计算机科学 ›› 2018, Vol. 45 ›› Issue (11A): 412-416.
王云超, 刘臻
WANG Yun-chao, LIU Zhen
摘要: 协同过滤推荐算法是目前推荐系统领域中十分常用的方法。余弦相似度和Pearson相关系数是目前协同过滤推荐算法中计算相似度的两种常用算法。为提高协同过滤推荐算法的准确性,对相似度计算问题进行了研究,针对目前常用的余弦相似度和Pearson相关系数这两种相似度计算方法的不足,通过设计和引入调节因子,分别考虑用户在评分习惯和项目选择上的差异性,以对这两种传统的相似度算法进行优化和改进。另外,考虑到用户的偏好往往与项目所具有的属性有关,设计了衡量用户对属性偏好的参数,通过加权的方式将其与改进后的相似度算法进行融合,提出了一种融合用户评分习惯、项目选择差异及属性偏好的协同过滤推荐算法。在MovieLens数据集上进行的实验表明,相比于传统算法,提出的改进算法更为精确,平均绝对误差和均方根误差得到了明显的降低。
中图分类号:
[1]SHARDANAND U,MAES P.Social information filtering:algorithms for automating “word of mouth”[C]∥Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.ACM Press/Addison-Wesley Publishing Co.,1995:210-217. [2]MALTZ D A.Distributing information for collaborative filtering on Usenet net news[OL].http://dspace.mit.edu/bitstream/handle/1721.1/36454/31314097-MIT.pdf. [3]RESNICK P,IACOVOU N,SUCHAK M,et al.GroupLens:an open architecture for collaborative filtering of netnews[C]∥Proceedings of the 1994 ACM Conference on Computer Supported Cooperative work.ACM,1994:175-186. [4]BOBADILLA J,HERNANDO A,ORTEGA F,et al.Collaborative filtering based on significances[J].Information Sciences,2012,185(1):1-17. [5]ORTEGA F,SÁNCHEZ J L,BOBADILLA J,et al.Improving collaborative filtering-based recommender systems results using Pareto dominance[J].Information Sciences,2013,239(4):50-61. [6]WANG S,ZHAO Z,HONG X.The Research on Collaborative Filtering Recommendation Algorithm Based on Improved Clustering Processing[C]∥IEEE International Conference on Computer and Information Technology;Ubiquitous Computing and Communications;Dependable,Autonomic and Secure Computing.Pervasive Intelligence and Computing.IEEE,2015:1012-1015. [7]邢春晓,高凤荣,战思南,等.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. [8]王吉源,黎晨,王婵娟.用户属性加权活跃近邻的协同过滤算法[J].计算机应用研究,2016,33(12):3625-3629. [9]赵文涛,王春春,成亚飞,等.基于用户多属性与兴趣的协同过滤算法[J].计算机应用研究,2016,33(12):3630-3633. [10]ADOMAVICIUS G,TUZHILIN A.Toward the Next Generation of Recommender Systems:A Survey of the State-of-the-Art and Possible Extensions[J].IEEE Transactions on Knowledge &Data Engineering,2005,17(6):734-749. [11]HARPER F M,KONSTAN J A.The MovieLens Datasets:History and Context[J].Acm Transactions on Interactive Intelligent Systems,2015,5(4):19. |
[1] | 程章桃, 钟婷, 张晟铭, 周帆. 基于图学习的推荐系统研究综述 Survey of Recommender Systems Based on Graph Learning 计算机科学, 2022, 49(9): 1-13. https://doi.org/10.11896/jsjkx.210900072 |
[2] | 王冠宇, 钟婷, 冯宇, 周帆. 基于矢量量化编码的协同过滤推荐方法 Collaborative Filtering Recommendation Method Based on Vector Quantization Coding 计算机科学, 2022, 49(9): 48-54. https://doi.org/10.11896/jsjkx.210700109 |
