Nothing Special   »   [go: up one dir, main page]

计算机科学 ›› 2018, Vol. 45 ›› Issue (11A): 422-426.

• 大数据与数据挖掘 • 上一篇    下一篇

基于在线学习行为分析的个性化学习推荐

陈晋音, 方航, 林翔, 郑海斌, 杨东勇, 周晓   

  1. 浙江工业大学信息工程学院 杭州 310000
  • 出版日期:2019-02-26 发布日期:2019-02-26
  • 作者简介:陈晋音(1982-),女,副教授,硕士生导师,主要研究方向为智能计算、优化计算、网络安全等,E-mail:chenjinyin@zjut.edu.cn;方 航(1996-),男,硕士生,主要研究方向为聚类分析和深度学习,E-mail:201505910304@zjut.edu.cn;林 翔(1995-),男,硕士生,主要研究方向为进化计算和深度学习,E-mail:201403080215@zjut.edu.cn。

Personal Learning Recommendation Based on Online Learning Behavior Analysis

CHEN Jin-yin, FANG Hang, LIN Xiang, ZHENG Hai-bin, YANG Dong-yong, ZHOU Xiao   

  1. College of Information Engineering,Zhejiang University of Technology,Hangzhou 310000,China
  • Online:2019-02-26 Published:2019-02-26

摘要: 随着在线课程和线上学习的普及,大量的在线学习行为数据被积累。如何利用数据挖掘技术分析积累的大数据,从而为教学决策和学习优化提供服务,已经成为新的研究重点。文中分析了在线学习的行为特征,挖掘学习者的性格特征与学习效率的关系,实现个性化学习方法推荐。首先,提取在线学习行为特征,并提出了一种基于BP神经网络的学习成绩预测方法,通过分析在线学习行为特征,预测其相应的线下学习成绩;其次,为了进一步分析学习者的在线学习行为与成绩的关系,提出了基于实际熵的在线学习行为规律性分析,通过分析学习者的在线学习行为,定义并计算相应的实际熵值来评估个体的学习行为规律性,从而分析规律性与最终成绩的关系;再次,基于Felder-Silverman性格分类法获得学习者的性格特征,对学习者实现基于K-means的聚类分析获得相似学习者的类别,将学习成绩较优的学习者的在线学习习惯推荐给同一类别的其他学习者,从而提高学习者的在线学习效率;最终,以某在线课程平台的实际数据为实验对象,分别实现在线学习行为特征提取、线下成绩预测、学习规律性分析和个性化学习推荐,从而验证了所提方法的有效性和应用价值。

关键词: BP神经网络, Felder-Silverman性格分析, 个性化学习推荐, 实际熵, 在线学习行为

Abstract: With the wide use of online courses and the population of online learning,massive data of online learning behaviors have been collected.How to take advantages of those accumulated data through novel data mining technology for improving teaching decision and learning efficiency is becoming the research focus.In this paper,online learning behavior features are extracted,relationship between online learner’s personality and learning efficiency is modeled and analyzed,and personal learning recommendation is designed as well.First,online learner behavior features were extracted,and BP neural network based academic performance prediction algorithm was put forward,in which offline score was predicted based on accordingly online learning behavior features.Second,in order to further analyze the relationship of online learning behavior and offline practical score,a novel actual entropy based online learning behavior orderness evaluation model was proposed.Each learner’s offline academic performance can be predicted on basis of online learning orderness.Third,learners’ personalities were estimated through Felder-Silverman method.K-means algorithm was carried out on those personality vectors to achieve clusters of learners with the similar personality.Among those learners clustered into the same class,the top scored learner’s learning behavior will be recommended to the rest learners.Finally,tackinga practical online courses platform’s data as our experimental subject,plenty of experiments were carried out including online learning behavior feature extraction,offline academic performance evaluation and orderness analysis,perso-nal learning behavior recommendation,and the efficiency and application value of proposed method was proved.

Key words: Actual entropy, BP neural network, Felder-Silverman personality analysis, Online learning behavior, Personal learning recommendation

中图分类号: 

