossRef]
- DiSalvo, C.; Gemperle, F. From seduction to fulfillment: The use of anthropomorphic form in design. Acad. Med. 2003, 3, 67–72. [Google Scholar]
- Bartneck, C.; Kulić, D.; Croft, E.; Zoghbi, S. Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. Int. J. Soc. Robot. 2009, 1, 71–81. [Google Scholar] [CrossRef]
- Nowak, K.L.; Fox, J. Avatars and computer-mediated communication: A review of the definitions, uses, and effects of digital representations on communication. Rev. Commun. Res. 2018, 6, 30–53. [Google Scholar] [CrossRef]
- Babel, F.; Kraus, J.; Miller, L.; Kraus, M.; Wagner, N.; Minker, W.; Baumann, M. Small talk with a robot? The impact of dialog content, talk initiative, and gaze behavior of a social robot on trust, acceptance, and proximity. Int. J. Soc. Robot. 2021, 13, 1485–1498. [Google Scholar] [CrossRef]
- Castro-González, Á.; Alcocer-Luna, J.; Malfaz, M.; Alonso-Martin, F.; Salichs, M. Evaluation of artificial mouths in social robots. IEEE Trans. Hum. Mach. Syst. 2018, 48, 1–11. [Google Scholar] [CrossRef]
- Drenten, J.; Brooks, G. Celebrity 2.0: Lil Miquela and the rise of a virtual star system. Feminist Media Stud. 2020, 20, 1319–1323. [Google Scholar] [CrossRef]
- Gerlich, M. The power of virtual influencers: Impact on consumer behaviour and attitudes in the age of AI. Admin. Sci. 2023, 13, 178. [Google Scholar] [CrossRef]
- Yap, Y.R.; Ismail, N. Factors of virtual influencer marketing influencing Generation Y consumers’ purchase intention in Malaysia. Int. J. Internet Mark. Advert. 2022, 17, 437–458. [Google Scholar] [CrossRef]
- Gulz, A.; Haake, M. Design of animated pedagogical agents—a look at their look. Int. J. Hum. Comput. Stud. 2006, 64, 322–339. [Google Scholar] [CrossRef]
- Mori, M.; MacDorman, K.; Kageki, N. The uncanny valley [from the field]. IEEE Robot. Automat. Mag. 2012, 19, 98–100. [Google Scholar] [CrossRef]
- Murphy, J.; Gretzel, U.; Pesonen, J. Marketing robot services in hospitality and tourism: The role of anthropomorphism. J. Travel Tour. Mark. 2019, 36, 784–795. [Google Scholar] [CrossRef]
- Castelo, N.; Bos, M.W.; Lehmann, D.R. Task-dependent algorithm aversion. J. Mark. Res. 2019, 56, 809–825. [Google Scholar] [CrossRef]
- Belk, R. Understanding the robot: Comments on Goudey and Bonnin (2016). Rech. Appl. Mark. (Engl. Ed.) 2016, 31, 83–90. [Google Scholar] [CrossRef]
- Broadbent, E. Interactions with robots: The truths we reveal about ourselves. Annu. Rev. Psychol. 2017, 68, 627–652. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Lilienfeld, S.O.; Rochat, P. The uncanny valley: Existence and explanations. Rev. Gen. Psychol. 2015, 19, 393–407. [Google Scholar] [CrossRef]
- Khogali, H.O.; Mekid, S. The blended future of automation and AI: Examining some long-term societal and ethical impact features. Technol. Soc. 2023, 73, 102232. [Google Scholar] [CrossRef]
- Meuter, M.L.; Ostrom, A.L.; Bitner, M.J.; Roundtree, R. The influence of technology anxiety on consumer use and experiences with self-service technologies. J. Bus. Res. 2003, 56, 899–906. [Google Scholar] [CrossRef]
