
Volume 9, Issue 11, November – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24NOV177

IJISRT24NOV177 www.ijisrt.com 185

Early Bug Detection through Shift Left Testing

Ashwin Venkitaraman

Independent Researcher

Dept. of Electrical Engineering

Fremont, CA – 94536, USA

Abstract:- Shift-Left Testing is a preventive approach in

the SW development process of identifying and handling

defects where testing is performed before the flow

proceeds to the subsequent phases of SDLC. In most

situations, testing is done after development, and this

means that any defects get discovered later contributing to

high costs and more time to complete the project.

Essentially, Shift-Left Testing implies that testing should

be conducted during the design or the coding stage and is

beneficial due to the fact that in those stages of

development, it is considerably less expensive to rectify

problems that are detected. It uses integrated strategies

including continuous integration, static code analysis and

automated testing, in which the development and the test

team work together from the start. Consequently, the

approach results in enhanced quality of the software, their

development time, and minimization of the post-release

faults. Although Shift-Left Testing is changing many ways

in software development for the better, it has some

problems, for instance, changing organizational culture

and has high demands to test automation frameworks.

Keywords:- Shift-Level Testing, Early Bug Detection,
Software Quality Assurance, Test Automation, Software

Development Lifecycle (SDLC).

I. INTRODUCTION

Shift-left testing is a preventive approach in which bug

detection is done at the initial stage of software development

as a way of enhancing the quality of the software. The

software development model that specified the testing phase

after the development phase is not efficient because the bugs

are detected late, therefore, the correction of the bugs is costly

and time-consuming. Shift-left testing, as the name implies,
means moving testing activities up or to the ‘left’ on the V-

model of software development life cycle. This approach

focuses on regular testing, with the idea everyone who is

involved in the development of an application, from

developers to testers, is involved from the beginning, with the

aim of avoiding bugs rather than dealing with them when they

occur.

Shift left testing is basically aimed at identifying a

problem at a level where it is still simple and cheap to rectify

the same. Such problems associated with the logic,
functionality and performance of a code can be identified

much early should the code be tested during the development

process. Some of the common practices that are used to

ensure that the software is fine from the early stages include;

unit testing, integration testing and the code analysis.

Automation is also involved in this approach where

developers are able to run tests consistently on the build

process.

This is because the testing starts early in the

development phase and is done continuously; this helps in

minimizing the number of bugs that get to the ultimate stages

of the project such as user acceptance testing or production

phase. It also allows for quicker feedback loops to be

provided to the developers so that they may solve problems

as they arise without having to escalate. Testing performed
during the development phase improves the reliability of the

software and therefore improves on user satisfaction and

reduces on the maintenance costs in the future. Therefore,

shift-left testing as an early bug detection technique is a

beneficial approach that helps to produce excellent-quality

software quickly while reducing the dangers and delivery

time of products.

A. Benefits of Shift-Left Testing for Early Bug Detection

The benefits of shift-left testing for early bug detection

are substantial and play a crucial role in improving the overall
software development lifecycle. Some of the key advantages

include:

 Reduced Cost of Bug Fixes

It is also important to note that it will cost a developer a

significantly higher amount of resources to fix bugs that are

located deeper into the code pipeline. Shift left testing

prevents bugs getting detected later at a later stage in the

development hence saves effort that otherwise would have

been spent on rectifying slips made during development, thus

saves costs.

 Improved Software Quality

For complicated programs, early bug detection makes

sure that the code base is subjected to error check as early as

possible. This leads to the creation of higher quality of the

software that has fewer vital problems signifying themselves

in a later stage of the testing or even when the software is

released to be used.

 Faster Time-to-Market

Correcting defects as early as possible decreases the

number of working hours to be spent for restoring bugs in the
future. Therefore, errors are detected early and the

development process is improved so as to facilitate faster

delivery of the product without being held up by major

problems at the eleventh hour.

https://doi.org/10.38124/ijisrt/IJISRT24NOV177
http://www.ijisrt.com/

Volume 9, Issue 11, November – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24NOV177

IJISRT24NOV177 www.ijisrt.com 186

 Increased Developer Productivity

When testing is incorporated during the initial

development stages, it gives the developers quicker feedback,

because they correct them at that stage. This makes the

development process continuous and does not allow for the

tendency of having to look for bugs at a later stage in the

development cycle.