  • TP181
[1]COATES H.Student engagement in campus-based and online education:University connections[OL].http://www.bokus.com/cgi-bin/product_search.cgi?authors=Hamish%20Coates.
[2]STRANG K.How student behavior and reflective learning impact grades in online business courses[J].Journal of Applied Research in Higher Education,2016,8(3):390-410.
[3]PRIOR D D,MAZANOV J,MEACHEAM D,et al.Attitude,digital literacy and self efficacy:Flow-on effects for online lear-ning behavior[J].Internet & Higher Education,2016,29:91-97.
[4]BUTCHER K R,SUMNER T.How Does Prior Knowledge Impact Students’ Online Learning Behaviors?[J].International Journal of Cyber Behavior Psychology & Learning,2011,1(4):1-18.
[5]YANG C,HSIEH T.Regional differences of online learning behavior patterns[J].Electronic Library,2013,31(2):167-187.
[6]PARK Y,YU J H,JO I H.Clustering blended learning courses by online behavior data:A case study in a Korean higher education institute[J].Internet & Higher Education,2016,29:1-11.
[7]SHIMADA A,OKUBO F,YIN C,et al.Informal Learning Behavior Analysis Using Action Logs and Slide Features in E-Textbooks[C]∥International Conference on Advanced Learning Technologies.IEEE,2015:116-117.
[8]HWANG W Y,SHADIEV R,WANG C Y,et al.A pilot study of cooperative programming learning behavior and its relationship with students’ learning performance[J].Computers & Edu-cation,2012,58(4):1267-1281.
[9]TOUYA K,FAKIR M.Mining Students’ Learning Behavior in Moodle System[J].Journal of Information Technology Research (JITR),2014,7(4):12-26.
[10]YE C,KINNEBREW J S,SEGEDY J R,et al.Learning Behavior Characterization with Multi-Feature, Hierarchical Activity Sequences[C]∥Proceedings of the 8th International Conference on Educational Data Mining.2015:380-383.
[11]LINAN L C,ANGEL ALEJANDRO JUAN PEREZ.Educatio-nal data mining and learning analytics:differences,similarities and time evolution[J].Ruse Revista De Universidad Y Sociedad Del Conocimiento,2015,12(3):98-112.
[12]DURKSEN T L,CHU M W,AHMAD Z F,et al.Motivation in a MOOC:a probabilistic analysis of online learners’ basic psychological needs[J].Social Psychology of Education,2016,19(2):241-260.
[13]FITOUSSI J P,VELUPILLAI K.Technology for Mining the Big Data of MOOCs[J].Research & Practice in Assessment,2014,9:29-37.
[14]MAC CALLUM K,JEFFREY L.Factors Impacting Teachers’ Adoption of Mobile Learning[J].Journal of Information Technology Education Research,2014,13(13):141-162.
[15]樊超,宗利永.MOOC在线学习行为的人类动力学分析[J].开放教育研究,2016,22(2):53-58.
[16]宗阳,孙洪涛,张享国,等.MOOCs学习行为与学习效果的逻辑回归分析[J].中国远程教育,2016,36(5):14-22.
[17]肖建忠,陈小娟,贾秀险.高等教育评估多元化研究[J].高教探索,2013(1):13-15.
[18]O’CONNOR M C,PAUNONEN S V.Big Five personality predictors of post-secondary academic performance[J].Personality &Individual Differences,2007,43(5):971-990.
[19]POROPAT A E.A meta-analysis of the five-factor model of personality and academic performance[J].Psychological Bulletin,2009,135(2):322-328.
[20]VEDEL A.The Big Five and tertiary academic performance:A systematic review and metaanal-ysis[J].Personality & Indivi-dual Differences,2014,71(2):66-76.
[21]KONTOYIANNIS I,ALGOET P H,SUHOV Y M,et al.Nonparametric entropy estimation for stationary processes and random fields,with applications to English text[J].IEEE Transactions on Information Theory,1998,44(3):1319-1327.
[22]CAO Y,GAO J,LIAN D,et al.Orderness Predicts Academic Performance:Behavioral Analysis on Campus Lifestyle[J].eprint arXiv:1704.04013.
[23]TOKTAROVA V I,PANTUROVA A A.Learning and Tea-ching Style Models in Pedagogical Design of Electronic Educational Environment of the University[OL].http://www.mc-ser.org/journal/index.php/mjss/article/view/6874.
