Nothing Special   »   [go: up one dir, main page]

计算机科学 ›› 2015, Vol. 42 ›› Issue (Z11): 464-466.

• 软件工程与数据库技术 • 上一篇    下一篇

基于LDA的软件演化确认建模

韩俊明,王炜   

  1. 云南大学软件学院 昆明650091,云南省软件工程重点实验室 昆明650091
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受国家自然科学基金(61262024,2),云南省自然科学基金(2013FB008),云南省教育厅科学研究基金(2011Y121),云南大学研究生科研课题项目(ynuy201425)资助

Method of Modeling Software Evolution Confirmation Based on LDA

HAN Jun-ming and WANG Wei   

  • Online:2018-11-14 Published:2018-11-14

摘要: 演化是软件生命周期中一个重要的部分。现在有大量软件已经演化了数个版本,而如何确认演化后的软件与演化目的相符合,成为了一个需要解决的问题。由于目前还没有一个系统的方法来处理此类问题,提出了采用LDA主题模型的方法对演化确认进行建模分析。用LDA方法对软件源代码中的某些特征进行建模,通过模型能够分析出源代码内潜在的主题。将提取分析出来的主题与软件演化发布的相关报告做对比,找出它们之间的区别,以此确认演化后的软件是否符合演化目的。

关键词: 软件演化,确认,LDA,主题

Abstract: Evolution is an important part in the software life cycle.Now,much software has evolved several versions,however,how to confirmation evolved software coincides with aim of evolution becomes a problem that calls for immediate solution.Because there is not a systematic method so far,we adopted LDA topic modeling to model analyses for evolution confirmation.LDA can model some features in the software source code,through the model the latent topics can be analyzed in the source code. We made the extracted topic compare with the published reports of software evolution to find out the distinctions between them,and according to the distinctions whether the software evolution satisfy the purpose of evolution can be confirmed.

Key words: Software evolution,Confirmation,LDA,Topic

[1] 郁湧,王丽霞,赵娜.基于构件的软件演化波及效应分析[J].计算机科学,2013,0(11):164-168
[2] Deerwester S,Dumais S T,Furnas G W,et al.Indexing By Latent Semantic Analysis[J].Journal of the American Society For Information Science,1990,1(10):391-407
[3] Blei D M,Ng A Y,Jordan M I.Latent Dirichlet Allocation[J].Journal of Machine Learning Research,2003,3:993-1022
[4] Griffiths T L,Steyvers M.Finding scientific topics[J].PNAS,2004,1(1):5228-5235
[5] Brooks S P.Markov chain Monte Carlo method and its application[J].The Statistician,1998,47(1):69-100
[6] Shimura G.初等Dirichlet级数和模形式(影印版)[M].北京:科学出版社,2011
[7] 刘忠,茹诗松.分组数据的Bayes分析-Gibbs抽样方法[J].应用概率统计,1997,3(2):211-216
[8] 马海云.基于Gibbs抽样的测试用例生成技术研究[J].自动化与仪器仪表,2011(3):11-15
[9] 何云,王炜,李彤,等.面向行为主题的软件特征定位方法[J].计算机科学与探索,2014,8(12):1452-1462

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!