Nothing Special   »   [go: up one dir, main page]

计算机科学 ›› 2015, Vol. 42 ›› Issue (Z11): 544-549.

• 智能系统及应用 • 上一篇    下一篇

一种基于多传感器数据融合的移动主体运行轨迹捕捉机制

毕朝国,徐利敏   

  1. 南京财经大学江苏省现代服务业研究院 南京210003,南京财经大学江苏省现代服务业研究院 南京210003
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受江苏省高校自然科学研究计划项目(14KJB520014),江苏高校优势学科建设工程项目(YXK999),江苏现代服务业协同创新中心项目,江苏现代服务业研究院专项科研基金项目(LSZ200003)资助

Mobile Subjects Moving Track Capture Mechanism Based on Multi-sensor Data Fusion

BI Chao-guo and XU Li-min   

  • Online:2018-11-14 Published:2018-11-14

摘要: 目前军事、医疗、科技、电影、游戏等很多应用领域都需要对移动主体的运行轨迹进行捕捉。现有的移动主体轨迹识别与绘制机制一般对设备的要求较高,且算法复杂,实时性不够理想。为此,提出一种基于多传感器数据融合的移动主体运行轨迹捕捉机制,以智能移动终端为载体,联合采用加速度传感器和姿态传感器采集数据,通过对加速度传感器和姿态传感器采集的数据进行处理和融合,并应用物理学中加速度和位移以及数学中曲线和直线的关系,准确识别移动主体的行动轨迹;然后利用光学透视投影的原理将轨迹投影到二维空间,并在智能终端的屏幕上绘制出来。实测结果表明,该机制具有较高的准确性和实时性,且具有理想的时空复杂度。

关键词: 加速度传感器,姿态传感器,数据融合,运行轨迹捕捉

Abstract: At present,many fields,such as military,medical care,science and technology,movies,games and many other applications need to capture moving trajectories of moving objects.Existing mobile trajectory recognition and mapping methods generally have high requirements for equipment and have complex algorithms.What’s more,their real-time performance is not ideal.This paper presented a multi-sensor data fusion based mobile trajectories capture mechanism with the intelligent mobile terminal as the carrier,combined with the use of acceleration sensor and attitude sensor to collect data.Through the fusion of the data and the application of the relationship between acceleration and displacement and the relationship between curve and straight line,accurate identification of moving body movement can be acquired.After that,the mobile trajectory can be projected onto a two-dimensional space using the principle of optical perspective projection and mapped on the screen of the intelligent terminal.Experimental results show that the mechanism with high accuracy and real-time performance has the ideal time and space complexity.

Key words: Acceleration sensor,Attitude sensor,Data fusion,Moving track capture

[1] Wang J S,Chuang F C.An Accelerometer-Based Digital Penwith a Trajectory Recognition Algorithm for Handwritten Digit and Gesture Recognition [J].IEEE Transactions On Industrial Electronics,2012,59(8):2998-3007
[2] Wang L,Cheng J.Object Tracking and Trajectory Recognition Using Improved CAMSHIFT and Hidden Markov Model [J].Automatic Control and Artificial Intelligence International Conference.IEEE,2012:1451-1454
[3] Xu R,Zhou S L,Li W.MEMS Accelerometer Based Nonspecific-User Hand Gesture Recognition[J].IEEE Sensors Journal,2012,2(5):1166-1173
[4] Alk A,Chen F,ValaeeS.A Novel Accelerometer-Based Gesture Recognition System [J].IEEE Transactions On Signal Proces-sing,2011,9(12):6197-6205
[5] Yun L,Zhang J X,Xing J G.Video object tracking based on position prediction guide CAMSHIFT[C]∥ICACTE:Proceedings of the 2010 3rd International Conference on Advanced Computer Theory and Engineering.New York:ACM Press,2010:159-164
[6] Yang J Y,Li Y F,Wang K Y.A New Descriptor for 3D Trajectory Recognition via Modified CDTW[R].Hong Kong and Macau.2010
[7] 百度百科.加速传感器[EB/OL].(2013-05-07)[2013-06-25].http://baike.baidu.com/view/3506030.htm
[8] 百度百科.姿态传感器[EB/OL].(2012-04-23)[2013-06-25].http://baike.baidu.com/view/3843821.htm
[9] eoe移动开发者社区.姿态传感器[EB/OL].(2011-07-19) [2013-06-25].http://www.eoeandroid.com/thread-90317-1-1.html
[10] 赵圣占,谷阳阳.基于加权移动平均的遥测数据量化误差修正方法[J].仪器仪表用户,2011,18(4):94-96
[11] 孟凡荣,庄朋,闫秋艳.基于加权移动平均的数据流预测模型[J].计算机应用研究,2009,26(10):3680-3682,3686
[12] 张延龙,王俊勇.多传感器数据融合技术概述[J].舰船电子工程,2012,33(2):41-44
[13] 程展传.基于Android平台的传感器技术应用研究[D].广州:华南理工大学,2011:50-53
[14] 吴亚峰,于复兴.Android应用开发完全自学手册——核心技术、传感器、2D/3D、多媒体与典型案例[M].北京:人民邮电出版社,2012:251-252

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!