Nothing Special   »   [go: up one dir, main page]

计算机科学 ›› 2018, Vol. 45 ›› Issue (11A): 412-416.

• 大数据与数据挖掘 • 上一篇    下一篇

融合用户对项目和属性偏好的协同过滤算法

王云超, 刘臻   

  1. 北京师范大学教育学部 北京100875
  • 出版日期:2019-02-26 发布日期:2019-02-26
  • 通讯作者: 刘 臻(1972-),男,博士,教授级高工,博士生导师,主要研究方向为数字化学习环境与工程、高分辨率图像变化检测方法与应用,E-mail:liuzhen@bnu.edu.cn
  • 作者简介:王云超(1991-),男,硕士生,主要研究方向为机器学习、推荐算法,E-mail:chester91@foxmail.com
  • 基金资助:
    本文受国家863科技支撑计划项目(2012AA12AA407),赛尔网络下一代互联网技术创新项目(NGII20170628)资助。

Collaborative Filtering Algorithm Based on User’s Preference for Items and Attributes

WANG Yun-chao, LIU Zhen   

  1. Faculty of Education,Beijing Normal University,Beijing 100875,China
  • Online:2019-02-26 Published:2019-02-26

摘要: 协同过滤推荐算法是目前推荐系统领域中十分常用的方法。余弦相似度和Pearson相关系数是目前协同过滤推荐算法中计算相似度的两种常用算法。为提高协同过滤推荐算法的准确性,对相似度计算问题进行了研究,针对目前常用的余弦相似度和Pearson相关系数这两种相似度计算方法的不足,通过设计和引入调节因子,分别考虑用户在评分习惯和项目选择上的差异性,以对这两种传统的相似度算法进行优化和改进。另外,考虑到用户的偏好往往与项目所具有的属性有关,设计了衡量用户对属性偏好的参数,通过加权的方式将其与改进后的相似度算法进行融合,提出了一种融合用户评分习惯、项目选择差异及属性偏好的协同过滤推荐算法。在MovieLens数据集上进行的实验表明,相比于传统算法,提出的改进算法更为精确,平均绝对误差和均方根误差得到了明显的降低。

关键词: 调节因子, 推荐系统, 协同过滤, 用户相似度, 属性偏好

Abstract: Collaborative filtering algorithm is one of the most successful and useful technologies in recommendation systems.Cosine similarity and Pearson correlation coefficient are two of the most widely used traditional algorithms to calculate the similarity in collaborative filtering algorithm.In order to reduce the error,an improved collaborative filtering recommendation algorithm was proposed in view of the disadvantages of the two traditional similarity algorithms.The two traditional algorithms were improved by importing two parameters,one of them was proposed for considering the rating habits of users,and the other was imported to measure the difference of items chosen by users.User’s preference is related to project attributes,therefore,a parameter was designed to measure it.The new algorithm was constructed by the improved traditional algorithm and user’s preference for attributes.The results of experiment on MovieLens dataset show that the proposed algorithm has lower mean absolute error (MAE) and root mean square error (RMSE),and has better performance by using the two parameters compared with traditionalalgorithms.

Key words: Collaborative filtering, Parameter for adjustment, Preference for attributes, Recommendation system, User similarity

中图分类号: 