- Schmitt, B. Speciesism: An obstacle to AI and robot adoption. Mark. Lett. 2020, 31, 3–6. [Google Scholar] [CrossRef]
- Liu, N.T.Y.; Kirshner, S.N.; Lim, E.T.K. Is algorithm aversion WEIRD? A cross-country comparison of individual-differences and algorithm aversion. J. Retail. Con. Serv. 2023, 72, 103259. [Google Scholar] [CrossRef]
- Bandura, A. Social cognitive theory: An agentic perspective. Annu. Rev. Psychol. 2001, 52, 1–26. [Google Scholar] [CrossRef]
- Jeong, E.J.; Kim, D.H. Social activities, self-efficacy, game attitudes, and game addiction. Cyberpsychol. Behav. Soc. Netw. 2011, 14, 213–221. [Google Scholar] [CrossRef]
- Schwarzer, R.; Born, A.; Iwawaki, S.; Lee, Y. The assessment of optimistic self-beliefs: Comparison of the Chinese, Indonesian, Japanese, and Korean Versions of the General Self-Efficacy Scale. Psychol. Int. J. Psychol. Orient 1997, 40, 1–13. [Google Scholar]
- Smith, H.M.; Betz, N.E. Development and validation of a scale of perceived social self-efficacy. J. Career Assess. 2000, 8, 283–301. [Google Scholar] [CrossRef]
- Hale, D.; Thakur, R.; Riggs, J.; Altobello, S. Consumers’ decision-making self-efficacy for service purchases: Construct conceptualization and scale. J. Serv. Mark. 2022, 36, 637–657. [Google Scholar] [CrossRef]
- Balakrishnan, J.; Abed, S.S.; Jones, P. The role of meta-UTAUT factors, perceived anthropomorphism, perceived intelligence, and social self-efficacy in chatbot-based services? Technol. Forecast. Soc. Chang. 2022, 180, 121692. [Google Scholar] [CrossRef]
- Hong, J. I was born to love AI: The influence of social status on AI self-efficacy and intentions to use AI. Int. J. Commun. 2022, 16, 172. [Google Scholar]
- Song, Y.; Luximon, Y. Trust in AI agent: A systematic review of facial anthropomorphic trustworthiness for social robot design. Sensors 2020, 20, 5087. [Google Scholar] [CrossRef]
- Fogg, B.J. Persuasive technology: Using computers to change what we think and do. Ubiquity 2002, 2002, 5. [Google Scholar] [CrossRef]
- Paetzel-Prüsmann, M.; Perugia, G.; Castellano, G. The Influence of robot personality on the development of uncanny feelings. Comput. Hum. Behav. 2021, 120, 106756. [Google Scholar] [CrossRef]
- Yam, K.C.; Bigman, Y.E.; Tang, P.M.; Ilies, R.; De Cremer, D.; Soh, H.; Gray, K. Robots at work: People prefer-and forgive-service robots with perceived feelings. J. Appl. Psychol. 2021, 106, 1557–1572. [Google Scholar] [CrossRef]
- Cheetham, M.; Suter, P.; Jäncke, L. The human likeness dimension of the ‘uncanny valley hypothesis’: Behavioral and functional MRI findings. Front. Hum. Neurosci. 2011, 5, 126. [Google Scholar] [CrossRef]
- Renier, L.A.; Schmid Mast, M.; Bekbergenova, A. To err is human, not algorithmic – robust reactions to erring algorithms. Comput. Hum. Behav. 2021, 124, 106879. [Google Scholar] [CrossRef]