 Enhanced Collaboration between Teams

Shift left testing implies that testing must be carried out

while developers are in the initial stage of the development

process. Another test automation approach is shift-left testing,

it means testing should start at the early stages of the

development process involving the cooperation of the

development and testing teams.

 Better Risk Management

Shift-left testing enables one to address possible risks

created by bugs that might degenerate upon realization at a

later stage. It also has the advantage of averting some of the
disruptions in cycle of development and enhances the general

stability of the projects.

 Continuous Improvement

The concept of early testing leads to a test feedback loop

that allows code to be enhanced as the development process

continues. This helps to check that successive versions of the

product are better consolidated, more reliable and closer to

expectations of the user and the business.

Shift-left testing is a proactive strategy that integrates
testing into the earlier phases of development, leading to better

software quality, faster releases, and reduced costs.

B. Need of the Study

This work is necessary because the contemporary

software systems are becoming more sophisticated, and the

requirements for creating stable and efficient applications are

rising. As the software projects have grown, the cost and effort

of rectifying the bugs at the later stages of the development or

even post-release has become more expensive and

cumbersome as compared to the bugs which are found at the

initial stages. This has prompted the shift-left testing approach
that focuses on the early identification of bugs in the

development cycle. The frequency at which new software

releases are made possible by agility and automated pipelines

has increased the pressure for effective and preventive testing.

It is, therefore, important to note that quality assurance

methodologies that are practiced in the traditional approach

where quality assurance is conducted after development are

inadequate to cope with these cycles. Thus, it is essential to

discuss such approaches as shift-left testing, which represents

the idea of testing from the beginning and continuously. This

research is not only going to benefit software quality, but it is
also going to offer an efficient way of cutting down the costs

of development and shortening the time it takes to get the

software to the market while at the same time increasing the

satisfaction level of the end users through the delivery of more

effective software products.

II. LITERATURE REVIEW

Li, Z., Tan, L., Wang, et al (2006). Over the years, bugs

in the contemporary OSS have acquired certain features

mainly as a result of the new trends in software development,

complexity of the code and the open-source communities.

Nowadays, almost all the open-source projects use

continuous integration, testing, and issue tracking systems
that allow them to manage bugs more efficiently. Still, some

of the problems remain the same which include security

issues, memory issues, and performance issues. One of the

primary challenges of OSS development is that it is

decentralized which can result in incongruity of bug report

and time taken for their resolution. Research done on this

shows that nature and type of bugs are affected by the size of

the code and the activity level of the coders. Besides, bug

identification and reporting in OSS is done by a larger group

of users with different levels of experience making bugs in

OSS to have different characteristics compared to bugs in

proprietary software.

Regehr, J., Chen, Y., et al (2012). Test-case reduction

for C compiler bugs is an important in the debugging process

that is used for making the test case as small as possible but

still containing some behavior that causes the failure. If a bug

is found in C compiler, the first test case may be large and

complicated and the cause of the bug may be hard to find. By

systematically reducing the test case, developers can easily

identify the real conditions that could lead to the bugs, which

in turn eases identification and resolution of the issue at hand.

Delta debugging or other similar methods or tools like “C-
Reduce” do this automatically by constantly eliminating

unrelated sections of the code while ensuring that the code

contains only the parts necessary to reproduce the bug. Test-

case reduction is crucial for compiler bugs as compilers are

exposed to various inputs and optimization techniques

making bug reproduction in such a setting rather difficult. A

smaller test case can also help in developers’ interaction and

provide a faster bug fix. Regression test suites are created by

adding reduced test cases to the original test suites so that the

same bug does not revisit the subsequent versions of the

compiler. It should be realized that, test-case reduction

improves the effectiveness of the debugging process, which
in turn improves the stability and efficiency of the compiler.

Pan, K., Kim, S., & Whitehead, E. J. (2009).

Recognizing bug fix patterns is crucial for optimization of

software maintenance and for amplification of development

activities. Bug fix patterns can be described as the patterns of

how developers address the problem of defects in the code.

