Nothing Special   »   [go: up one dir, main page]

计算机科学 ›› 2018, Vol. 45 ›› Issue (11A): 402-408.

• 大数据与数据挖掘 • 上一篇    下一篇

基于社交网络信任关系的服务推荐方法

王佳蕾, 郭耀, 刘志宏   

  1. 西安电子科技大学网络与信息安全学院 西安710071
  • 出版日期:2019-02-26 发布日期:2019-02-26
  • 通讯作者: 刘志宏(1968-),男,博士,副教授,主要研究方向为密码学、信息安全、网络编码、复杂网络、传感器网络等,E-mail:liuzhihong@mail.xidian.edu.cn
  • 作者简介:王佳蕾(1992-),女,硕士生,主要研究方向为信任管理、推荐系统、物理层安全,E-mail:wangjialei92@163.com;郭 耀(1994-),女,硕士生,主要研究方向为信任管理、推荐系统、物理层安全,E-mail:958487621@qq.com
  • 基金资助:
    本文受国家自然科学基金(U1405255)资助。

Service Recommendation Method Based on Social Network Trust Relationships

WANG Jia-lei, GUO Yao, LIU Zhi-hong   

  1. School of Cyber Engineering,Xidian University,Xi’an 710071,China
  • Online:2019-02-26 Published:2019-02-26

摘要: 随着服务型计算的兴起,大量跨领域电子服务应运而生。用户要从众多服务中挑选出适合自己且可信的服务十分困难,因而提出高效的服务推荐算法十分必要。传统的协同推荐方法存在冷启动、数据稀疏以及实时性不好等问题,在评分数据较少时推荐效果不佳。为获得更好的推荐结果,文中在社交网络中使用信任传递机制,建立信任传递模型,由此获取任意用户间的信任度。另一方面,设计了相似性判定指标,凭借系统评分数据,求得用户间的偏好相似度。在得到用户间信任度和偏好相似度的基础上,根据社交网络的特性,动态结合两部分指标以获得综合推荐权重,再以此权重替代传统相似度衡量标准进行基于用户的协同过滤推荐。所提方法能在解决传统推荐算法问题的基础上进一步提升推荐效果,并以准确率、覆盖率为标准在Epinions数据集上进行验证,获得了较好的效果。

关键词: 冷启动, 推荐系统, 协同过滤, 信任网络

Abstract: With the advent of service computing,many different electronic services have emerged.Users often have to find what they need from a large number of services,which is a formidable task.Hence,it is necessary to put forward an efficient recommendation algorithm.The traditional cooperative recommendation system has some problems,such as cold start,sparsity of data and poor real-time performance,which lead to poor recommendation results under the circumstances with less scoring data.In order to get a better recommendation result,this paper introduced trust transfer in social networks and utilized it to establish a trust transfer model to obtain trust among users.On the other hand,based on the score data,the similarity between users in the system is calculated.On the basis of similarity between users’ trust and preference,according to the characteristics of social networks,users’ trust and preference are dynamically combined to obtain comprehensive recommendation weights.The comprehensive recommendation weights can replace the traditional similarity measurement standards for user-based collaborative filtering recommendation.This method was verified through the Epinions data set and can further improve the recommendation effect and.

Key words: Cold start, Collaborative filtering, Recommendation system, Trust network

中图分类号: 