- Longoni, C.; Bonezzi, A.; Morewedge, C.K. Resistance to medical artificial intelligence. J. Con. Res. 2019, 46, 629–650. [Google Scholar] [CrossRef]
- Cadario, R.; Longoni, C.; Morewedge, C.K. Understanding, explaining, and utilizing medical artificial intelligence. Nat. Hum. Behav. 2021, 5, 1636–1642. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Tong, S.; Fang, Z.; Qu, Z. Frontiers: Machines vs. humans: The impact of artificial intelligence chatbot disclosure on customer purchases. Mark. Sci. 2019, 38, 913–1084. [Google Scholar] [CrossRef]
- Dietvorst, B.J.; Simmons, J.P.; Massey, C. Algorithm aversion: People erroneously avoid algorithms after seeing them err. J. Exp. Psychol. Gen. 2015, 144, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Lu, Y.; Gupta, S.; Cao, Y.; Zhang, R. Mobile payment services adoption across time: An empirical study of the effects of behavioral beliefs, social influences, and personal traits. Comput. Hum. Behav. 2012, 28, 129–142. [Google Scholar] [CrossRef]
- Lee, K.M.; Park, N.; Song, H. Can a robot be perceived as a developing creature? Hum. Commun. Res. 2005, 31, 538–563. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Wang, Y.S. Development and validation of an artificial intelligence anxiety scale: An initial application in predicting motivated learning behavior. Interact. Learn. Environ. 2022, 30, 619–634. [Google Scholar] [CrossRef]
- Dodds, W.B.; Monroe, K.B.; Grewal, D. Effects of price, brand, and store information on buyers’ product evaluations. J. Mark. Res. 1991, 28, 307–319. [Google Scholar]
- Xing, F.; Peng, G.; Zhang, B.; Li, S.; Liang, X. Socio-technical barriers affecting large-scale deployment of AI-enabled wearable medical devices among the ageing population in China. Technol. Forecast. Soc. Chang. 2021, 166, 120609. [Google Scholar] [CrossRef]
- iiMedia Research. China Live Streaming e-Commerce Industry Operation Big Data Analysis and Trend Research Report in 2022 to 2023. Available online: https://www.iimedia.cn/c400/86233.html (accessed on 24 June 2022).
- iiMedia Research. Research Report on China’s Virtual Streamer Industry in 2023. Available online: https://report.iimedia.cn/repo13-0/43334.html (accessed on 30 March 2023).
- Fastdata. Global Gen Z Consumer Insights Report in 2024. Available online: https://www.ifastdata.com/2024/02/01/fastdata%e6%9e%81%e6%95%b0%ef%bc%9a%e5%85%a8%e7%90%83z%e4%b8%96%e4%bb%a3%e6%b6%88%e8%b4%b9%e6%b4%9e%e5%af%9f%e6%8a%a5%e5%91%8a2024/ (accessed on 1 February 2024).
- Baron, R.M.; Kenny, D.A. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Stolzenberg, R.M. The measurement and decomposition of causal effects in nonlinear and nonadditive models. Sociol. Methodol. 1980, 11, 459. [Google Scholar] [CrossRef]
- Hayes, A.F.; Preacher, K.J. Quantifying and testing indirect effects in simple mediation models when the constituent paths are nonlinear. Multivar. Behav. Res. 2010, 45, 627–660. [Google Scholar] [CrossRef] [PubMed]