[3] | 秦琪琦, 张月琴, 王润泽, 张泽华. 基于知识图谱的层次粒化推荐方法 Hierarchical Granulation Recommendation Method Based on Knowledge Graph 计算机科学, 2022, 49(8): 64-69. https://doi.org/10.11896/jsjkx.210600111 |
[4] | 方义秋, 张震坤, 葛君伟. 基于自注意力机制和迁移学习的跨领域推荐算法 Cross-domain Recommendation Algorithm Based on Self-attention Mechanism and Transfer Learning 计算机科学, 2022, 49(8): 70-77. https://doi.org/10.11896/jsjkx.210600011 |
[5] | 陈俊, 何庆, 李守玉. 基于自适应反馈调节因子的阿基米德优化算法 Archimedes Optimization Algorithm Based on Adaptive Feedback Adjustment Factor 计算机科学, 2022, 49(8): 237-246. https://doi.org/10.11896/jsjkx.210700150 |
[6] | 帅剑波, 王金策, 黄飞虎, 彭舰. 基于神经架构搜索的点击率预测模型 Click-Through Rate Prediction Model Based on Neural Architecture Search 计算机科学, 2022, 49(7): 10-17. https://doi.org/10.11896/jsjkx.210600009 |
[7] | 齐秀秀, 王佳昊, 李文雄, 周帆. 基于概率元学习的矩阵补全预测融合算法 Fusion Algorithm for Matrix Completion Prediction Based on Probabilistic Meta-learning 计算机科学, 2022, 49(7): 18-24. https://doi.org/10.11896/jsjkx.210600126 |
[8] | 孙晓寒, 张莉. 基于评分区域子空间的协同过滤推荐算法 Collaborative Filtering Recommendation Algorithm Based on Rating Region Subspace 计算机科学, 2022, 49(7): 50-56. https://doi.org/10.11896/jsjkx.210600062 |
[9] | 蔡晓娟, 谭文安. 一种改进的融合相似度和信任度的协同过滤算法 Improved Collaborative Filtering Algorithm Combining Similarity and Trust 计算机科学, 2022, 49(6A): 238-241. https://doi.org/10.11896/jsjkx.210400088 |
[10] | 何亦琛, 毛宜军, 谢贤芬, 古万荣. 基于点割集图分割的矩阵变换与分解的推荐算法 Matrix Transformation and Factorization Based on Graph Partitioning by Vertex Separator for Recommendation 计算机科学, 2022, 49(6A): 272-279. https://doi.org/10.11896/jsjkx.210600159 |
[11] | 洪志理, 赖俊, 曹雷, 陈希亮, 徐志雄. 基于遗憾探索的竞争网络强化学习智能推荐方法研究 Study on Intelligent Recommendation Method of Dueling Network Reinforcement Learning Based on Regret Exploration 计算机科学, 2022, 49(6): 149-157. https://doi.org/10.11896/jsjkx.210600226 |
[12] | 郭亮, 杨兴耀, 于炯, 韩晨, 黄仲浩. 基于注意力机制和门控网络相结合的混合推荐系统 Hybrid Recommender System Based on Attention Mechanisms and Gating Network 计算机科学, 2022, 49(6): 158-164. https://doi.org/10.11896/jsjkx.210500013 |
[13] | 熊中敏, 舒贵文, 郭怀宇. 融合用户偏好的图神经网络推荐模型 Graph Neural Network Recommendation Model Integrating User Preferences 计算机科学, 2022, 49(6): 165-171. https://doi.org/10.11896/jsjkx.210400276 |
[14] | 余皑欣, 冯秀芳, 孙静宇. 结合物品相似性的社交信任推荐算法 Social Trust Recommendation Algorithm Combining Item Similarity 计算机科学, 2022, 49(5): 144-151. https://doi.org/10.11896/jsjkx.210300217 |
[15] | 陈壮, 邹海涛, 郑尚, 于化龙, 高尚. 基于用户覆盖及评分差异的多样性推荐算法 Diversity Recommendation Algorithm Based on User Coverage and Rating Differences 计算机科学, 2022, 49(5): 159-164. https://doi.org/10.11896/jsjkx.210300263 |
|