Consumer Sentiment and Hotel Aspect Preferences Across Trip Modes and Purposes
<p>Study 2 Phase 1 Flowchart: Evaluation of unsupervised clustering methods.</p> "> Figure 2
<p>Study 2 Phase 2 Flowchart: Evaluation of the prominence of each aspect per each trip mode and purpose group.</p> "> Figure 3
<p>Prominence of hotel aspects as calculated by the average frequency of terms per hotel aspect as expressed by each trip mode group. (<b>a</b>) Prominence of Location; (<b>b</b>) Prominence of Service; (<b>c</b>) Prominence of Food; (<b>d</b>) Prominence of Room.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Background and Related Works
Determining Sentiment and Aspect Extraction
2.2. Data
2.3. Experiment One Design: Comparing Human Perceptions of Textual Evaluations and Star Ratings from Travelers with Different Trip Modes
2.4. Experiment Two Design: Identifying Travelers’ Hotel Preferences by Trip Mode Through Unsupervised Aspect Extraction
Data Representation for Community Detection
3. Results
3.1. Experiment One: Perceptions of Reviews Compared with Star Ratings
Human Perception of Review Sentiment Across Different Trip Mode Groups
3.2. Experiment Two: Preference of Mode Groups for Hotel Aspects
3.2.1. Clustering Evaluation
3.2.2. Identifying Mode Groups’ Preferences for Hotel Aspects
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pang, B.; Lee, L. Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2008, 2, 1–135. [Google Scholar] [CrossRef]
- Jain, P.K.; Pamula, R.; Srivastava, G. A systematic literature review on machine learning applications for consumer sentiment analysis using online reviews. Comput. Sci. Rev. 2021, 41, 100413. [Google Scholar] [CrossRef]
- Mokryn, O. The opinions of a few: A cross-platform study quantifying usefulness of reviews. Online Soc. Netw. Media 2020, 18, 100080. [Google Scholar] [CrossRef]
- Zheng, X.; Huang, J.; Wu, J.; Sun, S.; Wang, S. Emerging trends in online reviews research in hospitality and tourism: A scientometric update (2000–2020). Tour. Manag. Perspect. 2023, 47, 101105. [Google Scholar] [CrossRef]
- Madzík, P.; Falát, L.; Copuš, L.; Valeri, M. Digital transformation in tourism: Bibliometric literature review based on machine learning approach. Eur. J. Innov. Manag. 2023, 26, 177–205. [Google Scholar] [CrossRef]
- Wan, Y.; Ma, B.; Pan, Y. Opinion evolution of online consumer reviews in the e-commerce environment. Electron. Commer. Res. 2018, 18, 291–311. [Google Scholar] [CrossRef]
- Hu, X.; Yang, Y. What makes online reviews helpful in tourism and hospitality? A bare-bones meta-analysis. J. Hosp. Mark. Manag. 2021, 30, 139–158. [Google Scholar] [CrossRef]
- Chen, T.; Samaranayake, P.; Cen, X.; Qi, M.; Lan, Y.C. The impact of online reviews on consumers’ purchasing decisions: Evidence from an eye-tracking study. Front. Psychol. 2022, 13, 865702. [Google Scholar] [CrossRef]
- PowerReviews. Survey: The Ever-Growing Power of Reviews, 2023 ed. 2023. Available online: https://www.powerreviews.com/power-of-reviews-2023/ (accessed on 15 September 2024).
