计算机科学 ›› 2018, Vol. 45 ›› Issue (11A): 402-408.
王佳蕾, 郭耀, 刘志宏
WANG Jia-lei, GUO Yao, LIU Zhi-hong
摘要: 随着服务型计算的兴起,大量跨领域电子服务应运而生。用户要从众多服务中挑选出适合自己且可信的服务十分困难,因而提出高效的服务推荐算法十分必要。传统的协同推荐方法存在冷启动、数据稀疏以及实时性不好等问题,在评分数据较少时推荐效果不佳。为获得更好的推荐结果,文中在社交网络中使用信任传递机制,建立信任传递模型,由此获取任意用户间的信任度。另一方面,设计了相似性判定指标,凭借系统评分数据,求得用户间的偏好相似度。在得到用户间信任度和偏好相似度的基础上,根据社交网络的特性,动态结合两部分指标以获得综合推荐权重,再以此权重替代传统相似度衡量标准进行基于用户的协同过滤推荐。所提方法能在解决传统推荐算法问题的基础上进一步提升推荐效果,并以准确率、覆盖率为标准在Epinions数据集上进行验证,获得了较好的效果。
中图分类号:
[1]ADOMAVICIUS G,TUZHILIN A.Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extensions[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(6):734-749. [2]LIU G,WANG Y,ORGUN M A,et al.A Heuristic Algorithm for Trust-Oriented Service Provider Selection in Complex Social Networks[C]∥IEEE International Conference on Services Computing.IEEE Computer Society,2010:130-137. [3]GARTRELL M,XING X,LV Q,et al.Enhancing group recommendation by incorporating social relationship interactions[C]∥International ACM Siggroup Conference on Supporting Group Work.2010:97-106. [4]TANG M,XU Y,LIU J,et al.Combining Global and Local Trust for Service Recommendation[C]∥IEEE International Conference on Web Services.IEEE Computer Society,2014:305-312. [5]ZHAO T,MCAULEY J,KING I.Leveraging Social Connections to Improve Personalized Ranking for Collaborative Filtering[C]∥ACM.2014:261-270. [6]HWANG C S,CHEN Y P.Using Trust in Collaborative Filtering Recommendation[M]∥New Trends in Applied Artificial Intelligence.Berlin:Springer,2007:1052-1060. [7]HANG C W.Probabilistic Trust Models for Social and Service Networks[D].North Carolina State University,2013. [8]JAMALI M,ESTER M.TrustWalker:a random walk model for combining trust-based and item-based recommendation[C]∥Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2009:397-406. [9]ZIEGLER C N,LAUSEN G.Propagation Models for Trust and Distrust in Social Networks[M].Kluwer Academic Publishers,2005. [10]TANG J,GAO H,LIU H,et al.eTrust:understanding trust evolution in an online world[C]∥ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2012:253-261. [11]DENG S,HUANG L,XU G,et al.On Deep Learning for Trust-Aware Recommendations in Social Networks[J].IEEE Transactions on Neural Networks & Learning Systems,2016,28(5):1164-1177. [12]YANG B,LEI Y,LIU J,et al.Social Collaborative Filtering by Trust[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(8):1633-1647. [13]XIONG L,WANG L,HUANG Y.An Approach for Top-k Re-commendation Based on Trust Information[C]∥Conference on Service-Oriented Computing and Applications.IEEE Computer Society,2017:198-205. [14]GUO L,ZHANG C,FANG Y.A Trust-Based Privacy-Preserving Friend Recommendation Scheme for Online Social Networks[J].IEEE Transactions on Dependable & Secure Computing,2015,12(4):413-427. [15]宗刚,孙玮,任蓉.基于信任机制的复杂网络知识传播模型的研究[J].价值工程,2009,28(12):94-97. [16]牛常勇,刘国枢.基于局部全局相似度的SVD的协同过滤算法[J].计算机工程与设计,2016,37(9):2497-2501. [17]REAL R,VARGAS J M.The Probabilistic Basis of Jaccard’s Index of Similarity[J].Systematic Biology,1996,45(3):380-385. |