  • TP391
[1]SHARDANAND U,MAES P.Social information filtering:algorithms for automating “word of mouth”[C]∥Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.ACM Press/Addison-Wesley Publishing Co.,1995:210-217.
[2]MALTZ D A.Distributing information for collaborative filtering on Usenet net news[OL].http://dspace.mit.edu/bitstream/handle/1721.1/36454/31314097-MIT.pdf.
[3]RESNICK P,IACOVOU N,SUCHAK M,et al.GroupLens:an open architecture for collaborative filtering of netnews[C]∥Proceedings of the 1994 ACM Conference on Computer Supported Cooperative work.ACM,1994:175-186.
[4]BOBADILLA J,HERNANDO A,ORTEGA F,et al.Collaborative filtering based on significances[J].Information Sciences,2012,185(1):1-17.
[5]ORTEGA F,SÁNCHEZ J L,BOBADILLA J,et al.Improving collaborative filtering-based recommender systems results using Pareto dominance[J].Information Sciences,2013,239(4):50-61.
[6]WANG S,ZHAO Z,HONG X.The Research on Collaborative Filtering Recommendation Algorithm Based on Improved Clustering Processing[C]∥IEEE International Conference on Computer and Information Technology;Ubiquitous Computing and Communications;Dependable,Autonomic and Secure Computing.Pervasive Intelligence and Computing.IEEE,2015:1012-1015.
[7]邢春晓,高凤荣,战思南,等.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301.
[8]王吉源,黎晨,王婵娟.用户属性加权活跃近邻的协同过滤算法[J].计算机应用研究,2016,33(12):3625-3629.
[9]赵文涛,王春春,成亚飞,等.基于用户多属性与兴趣的协同过滤算法[J].计算机应用研究,2016,33(12):3630-3633.
[10]ADOMAVICIUS G,TUZHILIN A.Toward the Next Generation of Recommender Systems:A Survey of the State-of-the-Art and Possible Extensions[J].IEEE Transactions on Knowledge &Data Engineering,2005,17(6):734-749.
[11]HARPER F M,KONSTAN J A.The MovieLens Datasets:History and Context[J].Acm Transactions on Interactive Intelligent Systems,2015,5(4):19.
[1] 程章桃, 钟婷, 张晟铭, 周帆.
基于图学习的推荐系统研究综述
Survey of Recommender Systems Based on Graph Learning
计算机科学, 2022, 49(9): 1-13. https://doi.org/10.11896/jsjkx.210900072
[2] 王冠宇, 钟婷, 冯宇, 周帆.
基于矢量量化编码的协同过滤推荐方法
Collaborative Filtering Recommendation Method Based on Vector Quantization Coding
计算机科学, 2022, 49(9): 48-54. https://doi.org/10.11896/jsjkx.210700109
[3] 秦琪琦, 张月琴, 王润泽, 张泽华.
基于知识图谱的层次粒化推荐方法
Hierarchical Granulation Recommendation Method Based on Knowledge Graph
计算机科学, 2022, 49(8): 64-69. https://doi.org/10.11896/jsjkx.210600111
[4] 方义秋, 张震坤, 葛君伟.
基于自注意力机制和迁移学习的跨领域推荐算法
Cross-domain Recommendation Algorithm Based on Self-attention Mechanism and Transfer Learning
计算机科学, 2022, 49(8): 70-77. https://doi.org/10.11896/jsjkx.210600011
[5] 陈俊, 何庆, 李守玉.
基于自适应反馈调节因子的阿基米德优化算法
Archimedes Optimization Algorithm Based on Adaptive Feedback Adjustment Factor
计算机科学, 2022, 49(8): 237-246. https://doi.org/10.11896/jsjkx.210700150
[6] 帅剑波, 王金策, 黄飞虎, 彭舰.
基于神经架构搜索的点击率预测模型
Click-Through Rate Prediction Model Based on Neural Architecture Search
计算机科学, 2022, 49(7): 10-17. https://doi.org/10.11896/jsjkx.210600009
[7] 齐秀秀, 王佳昊, 李文雄, 周帆.
基于概率元学习的矩阵补全预测融合算法
Fusion Algorithm for Matrix Completion Prediction Based on Probabilistic Meta-learning
计算机科学, 2022, 49(7): 18-24. https://doi.org/10.11896/jsjkx.210600126
[8] 孙晓寒, 张莉.
基于评分区域子空间的协同过滤推荐算法
Collaborative Filtering Recommendation Algorithm Based on Rating Region Subspace
计算机科学, 2022, 49(7): 50-56. https://doi.org/10.11896/jsjkx.210600062
[9] 蔡晓娟, 谭文安.
一种改进的融合相似度和信任度的协同过滤算法
Improved Collaborative Filtering Algorithm Combining Similarity and Trust
计算机科学, 2022, 49(6A): 238-241. https://doi.org/10.11896/jsjkx.210400088
[10] 何亦琛, 毛宜军, 谢贤芬, 古万荣.
基于点割集图分割的矩阵变换与分解的推荐算法
Matrix Transformation and Factorization Based on Graph Partitioning by Vertex Separator for Recommendation
计算机科学, 2022, 49(6A): 272-279. https://doi.org/10.11896/jsjkx.210600159
[11] 洪志理, 赖俊, 曹雷, 陈希亮, 徐志雄.
基于遗憾探索的竞争网络强化学习智能推荐方法研究
Study on Intelligent Recommendation Method of Dueling Network Reinforcement Learning Based on Regret Exploration
计算机科学, 2022, 49(6): 149-157. https://doi.org/10.11896/jsjkx.210600226
[12] 郭亮, 杨兴耀, 于炯, 韩晨, 黄仲浩.
基于注意力机制和门控网络相结合的混合推荐系统
Hybrid Recommender System Based on Attention Mechanisms and Gating Network
计算机科学, 2022, 49(6): 158-164. https://doi.org/10.11896/jsjkx.210500013
[13] 熊中敏, 舒贵文, 郭怀宇.
融合用户偏好的图神经网络推荐模型
Graph Neural Network Recommendation Model Integrating User Preferences
计算机科学, 2022, 49(6): 165-171. https://doi.org/10.11896/jsjkx.210400276
[14] 余皑欣, 冯秀芳, 孙静宇.
结合物品相似性的社交信任推荐算法
Social Trust Recommendation Algorithm Combining Item Similarity
计算机科学, 2022, 49(5): 144-151. https://doi.org/10.11896/jsjkx.210300217
[15] 陈壮, 邹海涛, 郑尚, 于化龙, 高尚.
基于用户覆盖及评分差异的多样性推荐算法
Diversity Recommendation Algorithm Based on User Coverage and Rating Differences
计算机科学, 2022, 49(5): 159-164. https://doi.org/10.11896/jsjkx.210300263
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!