计算机科学 ›› 2015, Vol. 42 ›› Issue (5): 106-108.doi: 10.11896/j.issn.1002-137X.2015.05.021
徐晓丹,姚明海,刘华文,郑忠龙
XU Xiao-dan, YAO Ming-hai, LIU Hua-wen and ZHENG Zhong-long
摘要: 多标签学习已成为当前机器学习的研究热点。为了提高分类性能,对训练集中的噪声数据进行预处理,提出一种基于k近邻(kNN)的多标签分类去噪方法:对现有的多标签数据集进行分析后获得近似正态分布的特征,通过将噪声标记改为其k近邻标记的方法,滤去部分噪声信息,从而得到相对高质量的数据集。在MULAN平台上使用多个数据集对6种多标签分类算法进行了噪声去除前后的对比测试,实验结果表明,多标签的预处理方法有效提高了分类器的性能。此方法对于分布特征明显的数据集具有较好的适用性。
[1] Zhang Min-ling,Zhou Zhi-hua.ML-KNN:A lazy learning ap-proach to multi-label learning [J].Pattern Recognition,2007,7(40):2038-2048 [2] Tsoumakas G,Katakis I,Vlahavas I.Mining multi-label data[M]∥Data Mining and Knowledge Discovery Handbook.New York:Springer US,2010 [3] Xu Xin-shun,Jiang Yuan,Peng Liang,et al.Ensemble approach based on conditional random field for multi-labels image and video annotation[C]∥Proceedings of the 19th ACM international conference on Multimedia.Scottsdale,Arizona,USA,2011:1377-1380 [4] Wang Jing-dong,Zhao Ying-hai,Wu Xiu-qing,et al.A transductive multi-label learning approach for video concept detection [J].Pattern Recognition,2011,44(10/11):2274-2286 [5] Sanden C,Zhang J Z.Enhancing multi-label music genre techniques [C]∥Proceedings of the 34th International ACM SIGIR Conference on Research and Development in information Retrieval(SIGIR’11).New York,USA,2011:705-714 [6] Wieczorkowska A,Synak P,Ras Z.Multi-label classification of emotions in music[C]∥Proceeding of the 2006 International Conference on Intelligent Information Proceeding and Web Mi-ning(IIPWM).2006:307-315 [7] Trohidis K,Tsoumakas G,Kalliris G,et al.Multi label classification of music into emotions[C]∥Proceeding of 9th International Conference on Music Information Retrieval(ISMIR).Philadelphia,PA,USA,2008:69-75 [8] Zhang Yi,Burer S,Street W N.Ensemble pruning via semi-definite programming [J].Journal of Machine Learning Research,2006(7):1315-1338 [9] Read J,Pfahringer B,Holmes G,et al.Classifier Chains forMulti-label Classification[J].Machine Learning,2011,85(3):333-359 [10] Shen X,Boutell M,Luo J,et al.Multi-label machine learning and its application to semantic scene classification[C]∥Proceedings of the 2004 International Symposium on Electronic Imaging.San Jose,California,USA,2004:18-22 [11] Hullermeier E,Furnkranz J,Cheng W,et al.Label ranking by learning pairwise preferences[J].Artificial Intelligence,2008(16):1897-1916 [12] Read J.A pruned problem transformation method for multi-label classification[C]∥Proceeding of the New Zealand Computer Science Research Student Conference.New Zealand,2008:143-150 [13] Tsoumakas G,Katakis I.Multi-label classification:An overview [J].International Journal of Data Warehousing and Mining,2007,3(3):1-13 [14] Tsoumakas G,Vlahavas I.Random k-Labelsets:An ensemblemethod for multi-label classification[C]∥Proceedings of the ECML.Warsaw,Poland,2007:406-417 [15] Zhang Min-ling,Zhou Zhi-hua.Multi-label neural networks with applications to functional genomics and text categorization[J].IEEE Transactions on Knowledge and Data Engineering,2006,18(10):1338-1351 [16] Zhang Min-lin,Zhou Zhi-hua.A k-nearest neighbor based algorithm for multi-label classification[C]∥Proceedings of the IEEE International Conference on Granular Computing.Beijing,China,2005,2:718-721 [17] Tsoumakas G,Dimon A,Spyromitros E,et al.Correlation based pruning of stacked binary relevance models for multi-label lear-ning[C]∥Proceedings of the ECML/PKDD.Slovenia,2009:101-113 [18] http://mulan.sourseforge.net/datasets.html [19] http://meka.sourceforge.net/#download |
No related articles found! |
|