Nothing Special   »   [go: up one dir, main page]

Multiplication of Two Matrices

Here we will learn the process of Multiplication of two matrices.

Two matrices A and B are conformable (compatible) for multiplication

(i) AB if the number of columns in A = the number of rows in B

(ii) BA if the number of columns in B = the number of rows in A.


To find the product AB when A and B are conformable for multiplication AB

Let A = \(\begin{bmatrix} a & b\\ c & d \end{bmatrix}\) and B = \(\begin{bmatrix} x & y & z\\ l & m & n \end{bmatrix}\)

A is a 2 × 2 matrix and B is a 2 × 3 matrix.

Therefore, the number of columns in A = the number of rows in B = 2.

Therefore, AB can be found because A, B are conformable for multiplication AB.

The product AB is defined as

AB = \(\begin{bmatrix} a & b\\ c & d \end{bmatrix}\) \(\begin{bmatrix} x & y & z\\ l & m & n \end{bmatrix}\)

   = \(\begin{bmatrix} a(x) + b(l) & a(y) + b(m) & a(z) + b(n)\\c(x) +d(l) & c(y) + d(m) & c(z) + d(n) \end{bmatrix}\)

Product of Two Matrices
Multiplication of Two Matrices

Clearly, the product BA is not possible because the number of columns in B(=3) ≠ the number of rows in A(=2).

Note: Given two matrices A and B, AB may be found but BA may not be found. It is also possible that neither AB nor BA can be found, or both AB and BA can be found.


Solved Example on Multiplication of Two Matrices:

1. Let A = \(\begin{bmatrix} 2 & 5\\ -1 & 3 \end{bmatrix}\) and B = \(\begin{bmatrix} 2 & 5\\ -1 & 3 \end{bmatrix}\). Find AB and BA. Is AB = BA?

Solution:

Here, A is of the order 2 × 2 and B is of the order 2 × 2.

So, the number of columns in A = the number of rows in B. Hence, AB can be found. Also, the number of columns in B = the number of rows in A. Hence, BA can also found.

Now,

AB = \(\begin{bmatrix} 2 & 5\\ -1 & 3 \end{bmatrix}\) \(\begin{bmatrix} 2 & 5\\ -1 & 3 \end{bmatrix}\)

     = \(\begin{bmatrix} 2 × 1 + 5 × 4 & 2 × 1 + 5 × (-2)\\ (-1) × 1 + 3 × 4 & (-1) × 1 + 3 × (-2) \end{bmatrix}\) 

     = \(\begin{bmatrix} 22 & -8\\ 11 & -7 \end{bmatrix}\)

BA = \(\begin{bmatrix} 2 & 5\\ -1 & 3 \end{bmatrix}\) \(\begin{bmatrix} 2 & 5\\ -1 & 3 \end{bmatrix}\)

     = \(\begin{bmatrix} 1 × 2 + 1 × (-1) & 1 × 5 + 1 × 3\\ 4 × 2 + (-2) × (-1) & 4 × 5 + (-2) × 3 \end{bmatrix}\) 

     = \(\begin{bmatrix} 1 & 8\\ 10 & 14 \end{bmatrix}\).


Clearly, \(\begin{bmatrix} 22 & -8\\ 11 & -7 \end{bmatrix}\) ≠ \(\begin{bmatrix} 1 & 8\\ 10 & 14 \end{bmatrix}\).

Therefore, AB ≠ BA.


2. Let X = \(\begin{bmatrix} 11 & 4\\ -5 & 2 \end{bmatrix}\) and I = \(\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\). Prove that XI = IX = A.

Solution:

XI = \(\begin{bmatrix} 11 & 4\\ -5 & 2 \end{bmatrix}\) \(\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\)

    = \(\begin{bmatrix} 11 × 1 + 4 × 0 & 11 × 0 + 4 × 1\\ -5 × 1 + 2 × 0 & -5 × 0 + 2 × 1 \end{bmatrix}\) 

    = \(\begin{bmatrix} 11 & 4\\ -5 & 2 \end{bmatrix}\) = X

IX = \(\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\)\(\begin{bmatrix} 11 & 4\\ -5 & 2 \end{bmatrix}\) 

    = \(\begin{bmatrix} 1 × 11 + 0 × (-5) & 1 × 4 + 0 × 2\\ 0 × 11 + 1 × (-5) & 0 × 4 + 1 × 2 \end{bmatrix}\) 

    = \(\begin{bmatrix} 11 & 4\\ -5 & 2 \end{bmatrix}\) = X


Therefore, AI = IA =A. (Proved)





10th Grade Math

From Multiplication of Two Matrices to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Addition Properties | Addition Questions with Answers

    Jan 07, 25 09:37 AM

    Third grade math worksheet on addition properties is great for practicing and testing the knowledge of the students on identifying the different properties.

    Read More

  2. Mental Math Addition | Math Tricks for Addition |Calculate Mental Math

    Jan 07, 25 09:29 AM

    What are the strategies to calculate mental math addition? The tricky strategies help us to calculate addition mentally. Learn how to use mental math tricks or techniques that required mental add

    Read More

  3. Addition of 4-Digit Numbers | 4-Digit Addition |Adding 4-Digit Numbers

    Jan 05, 25 03:21 PM

    Addition of 4-Digit Numbers
    We will learn about the addition of 4-digit numbers (without carrying and with carrying). We know how to add 2 or 3, 3-digit numbers without carrying or with carrying.

    Read More

  4. 2nd Grade Addition Worksheet | Addition of 2-Digit Numbers | Answers

    Jan 05, 25 12:01 PM

    2nd Grade Addition Worksheet
    In 2nd grade addition worksheet we will solve the problems on addition of 2-digit numbers (without Regrouping), addition by regrouping, regrouping tens to hundreds, estimating the sum and word problem…

    Read More

  5. Worksheet on Roman Numerals |Roman Numerals|Symbols for Roman Numerals

    Jan 05, 25 11:22 AM

    Roman Numbers Table
    Practice the worksheet on roman numerals or numbers. This sheet will encourage the students to practice about the symbols for roman numerals and their values. Write the number for the following: (a) V…

    Read More