[1] | 程章桃, 钟婷, 张晟铭, 周帆. 基于图学习的推荐系统研究综述 Survey of Recommender Systems Based on Graph Learning 计算机科学, 2022, 49(9): 1-13. https://doi.org/10.11896/jsjkx.210900072 |
[2] | 张佳, 董守斌. 基于评论方面级用户偏好迁移的跨领域推荐算法 Cross-domain Recommendation Based on Review Aspect-level User Preference Transfer 计算机科学, 2022, 49(9): 41-47. https://doi.org/10.11896/jsjkx.220200131 |
[3] | 王冠宇, 钟婷, 冯宇, 周帆. 基于矢量量化编码的协同过滤推荐方法 Collaborative Filtering Recommendation Method Based on Vector Quantization Coding 计算机科学, 2022, 49(9): 48-54. https://doi.org/10.11896/jsjkx.210700109 |
[4] | 秦琪琦, 张月琴, 王润泽, 张泽华. 基于知识图谱的层次粒化推荐方法 Hierarchical Granulation Recommendation Method Based on Knowledge Graph 计算机科学, 2022, 49(8): 64-69. https://doi.org/10.11896/jsjkx.210600111 |
[5] | 方义秋, 张震坤, 葛君伟. 基于自注意力机制和迁移学习的跨领域推荐算法 Cross-domain Recommendation Algorithm Based on Self-attention Mechanism and Transfer Learning 计算机科学, 2022, 49(8): 70-77. https://doi.org/10.11896/jsjkx.210600011 |
[6] | 帅剑波, 王金策, 黄飞虎, 彭舰. 基于神经架构搜索的点击率预测模型 Click-Through Rate Prediction Model Based on Neural Architecture Search 计算机科学, 2022, 49(7): 10-17. https://doi.org/10.11896/jsjkx.210600009 |
[7] | 齐秀秀, 王佳昊, 李文雄, 周帆. 基于概率元学习的矩阵补全预测融合算法 Fusion Algorithm for Matrix Completion Prediction Based on Probabilistic Meta-learning 计算机科学, 2022, 49(7): 18-24. https://doi.org/10.11896/jsjkx.210600126 |
[8] | 孙晓寒, 张莉. 基于评分区域子空间的协同过滤推荐算法 Collaborative Filtering Recommendation Algorithm Based on Rating Region Subspace 计算机科学, 2022, 49(7): 50-56. https://doi.org/10.11896/jsjkx.210600062 |
[9] | 蔡晓娟, 谭文安. 一种改进的融合相似度和信任度的协同过滤算法 Improved Collaborative Filtering Algorithm Combining Similarity and Trust 计算机科学, 2022, 49(6A): 238-241. https://doi.org/10.11896/jsjkx.210400088 |
[10] | 何亦琛, 毛宜军, 谢贤芬, 古万荣. 基于点割集图分割的矩阵变换与分解的推荐算法 Matrix Transformation and Factorization Based on Graph Partitioning by Vertex Separator for Recommendation 计算机科学, 2022, 49(6A): 272-279. https://doi.org/10.11896/jsjkx.210600159 |
[11] | 洪志理, 赖俊, 曹雷, 陈希亮, 徐志雄. 基于遗憾探索的竞争网络强化学习智能推荐方法研究 Study on Intelligent Recommendation Method of Dueling Network Reinforcement Learning Based on Regret Exploration 计算机科学, 2022, 49(6): 149-157. https://doi.org/10.11896/jsjkx.210600226 |
[12] | 郭亮, 杨兴耀, 于炯, 韩晨, 黄仲浩. 基于注意力机制和门控网络相结合的混合推荐系统 Hybrid Recommender System Based on Attention Mechanisms and Gating Network 计算机科学, 2022, 49(6): 158-164. https://doi.org/10.11896/jsjkx.210500013 |
[13] | 熊中敏, 舒贵文, 郭怀宇. 融合用户偏好的图神经网络推荐模型 Graph Neural Network Recommendation Model Integrating User Preferences 计算机科学, 2022, 49(6): 165-171. https://doi.org/10.11896/jsjkx.210400276 |
[14] | 余皑欣, 冯秀芳, 孙静宇. 结合物品相似性的社交信任推荐算法 Social Trust Recommendation Algorithm Combining Item Similarity 计算机科学, 2022, 49(5): 144-151. https://doi.org/10.11896/jsjkx.210300217 |
[15] | 陈壮, 邹海涛, 郑尚, 于化龙, 高尚. 基于用户覆盖及评分差异的多样性推荐算法 Diversity Recommendation Algorithm Based on User Coverage and Rating Differences 计算机科学, 2022, 49(5): 159-164. https://doi.org/10.11896/jsjkx.210300263 |
|