- Aiken, L.S.; West, S.G. Multiple regression: Testing and interpreting interactions. In Multiple Regression: Testing and Interpreting Interactions; Sage: Newcastle upon Tyne, UK, 1991; pp. 119–120. [Google Scholar]
- Yu, J.; Dickinger, A.; So, K.K.F.; Egger, R. Artificial intelligence-generated virtual influencer: Examining the effects of emotional display on user engagement. J. Retail. Con. Serv. 2024, 76, 103560. [Google Scholar] [CrossRef]
- Zhang, N.; Fan, X.; He, L.; Cheng, X.; Zhang, L.; Liu, R. The impact of the Seller’s facial image on consumer purchase behavior in peer-to-peer accommodation platforms. J. Retail. Con. Serv. 2024, 80, 103932. [Google Scholar] [CrossRef]
1. Image anthropomorphism (ANT) | |
ANT1 | The image of this virtual influencer is realistic. |
ANT2 | From the image, this virtual influencer appears to be alive. |
ANT3 | From the image, this virtual influencer appears life like. |
ANT4 | From the image, this virtual influencer appears natural. |
2. Algorithmic aversion (ALG) | |
ALG1 | I find this virtual influencer intimidating to look at. |
ALG2 | I find the appearance of this virtual influencer intimidating. |
ALG3 | I don’t know why, but the appearance of this virtual influencer scares me. |
ALG4 | I’m worried that virtual influencers might take someone’s job. |
ALG5 | The latest developments in this virtual influencer are challenging me as a human being. |
3. Purchase intention (PUI) | |
PUI1 | I would consider purchasing a product recommended by this virtual influencer online. |
PUI2 | If given the opportunity, I predict I will consider purchasing the products recommended by this virtual influencer soon. |
PUI3 | If given the opportunity, I plan to place an order with this virtual influencer. |
PUI4 | I will most likely purchase products from this virtual influencer soon. |
4. Self-efficacy (SES) | |
SES1 | If I do my best, I can always solve the problem. |
SES2 | Even if people are against me, I still have a way to get what I want. |
SES3 | Sticking to my ideals and reaching my goals is easy for me. |
SES4 | I am confident that I can effectively cope with anything that comes my way. |
SES5 | With my talents, I can handle the unexpected. |
SES6 | I can solve most problems if I put in the necessary effort. |
SES7 | I can face difficulties calmly because I can rely on my ability to deal with them. |
SES8 | When faced with a problem, I can usually find several solutions. |
SES9 | When there is trouble, I can usually think of some ways to cope with it. |
SES10 | I can cope with whatever happens to me. |
Statistical Characteristics | Categories | Frequency | Percentage |
---|---|---|---|
Gender | Male | 175 | 37.20% |
Female | 295 | 62.80% | |
Age (years) | ≤19 | 14 | 3% |
20–29 | 421 | 89.60% | |
30–39 | 26 | 5.50% | |
40–49 | 5 | 1.10% | |
≥50 | 4 | 0.90% | |
Monthly income (CNY) | ≤3000 | 242 | 51.50% |
3001–6000 | 98 | 20.90% | |
6001–9000 | 68 | 14.50% | |
≥9001 | 62 | 13.20% | |
Education | ≤Middle school degree | 21 | 4.50% |
Bachelor’s degree | 226 | 48.10% | |