These patterns may differ depending on the type of bug to be

fixed, the programming language used and the project under

development. Research indicates that the majority of bugs

fixed fall under a few major types, including logical
problems, memory related problems, and syntax problems.

Some of the changes that can be seen in bug fix patterns

include changes in the structure of the code as well as changes

in the variables that are assigned to different values and even

changes that may lead to the introduction of new algorithms.

This analysis helps the developers to predict which kind of

https://doi.org/10.38124/ijisrt/IJISRT24NOV177
http://www.ijisrt.com/

Volume 9, Issue 11, November – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24NOV177

IJISRT24NOV177 www.ijisrt.com 187

bugs is likely to occur in similar situations so that it can be

prevented.

Williams, C. C., & Hollingsworth, J. K. (2005). Source

code repositories mining is a useful approach that augments

bug searching techniques by employing historical data that

could be available in repositories such as GitHub, GitLab or

Bitbucket. These sources consist of valuable data such as
commit histories, bug reports, code changes and developers’

discussions that can be helpful to understand bug patterns and

code evolution. Through proper use of machine learning and

data mining, one is able to discover patterns of where bugs

frequently occur, what types of bugs are usually found and

how bug correction develops over time. Exploring these

repositories makes it possible to identify code smells, security

flaws, and places with high bug density that explain high

testing or refactoring priority. This approach can help build

models that will predict the future bugs based on patterns on

the past defects and it will be possible to prevent things that

may hinder the proper running of the software. Automatic
mining also contributes to the development of both static and

dynamic analysis tools as they are given actual bug data to

enhance the former’s capacity to detect even more intricate

and sophisticated bugs. Through continual learning from vast

amounts of code and bug fix data, these techniques can

improve the effectiveness of today’s advanced bug finding

tools and the resulting software systems.

Yang, X., Chen, Y., Eide, E., et al (2011). Debugging

bugs in C compilers is intricate since the inputs that compilers

come across are vast and are rather complex. The process of
translation of high level human-readable C code into the

machine-readable code is done with the help of C compilers

that face multiple challenges in terms of the language

features, optimization levels, and hardware architectures.

Compiler bugs may result in a variety of scenarios such as the

wrong code being generated, a program halting or slowing

down. These bugs, in general, are detected with the help of

various testing methods, including differential testing, which

implies the comparison of the results of the same code

compilation with different compilers or with different

options.

Bader, J., Scott, A., et al (2019). Automated bug fixing

is a new promising field that aims at using machine learning

and artificial intelligence to correct faults in the software. It

is a technique which aims at decreasing the time that

developers spend on debugging by delivering to them the

most helpful information for bug identification, analysis and

resolution. Automated bug fixing is usually performed based

on historical data of software repositories, bug reports, code

modifications, and commit histories to learn common

patterns and developers’ solutions. With these data, models

can recommend or even execute fixes with similarities to the
bugs seen earlier. One way can be for example to apply the

neural networks or genetic algorithms to create patches for

the faulty code.

Nama, Prathyusha (2023). presents a comprehensive

analysis of how artificial intelligence (AI) is transforming

user interaction in mobile applications through intelligent

features and context-aware services. The research highlights

how AI-powered mobile apps leverage machine learning

algorithms to understand user behavior, provide personalized

recommendations, and deliver intelligent, context-aware

experiences. The study emphasizes the integration of various
AI-driven functionalities, including voice recognition,

natural language processing, and predictive analytics, which

collectively enhance user engagement and satisfaction while

improving accessibility for diverse user groups.

The research also addresses critical implementation

challenges, particularly regarding privacy and data security in

AI deployment. Through analysis of successful case studies

and emerging trends, Nama demonstrates how context-aware

services enable applications to respond dynamically to users'

environments and situations, leveraging data about location,

time, and activity to deliver tailored services. The findings
suggest that while AI is revolutionizing mobile user

interaction through features like content generation, digital

assistance, and predictive analytics, developers must

carefully balance personalization with ethical considerations

regarding user privacy. The study concludes that AI-powered

mobile applications represent a significant advancement in

user interaction, making experiences more intuitive and

personalized while emphasizing the need for continued

research in areas such as Edge AI and conversational

interfaces.