- Schuckert, M.; Liu, X.; Law, R. Hospitality and tourism online reviews: Recent trends and future directions. J. Travel Tour. Mark. 2015, 32, 608–621. [Google Scholar] [CrossRef]
- Glaesser, D.; Kester, J.; Paulose, H.; Alizadeh, A.; Valentin, B. Global travel patterns: An overview. J. Travel Med. 2017, 24, tax007. [Google Scholar] [CrossRef]
- Armutcu, B.; Tan, A.; Amponsah, M.; Parida, S.; Ramkissoon, H. Tourist behaviour: The role of digital marketing and social media. Acta Psychol. 2023, 240, 104025. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.; Du, Q.; Ma, Y.; Fan, W. A comparative analysis of major online review platforms: Implications for social media analytics in hospitality and tourism. Tour. Manag. 2017, 58, 51–65. [Google Scholar] [CrossRef]
- Martin-Fuentes, E.; Fernandez, C.; Mateu, C.; Marine-Roig, E. Modelling a grading scheme for peer-to-peer accommodation: Stars for Airbnb. Int. J. Hosp. Manag. 2018, 69, 75–83. [Google Scholar] [CrossRef]
- Xu, X. Does traveler satisfaction differ in various travel group compositions? Evidence from online reviews. Int. J. Contemp. Hosp. Manag. 2018, 30, 1663–1685. [Google Scholar] [CrossRef]
- Hassani, H.; Beneki, C.; Unger, S.; Mazinani, M.T.; Yeganegi, M.R. Text mining in big data analytics. Big Data Cogn. Comput. 2020, 4, 1. [Google Scholar] [CrossRef]
- Meneses, R.; Brito, C.; Lopes, B.; Correia, R. Satisfaction and dissatisfaction in wine tourism: A user-generated content analysis. Tour. Hosp. Res. 2023, 14673584231191989. [Google Scholar] [CrossRef]
- Levi, A.; Mokryn, O.; Diot, C.; Taft, N. Finding a needle in a haystack of reviews: Cold start context-based hotel recommender system. In Proceedings of the Sixth ACM conference on Recommender Systems, Dublin, Ireland, 9–13 September 2012; pp. 115–122. [Google Scholar]
- Chen, L.; Chen, G.; Wang, F. Recommender systems based on user reviews: The state of the art. User Model.-User-Adapt. Interact. 2015, 25, 99–154. [Google Scholar] [CrossRef]
- Li, J.; Xu, L.; Tang, L.; Wang, S.; Li, L. Big data in tourism research: A literature review. Tour. Manag. 2018, 68, 301–323. [Google Scholar] [CrossRef]
- Zarezadeh, Z.Z.; Rastegar, R.; Xiang, Z. Big data analytics and hotel guest experience: A critical analysis of the literature. Int. J. Contemp. Hosp. Manag. 2022, 34, 2320–2336. [Google Scholar] [CrossRef]
- Oh, H.; Kim, K. Customer satisfaction, service quality, and customer value: Years 2000–2015. Int. J. Contemp. Hosp. Manag. 2017, 29, 2–29. [Google Scholar] [CrossRef]
- Rajaguru, R.; Hassanli, N. The role of trip purpose and hotel star rating on guests’ satisfaction and WOM. Int. J. Contemp. Hosp. Manag. 2018, 30, 2268–2286. [Google Scholar] [CrossRef]
- Yadav, M.L.; Roychoudhury, B. Effect of trip mode on opinion about hotel aspects: A social media analysis approach. Int. J. Hosp. Manag. 2019, 80, 155–165. [Google Scholar] [CrossRef]
- Moise, M.S.; Gil-Saura, I.; Ruiz-Molina, M.E. Implications of value co-creation in green hotels: The moderating effect of trip purpose and generational cohort. Sustainability 2020, 12, 9866. [Google Scholar] [CrossRef]
- Pizam, A.; Mansfeld, Y. Consumer Behavior in Travel and Tourism; Routledge: Abingdon-on-Thames, UK, 1999. [Google Scholar]
- Radder, L.; Wang, Y. Dimensions of guest house service: Managers’ perceptions and business travellers’ expectations. Int. J. Contemp. Hosp. Manag. 2006, 18, 554–562. [Google Scholar] [CrossRef]
- Banerjee, S.; Chua, A.Y. In search of patterns among travellers’ hotel ratings in TripAdvisor. Tour. Manag. 2016, 53, 125–131. [Google Scholar] [CrossRef]
- Luo, J.M.; Vu, H.Q.; Li, G.; Law, R. Understanding service attributes of robot hotels: A sentiment analysis of customer online reviews. Int. J. Hosp. Manag. 2021, 98, 103032. [Google Scholar] [CrossRef]
- Ong, B.S. The perceived influence of user reviews in the hospitality industry. J. Hosp. Mark. Manag. 2012, 21, 463–485. [Google Scholar] [CrossRef]