≥Master’s | 223 | 47.40% | |
Career | students | 264 | 56.20% |
Government/Enterprise worker | 58 | 12.30% | |
Business/Corporate staff | 83 | 17.70% | |
Self-employed/Freelance | 36 | 7.70% | |
Retiree | 0 | 0 | |
Other | 29 | 6.20% |
Variables | Measured Item | Corrected Item–Total Score Correlation (CITI) | Cronbach’s Coefficient After Item Deletion | Cronbach’s α |
---|---|---|---|---|
Image anthropomorphism | ANT1 | 0.907 | 0.947 | 0.961 |
ANT2 | 0.898 | 0.949 | ||
ANT3 | 0.916 | 0.944 | ||
ANT4 | 0.889 | 0.952 | ||
Algorithmic aversion | ALG1 | 0.803 | 0.901 | 0.921 |
ALG2 | 0.795 | 0.902 | ||
ALG3 | 0.785 | 0.904 | ||
ALG4 | 0.797 | 0.902 | ||
ALG5 | 0.791 | 0.903 | ||
Purchase intention | PUI1 | 0.773 | 0.920 | 0.925 |
PUI2 | 0.863 | 0.890 | ||
PUI3 | 0.850 | 0.894 | ||
PUI4 | 0.818 | 0.905 | ||
Self-efficacy | SES1 | 0.668 | 0.935 | 0.939 |
SES2 | 0.702 | 0.933 | ||
SES3 | 0.686 | 0.935 | ||
SES4 | 0.803 | 0.928 | ||
SES5 | 0.824 | 0.927 | ||
SES6 | 0.757 | 0.931 | ||
SES7 | 0.824 | 0.927 | ||
SES8 | 0.745 | 0.931 | ||
SES9 | 0.769 | 0.930 | ||
SES10 | 0.727 | 0.932 |
KMO and Bartlett’s Test | ||
---|---|---|
KMO, number of suitability measures for sampling | 0.920 | |
Bartlett’s test of sphericity | Approximate cardinality | 9280.034 |
Degrees of freedom | 253 | |
Significance | 0 |
Component | Initial Eigenvalue | Extracted Load Sum of Squares | Rotated Load Sum of Squares | ||||||
---|---|---|---|---|---|---|---|---|---|
Total | Percentage of Variance | Cumulative % | Total | Percentage of Variance | Cumulative % | Total | Percentage of Variance | Cumulative % | |
1 | 7.848 | 34.120 | 34.12 | 7.848 | 34.12 | 34.120 | 6.486 | 28.198 | 28.198 |
2 | 4.733 | 20.580 | 54.701 | 4.733 | 20.58 | 54.701 | 3.864 | 16.800 | 44.999 |
3 | 3.409 | 14.823 | 69.524 | 3.409 | 14.823 | 69.524 | 3.614 | 15.713 | 60.712 |
4 | 1.176 | 5.112 | 74.635 | 1.176 | 5.112 | 74.635 | 3.202 | 13.923 | 74.635 |
5 | 0.844 | 3.670 | 78.305 | ||||||
6 | 0.674 | 2.928 | 81.233 | ||||||
7 | 0.447 | 1.943 | 83.176 | ||||||
8 | 0.411 | 1.789 | 84.965 | ||||||
9 | 0.384 | 1.671 | 86.637 | ||||||
10 | 0.339 | 1.473 | 88.110 | ||||||
11 | 0.304 | 1.322 | 89.432 | ||||||
12 | 0.297 | 1.290 | 90.722 | ||||||
13 | 0.291 | 1.266 | 91.987 | ||||||
14 | 0.260 | 1.130 | 93.117 | ||||||
15 | 0.232 | 1.009 | 94.127 | ||||||
16 | 0.216 | 0.941 | 95.067 | ||||||
17 | 0.204 | 0.889 | 95.956 | ||||||
18 | 0.201 | 0.873 | 96.830 | ||||||
19 | 0.177 | 0.771 | 97.601 | ||||||
20 | 0.159 | 0.691 | 98.291 | ||||||
21 | 0.152 | 0.660 | 98.951 | ||||||
22 | 0.127 | 0.553 | 99.503 | ||||||
23 | 0.114 | 0.497 | 100 |
Latent Variable | Measurement Item | Estimate | S.E. | C.R. | p |
---|---|---|---|---|---|
Image anthropomorphism | ANT1 | 0.932 | 3.026 | 0.228 | *** |
ANT2 | 0.922 | ||||
ANT3 | 0.942 | ||||
ANT4 | 0.912 | ||||
Algorithm aversion | PUI1 | 0.813 | 1.842 | 0.175 | *** |
PUI2 | 0.910 | ||||
PUI3 | 0.894 | ||||
PUI4 | 0.862 | ||||
Purchase intention | ALG5 | 0.830 | 1.784 | 0.165 | *** |