  • TP393
[1]ADOMAVICIUS G,TUZHILIN A.Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extensions[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(6):734-749.
[2]LIU G,WANG Y,ORGUN M A,et al.A Heuristic Algorithm for Trust-Oriented Service Provider Selection in Complex Social Networks[C]∥IEEE International Conference on Services Computing.IEEE Computer Society,2010:130-137.
[3]GARTRELL M,XING X,LV Q,et al.Enhancing group recommendation by incorporating social relationship interactions[C]∥International ACM Siggroup Conference on Supporting Group Work.2010:97-106.
[4]TANG M,XU Y,LIU J,et al.Combining Global and Local Trust for Service Recommendation[C]∥IEEE International Conference on Web Services.IEEE Computer Society,2014:305-312.
[5]ZHAO T,MCAULEY J,KING I.Leveraging Social Connections to Improve Personalized Ranking for Collaborative Filtering[C]∥ACM.2014:261-270.
[6]HWANG C S,CHEN Y P.Using Trust in Collaborative Filtering Recommendation[M]∥New Trends in Applied Artificial Intelligence.Berlin:Springer,2007:1052-1060.
[7]HANG C W.Probabilistic Trust Models for Social and Service Networks[D].North Carolina State University,2013.
[8]JAMALI M,ESTER M.TrustWalker:a random walk model for combining trust-based and item-based recommendation[C]∥Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2009:397-406.
[9]ZIEGLER C N,LAUSEN G.Propagation Models for Trust and Distrust in Social Networks[M].Kluwer Academic Publishers,2005.
[10]TANG J,GAO H,LIU H,et al.eTrust:understanding trust evolution in an online world[C]∥ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2012:253-261.
[11]DENG S,HUANG L,XU G,et al.On Deep Learning for Trust-Aware Recommendations in Social Networks[J].IEEE Transactions on Neural Networks & Learning Systems,2016,28(5):1164-1177.
[12]YANG B,LEI Y,LIU J,et al.Social Collaborative Filtering by Trust[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(8):1633-1647.
[13]XIONG L,WANG L,HUANG Y.An Approach for Top-k Re-commendation Based on Trust Information[C]∥Conference on Service-Oriented Computing and Applications.IEEE Computer Society,2017:198-205.
[14]GUO L,ZHANG C,FANG Y.A Trust-Based Privacy-Preserving Friend Recommendation Scheme for Online Social Networks[J].IEEE Transactions on Dependable & Secure Computing,2015,12(4):413-427.
[15]宗刚,孙玮,任蓉.基于信任机制的复杂网络知识传播模型的研究[J].价值工程,2009,28(12):94-97.
[16]牛常勇,刘国枢.基于局部全局相似度的SVD的协同过滤算法[J].计算机工程与设计,2016,37(9):2497-2501.
[17]REAL R,VARGAS J M.The Probabilistic Basis of Jaccard’s Index of Similarity[J].Systematic Biology,1996,45(3):380-385.
[1] 程章桃, 钟婷, 张晟铭, 周帆.
基于图学习的推荐系统研究综述
Survey of Recommender Systems Based on Graph Learning
计算机科学, 2022, 49(9): 1-13. https://doi.org/10.11896/jsjkx.210900072
[2] 张佳, 董守斌.
基于评论方面级用户偏好迁移的跨领域推荐算法
Cross-domain Recommendation Based on Review Aspect-level User Preference Transfer
计算机科学, 2022, 49(9): 41-47. https://doi.org/10.11896/jsjkx.220200131
[3] 王冠宇, 钟婷, 冯宇, 周帆.
基于矢量量化编码的协同过滤推荐方法
Collaborative Filtering Recommendation Method Based on Vector Quantization Coding
计算机科学, 2022, 49(9): 48-54. https://doi.org/10.11896/jsjkx.210700109
[4] 秦琪琦, 张月琴, 王润泽, 张泽华.
基于知识图谱的层次粒化推荐方法
Hierarchical Granulation Recommendation Method Based on Knowledge Graph
计算机科学, 2022, 49(8): 64-69. https://doi.org/10.11896/jsjkx.210600111
[5] 方义秋, 张震坤, 葛君伟.
基于自注意力机制和迁移学习的跨领域推荐算法
Cross-domain Recommendation Algorithm Based on Self-attention Mechanism and Transfer Learning
计算机科学, 2022, 49(8): 70-77. https://doi.org/10.11896/jsjkx.210600011
[6] 帅剑波, 王金策, 黄飞虎, 彭舰.
基于神经架构搜索的点击率预测模型
Click-Through Rate Prediction Model Based on Neural Architecture Search
计算机科学, 2022, 49(7): 10-17. https://doi.org/10.11896/jsjkx.210600009
[7] 齐秀秀, 王佳昊, 李文雄, 周帆.
基于概率元学习的矩阵补全预测融合算法
Fusion Algorithm for Matrix Completion Prediction Based on Probabilistic Meta-learning
计算机科学, 2022, 49(7): 18-24. https://doi.org/10.11896/jsjkx.210600126
[8] 孙晓寒, 张莉.
基于评分区域子空间的协同过滤推荐算法
Collaborative Filtering Recommendation Algorithm Based on Rating Region Subspace
计算机科学, 2022, 49(7): 50-56. https://doi.org/10.11896/jsjkx.210600062
[9] 蔡晓娟, 谭文安.
一种改进的融合相似度和信任度的协同过滤算法
Improved Collaborative Filtering Algorithm Combining Similarity and Trust
计算机科学, 2022, 49(6A): 238-241. https://doi.org/10.11896/jsjkx.210400088
[10] 何亦琛, 毛宜军, 谢贤芬, 古万荣.
基于点割集图分割的矩阵变换与分解的推荐算法
Matrix Transformation and Factorization Based on Graph Partitioning by Vertex Separator for Recommendation
计算机科学, 2022, 49(6A): 272-279. https://doi.org/10.11896/jsjkx.210600159
[11] 洪志理, 赖俊, 曹雷, 陈希亮, 徐志雄.
基于遗憾探索的竞争网络强化学习智能推荐方法研究
Study on Intelligent Recommendation Method of Dueling Network Reinforcement Learning Based on Regret Exploration
计算机科学, 2022, 49(6): 149-157. https://doi.org/10.11896/jsjkx.210600226
[12] 郭亮, 杨兴耀, 于炯, 韩晨, 黄仲浩.
基于注意力机制和门控网络相结合的混合推荐系统
Hybrid Recommender System Based on Attention Mechanisms and Gating Network
计算机科学, 2022, 49(6): 158-164. https://doi.org/10.11896/jsjkx.210500013
[13] 熊中敏, 舒贵文, 郭怀宇.
融合用户偏好的图神经网络推荐模型
Graph Neural Network Recommendation Model Integrating User Preferences
计算机科学, 2022, 49(6): 165-171. https://doi.org/10.11896/jsjkx.210400276
[14] 余皑欣, 冯秀芳, 孙静宇.
结合物品相似性的社交信任推荐算法
Social Trust Recommendation Algorithm Combining Item Similarity
计算机科学, 2022, 49(5): 144-151. https://doi.org/10.11896/jsjkx.210300217
[15] 陈壮, 邹海涛, 郑尚, 于化龙, 高尚.
基于用户覆盖及评分差异的多样性推荐算法
Diversity Recommendation Algorithm Based on User Coverage and Rating Differences
计算机科学, 2022, 49(5): 159-164. https://doi.org/10.11896/jsjkx.210300263
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!