- Hernández-Rubio, M.; Cantador, I.; Bellogín, A. A comparative analysis of recommender systems based on item aspect opinions extracted from user reviews. User Model.-User-Adapt. Interact. 2019, 29, 381–441. [Google Scholar] [CrossRef]
- Kanje, P.; Charles, G.; Tumsifu, E.; Mossberg, L.; Andersson, T. Customer engagement and eWOM in tourism. J. Hosp. Tour. Insights 2020, 3, 273–289. [Google Scholar] [CrossRef]
- Chu, S.C.; Deng, T.; Cheng, H. The role of social media advertising in hospitality, tourism and travel: A literature review and research agenda. Int. J. Contemp. Hosp. Manag. 2020, 32, 3419–3438. [Google Scholar] [CrossRef]
- Reyes-Menendez, A.; Correia, M.B.; Matos, N.; Adap, C. Understanding online consumer behavior and eWOM strategies for sustainable business management in the tourism industry. Sustainability 2020, 12, 8972. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, B. Aspect and entity extraction for opinion mining. In Data Mining and Knowledge Discovery for Big Data: Methodologies, Challenge and Opportunities; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–40. [Google Scholar]
- Chen, H.; Yin, H.; Li, X.; Wang, M.; Chen, W.; Chen, T. People opinion topic model: Opinion based user clustering in social networks. In Proceedings of the 26th International Conference on World Wide Web Companion, Perth, Australia, 3–7 April 2017; pp. 1353–1359. [Google Scholar]
- Xue, W.; Li, T.; Rishe, N. Aspect identification and ratings inference for hotel reviews. World Wide Web 2017, 20, 23–37. [Google Scholar] [CrossRef]
- Wan, C.; Peng, Y.; Xiao, K.; Liu, X.; Jiang, T.; Liu, D. An association-constrained LDA model for joint extraction of product aspects and opinions. Inf. Sci. 2020, 519, 243–259. [Google Scholar] [CrossRef]
- Shu, Z.; González, R.A.C.; García-Miguel, J.P.; Sánchez-Montañés, M. Clustering using ordered weighted averaging operator and 2-tuple linguistic model for hotel segmentation: The case of TripAdvisor. Expert Syst. Appl. 2023, 213, 118922. [Google Scholar] [CrossRef]
- Tubishat, M.; Idris, N.; Abushariah, M.A. Implicit aspect extraction in sentiment analysis: Review, taxonomy, oppportunities, and open challenges. Inf. Process. Manag. 2018, 54, 545–563. [Google Scholar] [CrossRef]
- Ray, B.; Garain, A.; Sarkar, R. An ensemble-based hotel recommender system using sentiment analysis and aspect categorization of hotel reviews. Appl. Soft Comput. 2021, 98, 106935. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, X.; Liu, D. Deriving customer preferences for hotels based on aspect-level sentiment analysis of online reviews. Electron. Commer. Res. Appl. 2021, 49, 101094. [Google Scholar] [CrossRef]
- Zhao, M.; Liu, M.; Xu, C.; Zhang, C. Classifying travellers’ requirements from online reviews: An improved Kano model. Int. J. Contemp. Hosp. Manag. 2024, 36, 91–112. [Google Scholar] [CrossRef]
- Mokryn, O.; Bodoff, D.; Bader, N.; Albo, Y.; Lanir, J. Sharing emotions: Determining films’ evoked emotional experience from their online reviews. Inf. Retr. J. 2020, 23, 475–501. [Google Scholar] [CrossRef]
- Mishra, A.; Satish, S. eWOM: Extant research review and future research avenues. Vikalpa 2016, 41, 222–233. [Google Scholar] [CrossRef]
- Litvin, S.W.; Goldsmith, R.E.; Pan, B. Electronic word-of-mouth in hospitality and tourism management. Tour. Manag. 2008, 29, 458–468. [Google Scholar] [CrossRef]
- Filieri, R.; McLeay, F. E-WOM and accommodation an analysis of the factors that influence travelers’ adoption of information from online reviews. J. Travel Res. 2014, 53, 44–57. [Google Scholar] [CrossRef]
- Strandberg, C.; Nath, A.; Hemmatdar, H.; Jahwash, M. Tourism research in the new millennium: A bibliometric review of literature in Tourism and Hospitality Research. Tour. Hosp. Res. 2018, 18, 269–285. [Google Scholar] [CrossRef]
- Wen, J.; Lin, Z.; Liu, X.; Xiao, S.H.; Li, Y. The interaction effects of online reviews, brand, and price on consumer hotel booking decision making. J. Travel Res. 2021, 60, 846–859. [Google Scholar] [CrossRef]