ALG4 | 0.843 | ||||
ALG3 | 0.823 | ||||
ALG2 | 0.838 | ||||
ALG1 | 0.845 | ||||
Self-efficacy | SES10 | 0.756 | 1.124 | 0.118 | *** |
SES9 | 0.801 | ||||
SES8 | 0.779 | ||||
SES7 | 0.862 | ||||
SES6 | 0.791 | ||||
SES5 | 0.853 | ||||
SES4 | 0.828 | ||||
SES3 | 0.711 | ||||
SES2 | 0.713 | ||||
SES1 | 0.680 |
Factor Model 1 | c2 | df | c2/df | RMSEA | IFI | TLI | CFI | Comparative Model Testing | ||
---|---|---|---|---|---|---|---|---|---|---|
Model Comparison | ∆c2 | ∆df | ||||||||
Four-factor model | 708.989 | 224 | 3.165 | 0.0405 | 0.947 | 0.94 | 0.947 | |||
Three-factor Model | 2589.343 | 227 | 11.407 | 0.2105 | 0.744 | 0.714 | 0.743 | 2 vs. 1 | 1880.354 *** | 3 |
Two-factor Model | 3524.254 | 229 | 15.39 | 0.1374 | 0.643 | 0.604 | 0.642 | 3 vs. 1 | 2815.265 *** | 5 |
One-factor model | 6004.627 | 230 | 26.107 | 0.2656 | 0.374 | 0.309 | 0.372 | 4 vs. 1 | 5295.638 *** | 6 |
Main Variables | Mean Value | Standard Deviation | Image Anthropomorphism | Algorithmic Aversion | Self-Efficacy | Purchase Intention |
---|---|---|---|---|---|---|
Image anthropomorphism | 4.353 | 1.752 | 0.869 | |||
Algorithmic aversion | 3.428 | 1.394 | 0.127 ** | 0.689 | ||
Self-efficacy | 4.944 | 1.103 | 0.01 | −0.289 ** | 0.572 | |
Purchase intention | 4.906 | 1.519 | 0.019 * | −0.660 ** | 0.176 ** | 0.661 |
Image anthropomorphism Squared term | 3.062 | 2.943 | −0.259 ** | −0.627 ** | 0.002 | 0.482 ** |
Variables | Algorithmic Aversion | Purchase Intention | |||||||
---|---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | Model 9 | |
Constant term | 4.224 *** | 4.019 *** | 4.814 *** | 8.281 *** | 4.445 *** | 4.918 *** | 3.737 *** | 7.487 *** | 6.869 *** |
1. Control variables | |||||||||
sex | −0.06 | −0.049 | 0.019 | −0.02 | 0.05 | 0.042 | −0.016 | 0.007 | −0.004 |
age | −0.137 | −0.092 | −0.187 | −0.094 | 0.408 * | 0.376 * | 0.457 ** | 0.31 ** | 0.339 ** |
Average monthly income | 0.054 | 0.048 | 0.006 | −0.029 | −0.06 | −0.055 | −0.019 | −0.021 | −0.015 |
Academic qualifications | 0.093 | 0.13 | 0.099 | 0.077 | −0.157 | −0.183 | −0.157 | −0.09 | −0.094 |
Occupation | −0.065 | −0.061 | −0.041 | −0.019 | −0.007 | −0.01 | −0.026 | −0.054 | −0.053 |
Novelty | −0.119 * | −0.119 * | −0.069 | −0.059 | 0.053 | 0.053 | 0.011 | −0.032 | −0.033 |
Familiarity | −0.017 | −0.025 | −0.002 | 0.03 | −0.023 | −0.017 | −0.036 | −0.035 | −0.038 |
2. Independent variables | |||||||||
ANT | 0.105 * | −0.029 | −0.02 | −0.075 | 0.04 | 0.022 | |||
ANT2 | −0.299 *** | −0.301 *** | 0.257 *** | 0.067 ** | |||||
SES | −0.744 *** | ||||||||
3. Interaction terms | |||||||||
ANT × SES | 0.06 * | ||||||||
ANT2 × SES | 0.108 *** | ||||||||
4. Intermediary variable | |||||||||
ALG | −0.72 *** | −0.634 *** | |||||||
Adjusted R2 | 0.011 | 0.026 | 0.398 | 0.535 | 0.007 | 0.012 | 0.242 | 0.438 | 0.457 |
0.026 | 0.017 | 0.367 | 0.137 | 0.022 | 0.007 | 0.227 | 0.425 | 0.435 | |
1.75 | 8.148 ** | 285.45 *** | 46.205 *** | 1.471 | 3.451 | 140.766 *** | 354.796 *** | 122.519 *** |