III. METHODOLOGY

The study shall use survey research with a mix of both

quantitative and qualitative research in establishing customer

satisfaction with internet banking services across the different

demographic segments. This combination enables the

researcher to understand the research problem in depth as it

combines numerical data with the participants’ perception of

the problem. The quantitative aspect will assist in

determining the level of satisfaction of customers while the

qualitative will offer more information in relation to the

perception and experiences of customers. The target
population comprises the people aged between 18-60 years

who engage in online banking. A purposive sampling

technique of stratified random sampling will be used so as to

capture participants from different generations, occupation,

and income status. It will be easier to ensure that the findings

come from different point of views hence increasing the

generality of the results. The survey sample will be 300

respondents, whereas 20 in-depth interviews will be used to

gain more insights into the respondents’ experiences in their

own words.

Keeping this in mind the primary data will be collected

from customers via online survey which will have pre-

constructed questions for measuring the satisfaction level of

the customers about internet banking and factors that affect

their usage of internet banking services. Besides the aforesaid

surveys, exploratory will be conducted to get more details on

certain aspects of customer experience that may not

https://doi.org/10.38124/ijisrt/IJISRT24NOV177
http://www.ijisrt.com/

Volume 9, Issue 11, November – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24NOV177

IJISRT24NOV177 www.ijisrt.com 188

necessarily be reflected in quantitative statistics. Secondary

data shall be gathered from journals, previous researches, and

reports from the Indian banking sector, which will give wider

perspective about the study. Informed consent will be sought

from all participants in the study, so that the participants are

fully aware of the nature of research to be conducted. To

ensure the respondents’ confidentiality and privacy, their

responses will also not be disclosed. In order to conduct the
research in an ethical manner, ethical clearances will be

sought from the ethical committee of the institution.

IV. RESEARCH PROBLEM

Main research problem in this research is centered on

the continuous difficulty of detecting and eradicating

software bugs at the early stage of development. Even with

agile development methodologies in place and the focus on

delivering software more frequently, it remains a challenge

for organizations to identify defects early in the development

life cycle, thereby suffering from extra development cycles,

longer time to release and poor quality software products.

Most of the conventional testing techniques that are practiced

after the development phase of a software also report bugs at

a later stage which increases problems such as time overrun,

increased costs, and unsatisfied customers. Specifically, as

the size of software systems increases there is a higher

demand for early detection of bugs in order to avoid issues of

growth. As much as shift-left testing has provided a solution
to this challenge, little is still known regarding how to apply

it in a variety of development settings and how it generates a

positive impact on the quality of software and its delivery

time. This research problem therefore aims to identify the

techniques, methods, and approaches to adopt for the

incorporation of early testing into the development life cycle

processes with the view of optimising the shift-left testing

initiative. This is an important factor that can enable

movement from a model of continuously patching flawed

software to one where software developers design quality

solutions from the onset.

V. RESULTS

Table 1: Comparison of Bug Detection Phases in Traditional Testing vs. Shift-Left Testing

Testing Phases Traditional Testing (Bugs Detected) Shift-Left Testing (Bugs Detected)

Requirements Gathering 2% 15%

Design 5% 20%

Development 10% 25%

Integration Testing 20% 25%

System Testing 30% 10%

User Acceptance Testing 20% 3%

Post-Deployment 13% 2%

Fig 1:

The table shows the effectiveness of traditional testing

and shift-left testing of bugs in various stages of SDLC. In the

traditional software testing approach, only 2% of the defects

are identified during the requirements gathering phase, while

in shift-left testing, 15% of the total defects are identified

which greatly emphasizes on the early phase of testing. In

design phase, the traditional testing identifies only 5% of bug

and shift-left testing identifies only 20% of bugs which shows

that shift-left testing is more effective in comparison to a

traditional way of testing. Likewise, during development,

shift left testing offers 25% of bugs and 10% of traditional

testing, which emphasis the testing during the coding.

https://doi.org/10.38124/ijisrt/IJISRT24NOV177
http://www.ijisrt.com/

Volume 9, Issue 11, November – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24NOV177