[24]倍智人才研究院.大五人格心理学:The big five[M].北京:企业管理出版社,2015.
[25]PERRY T W.16-Cattle Finishing Systems[OL].http://doi.org/10.1016/B978-012552052-2150019-6.
[26]王晨煜,管明辉,殷传涛,等.基于FelderS-ilverman学习风格模型的网络学习风格研究[J].重庆理工大学学报,2017,31(2):102-109.
[27]FREUND Y,MASON L.The Alternating Decision Tree Lear-ning Algorithm[C]∥Machine Learning:Sixteenth International Conference.1999:124-133.
[28]MOZINA M,DEMSAR J,KATTAN M,et al.Nomograms for Visualization of Bayesian Classifier[C]∥European Conference on Principles of Data Mining & Knowledge Discovery.2004:337-348.
[1] 刘宝宝, 杨菁菁, 陶露, 王贺应.
基于DE-LSTM模型的教育统计数据预测研究
Study on Prediction of Educational Statistical Data Based on DE-LSTM Model
计算机科学, 2022, 49(6A): 261-266. https://doi.org/10.11896/jsjkx.220300120
[2] 徐佳楠, 张天瑞, 赵伟博, 贾泽轩.
面向供应链风险评估的改进BP小波神经网络研究
Study on Improved BP Wavelet Neural Network for Supply Chain Risk Assessment
计算机科学, 2022, 49(6A): 654-660. https://doi.org/10.11896/jsjkx.210800049
[3] 朱旭辉, 沈国娇, 夏平凡, 倪志伟.
基于螺旋进化萤火虫算法和BP神经网络的模型及其在PPP融资风险预测中的应用
Model Based on Spirally Evolution Glowworm Swarm Optimization and Back Propagation Neural Network and Its Application in PPP Financing Risk Prediction
计算机科学, 2022, 49(6A): 667-674. https://doi.org/10.11896/jsjkx.210800088
[4] 夏静, 马中, 戴新发, 胡哲琨.
基于BP神经网络的智能云效能模型
Efficiency Model of Intelligent Cloud Based on BP Neural Network
计算机科学, 2022, 49(2): 353-367. https://doi.org/10.11896/jsjkx.201100140
[5] 程铁军, 王曼.
基于变权组合的突发事件网络舆情趋势预测
Network Public Opinion Trend Prediction of Emergencies Based on Variable Weight Combination
计算机科学, 2021, 48(6A): 190-195. https://doi.org/10.11896/jsjkx.200600094
[6] 郭福民, 张华, 胡瑢华, 宋岩.
一种基于表面肌电信号的腕部肌力估计方法研究
Study on Method for Estimating Wrist Muscle Force Based on Surface EMG Signals
计算机科学, 2021, 48(6A): 317-320. https://doi.org/10.11896/jsjkx.200600021
[7] 石琳姗, 马创, 杨云, 靳敏.
基于SSC-BP神经网络的异常检测算法
Anomaly Detection Algorithm Based on SSC-BP Neural Network
计算机科学, 2021, 48(12): 357-363. https://doi.org/10.11896/jsjkx.201000086
[8] 周俊, 尹悦, 夏斌.
基于LSTM神经网络的声发射信号识别研究
Acoustic Emission Signal Recognition Based on Long Short Time Memory Neural Network
计算机科学, 2021, 48(11A): 319-326. https://doi.org/10.11896/jsjkx.210700034
[9] 焦东来, 王浩翔, 吕海洋, 徐轲.
基于手机传感器轨迹的路面地物检测方法
Road Surface Object Detection from Mobile Phone Based Sensor Trajectories
计算机科学, 2021, 48(11A): 283-289. https://doi.org/10.11896/jsjkx.210200145
[10] 宋岩, 胡瑢华, 郭福民, 袁新亮, 熊睿洋.
基于sEMG的改进SVM+BP肌力预测分层算法
Improved SVM+BP Algorithm for Muscle Force Prediction Based on sEMG
计算机科学, 2020, 47(6A): 75-78. https://doi.org/10.11896/JsJkx.190900143
[11] 周立鹏, 孟利民, 周磊, 蒋维, 董建平.
基于BP神经网络的摔倒检测算法
Fall Detection Algorithm Based on BP Neural Network
计算机科学, 2020, 47(6A): 242-246. https://doi.org/10.11896/JsJkx.191000077
[12] 诸珺文.
基于改进BP神经网络的SQL注入识别
SQL InJection Recognition Based on Improved BP Neural Network
计算机科学, 2020, 47(6A): 352-359. https://doi.org/10.11896/JsJkx.191200054
[13] 陈燕文,李坤,韩焱,王燕平.
基于MFCC和常数Q变换的乐器音符识别
Musical Note Recognition of Musical Instruments Based on MFCC and Constant Q Transform
计算机科学, 2020, 47(3): 149-155. https://doi.org/10.11896/jsjkx.190100224
[14] 刘晓彤,王伟,李泽禹,沈思婉,姜小明.
基于改进BP神经网络的尿液中红白细胞识别算法
Recognition Algorithm of Red and White Cells in Urine Based on Improved BP Neural Network
计算机科学, 2020, 47(2): 102-105. https://doi.org/10.11896/jsjkx.191100195
[15] 马创, 周代棋, 张业.
基于改进鲸鱼算法的BP神经网络水资源需求预测方法
BP Neural Network Water Resource Demand Prediction Method Based on Improved Whale Algorithm
计算机科学, 2020, 47(11A): 486-490. https://doi.org/10.11896/jsjkx.191200047
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!