Independent Variable | ANT | |
---|---|---|
Dependent Variable | PUI | ALG |
Equation | y = A + B × x + C × x2 | |
A | 8.80236 ± 0.34482 | −1.23097 ± 0.28149 |
B | −2.17912 ± 0.18243 | 2.59445 ± 0.14892 |
C | 0.25393 ± 0.02164 | −0.30142 ± 0.01767 |
R2 | 0.23404 | 0.39393 |
Adjusted R2 | 0.23076 | 0.39133 |
F | 151.76784 *** | 71.34533 *** |
Intermediary Variable | Independent Variable Taking Values | Bootstrap Sampling Count | 95% Confidence Interval | Transient Mediation Effect | |
---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||
ALG | 2.6014 | 5000 | −0.8260 | −0.5124 | −0.6579 |
4.3532 | 5000 | −0.0069 | 0.0474 | 0.0191 | |
6.1050 | 5000 | 0.5390 | 0.8739 | 0.6962 |
Variable | Algorithmic Aversion | 95% Confidence Interval | |||
---|---|---|---|---|---|
B | Standard Error | t | Lower Bound | Upper Bound | |
ANT | 0.107 ** | 0.0354 | 3.0241 | 0.0375 | 0.1765 |
SES | −0.3569 *** | 0.0573 | −6.227 | −0.4696 | −0.2443 |
ANT × SES | −0.0187 | 0.0300 | −0.6225 | −0.0777 | 0.0403 |
Adjusted R2 | 0.0007 | ||||
F | 0.3875 |
Variable | Algorithmic Aversion | 95% Confidence Interval | |||
---|---|---|---|---|---|
B | Standard Error | t | Lower Bound | Upper Bound | |
ANT | −0.2980 *** | 0.0151 | −19.7392 | −0.3277 | −0.2684 |
SES | −0.7048 *** | 0.0622 | −11.338 | −0.8269 | −0.5826 |
ANT2 × SES | 0.0926 *** | 0.0125 | 7.4194 | 0.0681 | 0.1171 |
Adjusted R2 | 0.0552 | ||||
F | 55.0469 *** |
Indicator | Value | Magnitude of Effect | Standard Error | t | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
Low self-efficacy | 3.8409 | −0.4001 *** | 0.0206 | −19.4163 | −0.4406 | −0.3596 |
Medium self-efficacy | 4.9438 | −0.2980 *** | 0.0151 | −19.7391 | −0.3277 | −0.2684 |
High self-efficacy | 6.0467 | −0.1959 *** | 0.0202 | −9.6757 | −0.2357 | −0.1561 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, S.; Qin, Z.; Zhang, Y. More Realistic, More Better? How Anthropomorphic Images of Virtual Influencers Impact the Purchase Intentions of Consumers. J. Theor. Appl. Electron. Commer. Res. 2024, 19, 3229-3252. https://doi.org/10.3390/jtaer19040157
Pan S, Qin Z, Zhang Y. More Realistic, More Better? How Anthropomorphic Images of Virtual Influencers Impact the Purchase Intentions of Consumers. Journal of Theoretical and Applied Electronic Commerce Research. 2024; 19(4):3229-3252. https://doi.org/10.3390/jtaer19040157
Chicago/Turabian StylePan, Siyu, Zhouyao Qin, and Yiwei Zhang. 2024. "More Realistic, More Better? How Anthropomorphic Images of Virtual Influencers Impact the Purchase Intentions of Consumers" Journal of Theoretical and Applied Electronic Commerce Research 19, no. 4: 3229-3252. https://doi.org/10.3390/jtaer19040157
APA StylePan, S., Qin, Z., & Zhang, Y. (2024). More Realistic, More Better? How Anthropomorphic Images of Virtual Influencers Impact the Purchase Intentions of Consumers. Journal of Theoretical and Applied Electronic Commerce Research, 19(4), 3229-3252. https://doi.org/10.3390/jtaer19040157