- Cambria, E.; Poria, S.; Gelbukh, A.; Thelwall, M. Sentiment analysis is a big suitcase. IEEE Intell. Syst. 2017, 32, 74–80. [Google Scholar] [CrossRef]
- McAuley, J.; Leskovec, J. Hidden factors and hidden topics: Understanding rating dimensions with review text. In Proceedings of the 7th ACM Conference on Recommender Systems, Hong Kong, China, 12–16 October 2013; pp. 165–172. [Google Scholar]
- Ma, Y.; Peng, H.; Cambria, E. Targeted aspect-based sentiment analysis via embedding commonsense knowledge into an attentive LSTM. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LO, USA, 2–7 February 2018; Volume 32. [Google Scholar]
- Wang, L.; Wang, X.k.; Peng, J.j.; Wang, J.q. The differences in hotel selection among various types of travellers: A comparative analysis with a useful bounded rationality behavioural decision support model. Tour. Manag. 2020, 76, 103961. [Google Scholar] [CrossRef]
- Liang, B.; Su, H.; Gui, L.; Cambria, E.; Xu, R. Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks. Knowl.-Based Syst. 2022, 235, 107643. [Google Scholar] [CrossRef]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Moghaddam, S.; Ester, M. ILDA: Interdependent LDA model for learning latent aspects and their ratings from online product reviews. In Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, Beijing, China, 24–28 July 2011; pp. 665–674. [Google Scholar]
- Guo, Y.; Barnes, S.J.; Jia, Q. Mining meaning from online ratings and reviews: Tourist satisfaction analysis using latent dirichlet allocation. Tour. Manag. 2017, 59, 467–483. [Google Scholar] [CrossRef]
- Hu, N.; Zhang, T.; Gao, B.; Bose, I. What do hotel customers complain about? Text analysis using structural topic model. Tour. Manag. 2019, 72, 417–426. [Google Scholar] [CrossRef]
- Sutherland, I.; Kiatkawsin, K. Determinants of guest experience in Airbnb: A topic modeling approach using LDA. Sustainability 2020, 12, 3402. [Google Scholar] [CrossRef]
- Jia, S.S. Motivation and satisfaction of Chinese and US tourists in restaurants: A cross-cultural text mining of online reviews. Tour. Manag. 2020, 78, 104071. [Google Scholar] [CrossRef]
- Kalnaovakul, K.; Promsivapallop, P. Hotel service quality dimensions and attributes: An analysis of online hotel customer reviews. Tour. Hosp. Res. 2023, 23, 420–440. [Google Scholar] [CrossRef]
- Sann, R.; Lai, P.C. Topic modeling of the quality of guest’s experience using latent Dirichlet allocation: Western versus eastern perspectives. Consum. Behav. Tour. Hosp. 2023, 18, 17–34. [Google Scholar] [CrossRef]
- Kumar, A.; Chakraborty, S.; Bala, P.K. Text mining approach to explore determinants of grocery mobile app satisfaction using online customer reviews. J. Retail. Consum. Serv. 2023, 73, 103363. [Google Scholar] [CrossRef]
- Chen, L.; Martineau, J.; Cheng, D.; Sheth, A. Clustering for simultaneous extraction of aspects and features from reviews. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, CA, USA, 12–17 June 2016; pp. 789–799. [Google Scholar]
- Nazir, A.; Rao, Y.; Wu, L.; Sun, L. Issues and challenges of aspect-based sentiment analysis: A comprehensive survey. IEEE Trans. Affect. Comput. 2020, 13, 845–863. [Google Scholar] [CrossRef]
- Irfan, R.; King, C.K.; Grages, D.; Ewen, S.; Khan, S.U.; Madani, S.A.; Kolodziej, J.; Wang, L.; Chen, D.; Rayes, A.; et al. A survey on text mining in social networks. Knowl. Eng. Rev. 2015, 30, 157–170. [Google Scholar] [CrossRef]
- Zeimpekis, D.; Gallopoulos, E. Principal direction divisive partitioning with kernels and k-means steering. In Survey of Text Mining II; Springer: Berlin/Heidelberg, Germany, 2008; pp. 45–64. [Google Scholar]
- Jain, A.; Murty, M.; Flynn, P. Data clustering: A review. ACM Comput. Surv. 1999, 31, 264–323. [Google Scholar] [CrossRef]
- Shalileh, S.; Mirkin, B. Summable and nonsummable data-driven models for community detection in feature-rich networks. Soc. Netw. Anal. Min. 2021, 11, 1–23. [Google Scholar] [CrossRef]
