Nothing Special   »   [go: up one dir, main page]

计算机科学 ›› 2015, Vol. 42 ›› Issue (Z11): 408-412.

• 高性能与云计算 • 上一篇    下一篇

云存储环境下副本选择策略研究

张翠苹,郭振洲,拱长青   

  1. 沈阳航空航天大学计算机学院 沈阳110136,沈阳航空航天大学计算机学院 沈阳110136,沈阳航空航天大学计算机学院 沈阳110136
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受辽宁省教育厅科学基金(L2013064),中航工业技术创新基金(基础研究类)(2013S60109R)资助

Study on Strategy of Replica Selection in Cloud Storage Environment

ZHANG Cui-ping, GUO Zhen-zhou and GONG Chang-qing   

  • Online:2018-11-14 Published:2018-11-14

摘要: 云存储服务提供商为了满足各类云用户的存储需求,一般采用划分固定大小的数据块、冗余备份等技术来存储数据,关于块放置、最佳副本选择、副本粒度等存储机制的研究一直是加快大文件存取速度的重要内容。面向云存储系统中存储节点的异构性,设计了一种采用层次分析法对节点性能指标加权并依据加权指标改进粒子群算法的策略(AHPPSO)。通过引入与存储节点性能相关的加权评价矩阵,使得粒子群算法向综合性能较高的节点进化,在不增加存储空间成本的基础上,加快了存取数据的速度。在自主搭建的云存储系统中实现了该策略,实验结果显示该策略能够适应多种用户需求,并且在一定程度上实现系统负载均衡。

关键词: 云存储,异构性,粒子群算法,层次分析法,负载均衡

Abstract: In order to meet the needs of various users for cloud storage,cloud storage service providers generally divide the data into fixed size block and use redundancy backup technology to store data.So the researches on storage mechanism of the block placement,the best replica selection and the replica size have always been hot spots in improving the transmission speed of big file.According to the heterogeneity of storage nodes in cloud storage system,the improved strategy which uses AHP to weight the index of node performance,and uses the weighted index to improve particle swarm optimization algorithm(AHPPSO) was proposed.By introducing the weighted evaluation matrix associated with the performance of the storage node,PSO evolves toward the node of high comprehensive performance,improving the data transmission speed without increasing the cost of storage space.The strategy was realized in a self-built cloud sto-rage system,and the experiment result shows that this strategy can adapt to the various needs of users,and achieve the system load balancing to a certain extent.

Key words: Cloud storage,Heterogeneity,Particle swarm algorithm,AHP,Load balancing

[1] Josef S,Johannes M,Alexander S.Creating optimal cloud sto-rage systems [J].Future Generation Computer Systems,2013,29(4):1062-1072
[2] 李建江,崔健,王聃,等.MapReduce并行编程模型研究综述[J].电子学报,2011,9(11):2636-2643
[3] Zhang Da-wei,Sun Fu-quan,Cheng xu,et al.Research on Hadoop-based enterprise file cloud storage system[C]∥Procee-dings of 2011 3rd International Conference on Awareness Science and Technology(iCAST2011).Dalian,China:IEEE Computer Society,2011:434-437
[4] Wei Qing-song,Bharadwaj V,Gong Bo-zhao,et al.CDRM:acost-effective dynamic replication management scheme for cloud storage cluster [C]∥Proceedings of 2010 IEEE International Conference on Cluster Computing.Heraklion,Crete,Greece:Institute of Electrical and Electronics Engineers Inc,2010:188-196
[5] Li Wen-hao,Yang Yun,Chen Jin-jun.A cost-effective mechanism for Cloud data reliability management based on proactive replica checking[C]∥Proceedings of 2012 12th IEEE/ACM International Symposium on Cluster,Cloud and Grid Computing.2012
[6] Lin Jenn-wei,Chen Chien-hung,Chang J M.QoS-Aware Data Replication for Data-Intensive Applications in Cloud Computing Systems[C]∥Proceedings of IEEE Transactions on Cloud Computing.2013
[7] 程振东,栾钟治,孟由,等.云文件系统中纠删码技术的研究与实现[J].计算机科学与探索,2013(4):315-325
[8] 付园.基于HDFS的优化数据冗余策略的研究[D].吉林:吉林大学,2014
[9] 罗象宏,舒继武.存储系统中的纠删码研究综述[J].计算机研究与发展,2012,9(1):1-11
[10] 黑继伟.基于分布式并行文件系统HDFS的副本管理模型[D].吉林:吉林大学,2010
[11] 娄超.云存储环境中副本选择与一致性维护策略研究[D].济南:山东师范大学,2014
[12] 杜芸芸.一种面向纠删码技术的云存储可靠性机制[J].计算机应用与软件,2014,31(2):312-316,320
[13] 杨东日,王颖,刘鹏.一种副本复制和纠错码融合的云存储文件系统容错机制[J].清华大学学报(自然科学版),2014,54(1):137-144
[14] Xu zhi-hong,Hou Xiang-dan,Sun Ji-zhou.Ant Algorithm-based Task Scheduling[C]∥Grid Computing Eletrical and Computer Engineering.2003:1107-1110
[15] 张新亮,万晓冬.基于遗传算法的副本管理策略[J].计算机仿真,2009,26(1):197-199,263
[16] 张兴.基于Hadoop的云存储平台的研究与实现[D].成都:电子科技大学,2013

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!