Nothing Special   »   [go: up one dir, main page]

Vol. 45
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-10-31
Feature Aided Switching Model Set Approach for Maneuvering Target Tracking
By
Progress In Electromagnetics Research B, Vol. 45, 251-268, 2012
Abstract
Feature aided maneuver detector is popular for its low detection delay and high detection probability in decision-based single-model maneuvering target tracking (MTT) algorithms. We propose a switching model-set approach based on the feature aided maneuver detector for MTT. The filtering error dynamics in terms of detection delay are presented and a upper bound for detection delay with given standard Kalman filtering errors is accessed. Subsequently, a feature aided maneuver detector is introduced to enhance detection performance, and the filtering algorithm is proposed, including detailed filtering steps and computational formulae. Simulation results show that the proposed algorithm outperforms the popular autonomous multiple model (AMM) and interacting MM (IMM) algorithms.
Citation
Jianpeng Fan, Yilong Zhu, Shijie Fan, Hongqi Fan, and Qiang Fu, "Feature Aided Switching Model Set Approach for Maneuvering Target Tracking," Progress In Electromagnetics Research B, Vol. 45, 251-268, 2012.
doi:10.2528/PIERB12082803
References

1. Wang, X. F., J. F. Chen, Z. G. Shi, and K. S. Chen, "Fuzzy-control-based particle filter for maneuvering target tracking," Progress In Electromagnetics Research, Vol. 118, 1-15, 2011.
doi:10.2528/PIER11051907

2. Hong, S., L. Wang, Z.-G. Shi, and K. S. Chen, "Simplified particle PHD filter for multiple-target tracking: Algorithm and architecture," Progress In Electromagnetics Research, Vol. 120, 481-498, 2011.

3. Li, X. R. and V. P. Jilkov, "A survey of maneuvering target tracking --- Part IV: Decision-based methods," Proceedings of the SPIE Conference on Signal and Data Processing of Small Targets, Vol. 4728, 511-534, Orlando, FL, USA, April 2002.

4. Ru, J., V. P. Jilkov, X. R. Li, and A. Bashi, "Detection of target maneuver onset," IEEE Transactions on Aerospace and Electronic Systems, Vol. 45, No. 2, 536-554, April 2009.

5. Li, X. R. and V. P. Jilkov, "Survey of maneuvering target tracking. Part V: Multiple-model methods," IEEE Transactions on Aerospace and Electronic Systems, Vol. 41, 1255-1321, October 2005.

6. Bizup, D. F. and D. E. Brown, "Maneuver detection using the radar range rate measurement," IEEE Transactions on Aerospace and Electronic Systems, Vol. 40, No. 1, 330-336, January 2004.
doi:10.1109/TAES.2004.1292169

7. Shetty, S. and A. T. Alouani, "A multisensor tracking system with an image-based maneuver detector," IEEE Transactions on Aerospace and Electronic Systems, Vol. 32, No. 1, 167-181, January 1996.
doi:10.1109/7.481259

8. Hughes, E. J. and M. Leyland, "Target maneuver detection using radar glint," Electronics Letters, Vol. 34, No. 17, 1695-1696, August 1998.
doi:10.1049/el:19981188

9. Fan, H., "Technology on maneuvering target motion mode identification in active homing guidance,", Ph.D. dissertation, National University of Defense Technology, Changsha, December 2008.

10. Yang, C. and E. Blasch, "Estimating target range-doppler image slope for maneuver indication," Proceedings of 2008 SPIE Conference on Signal Processing, Sensor Fusion, and Target Recognition XVII, Vol. 6968, Orlando, FL, USA, March 2008.

11. Zhu, Y., H. Fan, J. Fan, Z. Lu, and Q. Fu, "Target turing maneuver detection using high resolution doppler profile," IEEE Transactions on Aerospace and Electronic Systems, Vol. 48, No. 1, 762-779, 2012.
doi:10.1109/TAES.2012.6129669

12. Li, X. R. and V. P. Jilkov, "Survey of maneuvering target tracking. Part I: Dynamic models," IEEE Transactions on Aerospace and Electronic Systems, Vol. 39, No. 4, 1333-1363, October 2003.

13. Hwang, I., H. Balakrishnan, and C. Tomlin, "Observability criteria and estimator design for stochastic linear hybrid systems," Proceedings of IEE European Control Conference, 2003.

14. Fan, H., Y. Zhu, and Q. Fu, "Impact of mode decision delay on estimation error for maneuvering target interception," IEEE Transactions on Aerospace and Electronic Systems, Vol. 47, No. 1, 702-711, January 2011.
doi:10.1109/TAES.2011.5705700

15. Kendrick, , J. D., P. S. Maybeck, and J. G. Reid, "Estimation of aircraft target motion using orientation measurements," IEEE Transactions on Aerospace and Electronic Systems, Vol. 17, No. 2, 254-260, March 1981.
doi:10.1109/TAES.1981.309153

16. Berizzi, F. and G. Corsini, "Autofocusing of inverse synthetic aperture radar images using contrast optimization," IEEE Transactions on Aerospace and Electronic Systems, Vol. 32, No. 3, 1185-1191, July 1996.
doi:10.1109/7.532282

17. Haykin, S. and D. J. Thomson, "Signal detection in a nonstationary environment reformulated as an adaptive pattern classification problem," Proceedings of the IEEE, Vol. 86, No. 11, 2325-2344, November 1998.
doi:10.1109/5.726792

18. Li, X. R., Z. Zhao, and X.-B. Li, "General model-set design methods for multiple-model approach," IEEE Transactions on Automatic Control, Vol. 50, No. 9, 1260-1276, September 2005.
doi:10.1109/TAC.2005.854581

19. Li, X. R. and V. P. Jilkov, "A survey of maneuvering target tracking --- Part III: Measurement models," Proceedings of SPIE Conference on Signal and Data Processing of Small Targets, Vol. 4473, 423-446, San Diego, CA, USA, July-August 2001.

20. Ru, J., H. Chen, X. R. Li, and G. Chen, "A range rate based detection technique for tracking a maneuvering target," Proceedings of SPIE Conference on Signal and Data Processing of Small Targets, Vol. 5913, 59 131Q-1-59 131Q-13, San Diego, CA, USA, August 2005.