- Chen, M.M.; Seach, K.; Inversini, A.; Williams, N. Different cultures review hotels differently. Tour. Hosp. Res. 2023, 14673584231198410. [Google Scholar] [CrossRef]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; Wiley: Hoboken, NJ, USA, 2009; Volume 344. [Google Scholar]
- Ezugwu, A.E.; Ikotun, A.M.; Oyelade, O.O.; Abualigah, L.; Agushaka, J.O.; Eke, C.I.; Akinyelu, A.A. A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Eng. Appl. Artif. Intell. 2022, 110, 104743. [Google Scholar] [CrossRef]
- Curiskis, S.A.; Drake, B.; Osborn, T.R.; Kennedy, P.J. An evaluation of document clustering and topic modelling in two online social networks: Twitter and Reddit. Inf. Process. Manag. 2020, 57, 102034. [Google Scholar] [CrossRef]
- Grira, N.; Crucianu, M.; Boujemaa, N. Unsupervised and semi-supervised clustering: A brief survey. In A Review of Machine Learning Techniques for Processing Multimedia Content, Report of the MUSCLE European Network of Excellence (FP6); Ercim: Cannes, France, 2004. [Google Scholar]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 27 December 1965–7 January 1966; Volume 1, p. 14. [Google Scholar]
- Ikotun, A.M.; Ezugwu, A.E.; Abualigah, L.; Abuhaija, B.; Heming, J. K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Inf. Sci. 2023, 622, 178–210. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the KDD, Portland, OR, USA, 2–4 August 1996; Volume 96, pp. 226–231. [Google Scholar]
- Ng, A.Y.; Jordan, M.I.; Weiss, Y. On spectral clustering: Analysis and an algorithm. Adv. Neural Inf. Process. Syst. 2002, 2, 849–856. [Google Scholar]
- Von Luxburg, U. A tutorial on spectral clustering. Stat. Comput. 2007, 17, 395–416. [Google Scholar] [CrossRef]
- Frey, B.J.; Dueck, D. Clustering by passing messages between data points. Science 2007, 315, 972–976. [Google Scholar] [CrossRef]
- Ward, J.H., Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- King, B. Step-wise clustering procedures. J. Am. Stat. Assoc. 1967, 62, 86–101. [Google Scholar] [CrossRef]
- Fortunato, S. Community detection in graphs. Phys. Rep. 2010, 486, 75–174. [Google Scholar] [CrossRef]
- Manning, C.D.; Raghavan, P.; Schütze, H. Introduction to Information Retrieval; Cambridge University Press: Cambridge, MA, USA, 2008; Volume 1. [Google Scholar]
- Mikhina, E.K.; Trifalenkov, V.I. Text clustering as graph community detection. Procedia Comput. Sci. 2018, 123, 271–277. [Google Scholar] [CrossRef]
- Reichardt, J.; Bornholdt, S. Statistical mechanics of community detection. Phys. Rev. E 2006, 74, 016110. [Google Scholar] [CrossRef] [PubMed]
- Clauset, A.; Newman, M.; Moore, C. Finding community structure in very large networks. Phys. Rev. E 2004, 70, 066111. [Google Scholar] [CrossRef] [PubMed]
- Pons, P.; Latapy, M. Computing communities in large networks using random walks. In Proceedings of the Computer and Information Sciences-ISCIS 2005: 20th International Symposium, Istanbul, Turkey, 26–28 October 2005; pp. 284–293. [Google Scholar]
- Reichardt, J.; Bornholdt, S. Detecting fuzzy community structures in complex networks with a Potts model. Phys. Rev. Lett. 2004, 93, 218701. [Google Scholar] [CrossRef] [PubMed]
- Church, K.; Hanks, P. Word association norms, mutual information, and lexicography. Comput. Linguist. 1990, 16, 22–29. [Google Scholar]
- Church, K.; Gale, W.; Hanks, P.; Kindle, D. 6. Using Statistics in Lexical Analysis. In Lexical Acquisition: Exploiting On-Line Resources to Build a Lexicon; Psychology Press: East Sussex, UK, 1991; p. 115. [Google Scholar]
- Rand, W.M. Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 1971, 66, 846–850. [Google Scholar] [CrossRef]
- Sadiq, S.; Umer, M.; Ullah, S.; Mirjalili, S.; Rupapara, V.; Nappi, M. Discrepancy detection between actual user reviews and numeric ratings of Google App store using deep learning. Expert Syst. Appl. 2021, 181, 115111. [Google Scholar] [CrossRef]
