Nothing Special   »   [go: up one dir, main page]

计算机科学 ›› 2015, Vol. 42 ›› Issue (Z11): 80-82.

• 智能计算 • 上一篇    下一篇

推荐系统中谁可以协同新用户?

张莉,余磊   

  1. 对外经济贸易大学信息学院 北京100029,对外经济贸易大学信息学院 北京100029
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受国家社科基金项目(13BTQ027)资助

Who Can Collaborate New Users in Recommendation System?

ZHANG Li and YU Lei   

  • Online:2018-11-14 Published:2018-11-14

摘要: 协同过滤作为被成功应用于推荐系统的技术之一,得到了各领域学者的关注。然而随着网络平台新用户和项目的不断增加,协同推荐面临严重的“冷启动”问题的挑战。首先基于用户流行度和长尾分布建立用户推荐能力的度量方法,然后利用用户推荐能力筛选出一个用于推荐的全局核心用户子集,来解决推荐系统的“冷启动”问题。实验结果显示,将构建的全局核心用户集合用于协同推荐,在不降低推荐效果的基础上,可显著降低寻找相似用户的时间复杂度,因而可以将其用于解决推荐实时性问题。

关键词: 协同过滤,核心用户,长尾分布,用户流行度

Abstract: As a successful technology used in the recommender system,collaborative filtering has been widly concerned by scholars in various fields.However,with the increasing of new users and items,collaborative recommendation is facing serious challenge of “cold start”.This study measured the recommending ability of user based on popularity and long-tailed distribution,and then constructed a global core user set for recommadition using user popularity,which can be used to solve “cold start” problems in recommendation systems.In additional,experimental results show that the core use set used for collaborative recommending can reduce complexity of looking for similar users without lowing the recommendation performance.So it also can be used to improve real-time recommendation.

Key words: Collaborative filtering,Core users,Long-tailed distribution,User popularity

[1] Su Xiao-yuan,Taghi M K.A Survey of Collaborative Filtering Techniques[J].Advances in Artificial Intelligence,2009(1):1-19
[2] Fidel C,V′ictor C,Diego F,et al.Comparison of Collaborative Filtering Algorithms:Limitations of Current Techniques and Proposals for Scalable,High-Performance Recommender Systems[J].ACM Transactions on the Web,2011,5(1):2-33
[3] 孙冬婷,何涛,张福海.推荐系统中的冷启动问题研究综述[J].计算机与现代化,2012(5):59-63
[4] Park S T,Chu W.Pairwise preference regression for cold-start recommendation[C]∥Proceedings of the Third ACM Conference on Recommender Systems.ACM,2009:21-28
[5] Qiu T,Chen G,Zhang Z K,et al.An item-oriented recommendation algorithm on cold-start problem[J].EPL(Europhysics Letters),2011,95(5)
[6] Sahebi S,Cohen W W.Community-based recommendations:asolution to the cold start problem[C]∥Workshop on Recommender Systems and the Social Web(RSWEB).2011
[7] Konstas I,Stathopoulos V,Jose J M.On social networks andcollaborative recommendation[C]∥Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval.ACM,2009:195-202
[8] Zhou T,Ren J,Medo M,et al.Bipartite network projection and personal recommendation[J].Physical Review E,2007,76(4)
[9] Zhang Li,Teng Pi-qiang,Qin Tao.Using Key Users of Social Network to Solve Cold Start Problem in Collaborative Recommendation Systems[J].Information Technology Journal,2013,12(22)
[10] Boumaza A,Brun A.From neighbors to global neighbors in collaborative filtering:an evolutionary optimization approach[C]∥Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference.ACM,2012:345-352
[11] Morid M A,Shajari M,Golpayegani A H.Who are the most influential users in a recommender system?[C]∥Proceedings of the 13th International Conference on Electronic Commerce.ACM,2011:19
[12] Zeng W,Zeng A,Liu H,et al.Uncovering the information core in recommender systems:Scientific Reports 4:6140[R].2014

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!