- Radojevic, T.; Stanisic, N.; Stanic, N. Solo travellers assign higher ratings than families: Examining customer satisfaction by demographic group. Tour. Manag. Perspect. 2015, 16, 247–258. [Google Scholar] [CrossRef]
- Radojevic, T.; Stanisic, N.; Stanic, N. Inside the rating scores: A multilevel analysis of the factors influencing customer satisfaction in the hotel industry. Cornell Hosp. Q. 2017, 58, 134–164. [Google Scholar] [CrossRef]
- Yang, R.; Tung, V.W.S. How does family influence the travel constraints of solo travelers? Construct specification and scale development. J. Travel Tour. Mark. 2018, 35, 507–516. [Google Scholar] [CrossRef]
- Liu, Q.; Gao, Z.; Liu, B.; Zhang, Y. Automated rule selection for aspect extraction in opinion mining. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, 25–31 July 2015. [Google Scholar]
- Sasmita, D.H.; Wicaksono, A.F.; Louvan, S.; Adriani, M. Unsupervised aspect-based sentiment analysis on Indonesian restaurant reviews. In Proceedings of the 2017 International Conference on Asian Language Processing (IALP), Singapore, 5–7 December 2017; pp. 383–386. [Google Scholar]
- Setiowati, Y.; Djunaidy, A.; Siahaan, D.O. Aspect-based extraction of implicit opinions using opinion co-occurrence algorithm. In Proceedings of the 2022 5th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), Yogyakarta, Indonesia, 8–9 December 2022; pp. 781–786. [Google Scholar]
- Mariani, M.M.; Borghi, M.; Okumus, F. Unravelling the effects of cultural differences in the online appraisal of hospitality and tourism services. Int. J. Hosp. Manag. 2020, 90, 102606. [Google Scholar] [CrossRef]
Web Site | Hotels | Reviews | %Reviews |
---|---|---|---|
TripAdvisor.com | 1930 | 84,968 | 61.9% |
Venere.com | 1845 | 52,266 | 38.1% |
Total | 3775 | 137,234 |
Travel Mode | Reviews | %Reviews |
---|---|---|
Couple | 60,113 | 43.8% |
Family | 17,557 | 12.8% |
Group | 12,306 | 9.0% |
Single Traveler | 11,124 | 8.1% |
Business | 6541 | 4.8% |
Not Specified | 29,593 | 21.5% |
Summing | 137,234 |
Type | % Difference | Reviews |
---|---|---|
Estimation > Rate | 1474 | |
Estimation < Rate | 2241 | |
Total | 3715 |
Mode Group | Average Rating (Stdv) |
---|---|
Family | 4.15 (0.8) |
Couple | 4.08 (0.8) |
Group | 4.02 (0.8) |
Single | 3.8 (0.8) |
Business | 3.6 (1.0) |
Mode Group | Type | Average Difference | %Difference | Reviews |
---|---|---|---|---|
Couple | Estimation > Rate | 685 | ||
Couple | Estimation < Rate | 954 | ||
Family | Estimation > Rate | 241 | ||
Family | Estimation < Rate | 404 | ||
Group | Estimation > Rate | 89 | ||
Group | Estimation < Rate | 158 | ||
Single Traveler | Estimation > Rate | 426 | ||
Single Traveler | Estimation < Rate | 659 | ||
Not Specified | Estimation > Rate | 33 | ||
Not Specified | Estimation < Rate | 66 | ||
Total | Estimation > Rate | 1474 | ||
Total | Estimation < Rate | 2241 |
Algorithm | Rand-I | Precision | Recall | F1 |
---|---|---|---|---|
Spin glass | 0.8934 | 0.7675 | 0.7193 | 0.7426 |
Fastgreedy | ||||
Walktrap | ||||
Spectral | ||||
AP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mokryn, O. Consumer Sentiment and Hotel Aspect Preferences Across Trip Modes and Purposes. J. Theor. Appl. Electron. Commer. Res. 2024, 19, 3017-3034. https://doi.org/10.3390/jtaer19040145
Mokryn O. Consumer Sentiment and Hotel Aspect Preferences Across Trip Modes and Purposes. Journal of Theoretical and Applied Electronic Commerce Research. 2024; 19(4):3017-3034. https://doi.org/10.3390/jtaer19040145
Chicago/Turabian StyleMokryn, Osnat. 2024. "Consumer Sentiment and Hotel Aspect Preferences Across Trip Modes and Purposes" Journal of Theoretical and Applied Electronic Commerce Research 19, no. 4: 3017-3034. https://doi.org/10.3390/jtaer19040145
APA StyleMokryn, O. (2024). Consumer Sentiment and Hotel Aspect Preferences Across Trip Modes and Purposes. Journal of Theoretical and Applied Electronic Commerce Research, 19(4), 3017-3034. https://doi.org/10.3390/jtaer19040145