IJISRT24NOV177 www.ijisrt.com 189

While in the integration testing phase, both detect about

25% of the bugs, the difference is evident in other phases. It

is found that 30 % of bugs are detected in system testing while

shift left testing identifies them at 10 % as many are

eliminated. Traditional user acceptance testing contributes to

bug detection at 20% while shift-left contributes at 3% thus

making the user experience more seamless. The percentage

of bugs detected after the shift-left testing is also considerably

smaller, 2% in shift-left testing and 13% in the conventional

testing, thus minimizing the need to correct issues that have

made it into the production versions. In all, shift-left testing

is better placed to detect bugs early hence minimizing the

risks and costs that are incurred in bug fixes at later stages.

Table 2: Cost of Bug Fixing Across Development Stages (in USD)

Development Stage Cost in Traditional Testing Cost in Shift-Left Testing

Requirements Gathering $500 $100

Design $1,000 $250

Development $3,000 $1,500

Integration Testing $5,000 $2,000

System Testing $7,000 $3,000

User Acceptance Testing $10,000 $5,000

Post-Deployment $20,000 $8,000

The table shows how much it would cost to adopt shift

left testing against traditional testing at each phase of the

development process. During the requirements gathering

phase, the cost of handling problems in traditional testing

costs $500 while shift-left testing costs only $100; proving

that it is cheaper to test earlier. Likewise, in the design phase,

conventional testing costs $1, 000 but shift-left testing costs

$250 as it detects defects right from the onset.

And as the development increases, the difference in the
cost between the two becomes more significant. During the

development phase, traditional testing takes $3,000 while

shift left testing takes $1,500 in the same phase, proving the

advantage of testing as it progresses with coding. During

integration testing it costs $5,000 in traditional testing while

it costs $2,000 in shift-left testing because issues are detected

early hence not complicated to solve. In the traditional

method of testing, system testing cost $7,000, while the user

acceptance test cost $10,000 but using the shift-left testing,

the cost is reduced to $3,000 cost for system testing and

$5,000 for user acceptance testing. The largest gap is

observed in post-deployment where the traditional approach

costs $20,000 while shift-left testing costs $8,000. This table
shows reduced cost impact of shift-left testing as most of the

root causes of costly rework and post-deployment fixes are

caught and fixed early.

Table 3: Comparative Results Table for Shift-Left vs. Traditional Testing

Aspect Traditional Testing Shift-Left Testing

Bug Detection Rate
Lower in initial phases, higher post-

development
Higher during initial phases, lower post-development

Testing Involvement Testing begins after development completion Testing begins during the design and coding phases

Developer

Productivity

Lower (due to frequent context switching and

late rework)
Higher (focused bug fixing during coding stages)

Test Coverage Limited coverage, primarily functional testing
Broader coverage, including unit, integration, and

static analysis

Time Spent on

Debugging

More time spent on debugging after

development
Less time, as bugs are caught during development

Impact on Release

Deadlines

Frequently causes delays due to late-stage

defects
Fewer delays as most bugs are detected early

Code Quality
Lower (due to deferred testing and bug

accumulation)
Higher (continuous testing improves code quality)

Maintenance Costs Higher, with frequent post-release patches Lower, as fewer defects remain post-release

Error Propagation Higher, as bugs go unnoticed until later stages Lower, as early detection prevents error propagation

Team
Communication

Less cross-team interaction, isolated roles
High collaboration between development and QA

teams

Test Data Creation Test data created at later stages, often delayed Test data prepared early in the development process

Risk of Regression

Bugs
Higher due to late testing

Lower, as early testing helps in maintaining system

stability

Security Issues

Identification
Identified post-development

Identified during code development through static

analysis and code review

https://doi.org/10.38124/ijisrt/IJISRT24NOV177
http://www.ijisrt.com/

Volume 9, Issue 11, November – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24NOV177

IJISRT24NOV177 www.ijisrt.com 190

VI. CONCLUSION

Shift-left testing can be said to be an important strategy

in solving the problems that arise in the current software

development processes due to early identification of bugs. It

is much more effective to incorporate testing activities into

the early stages of the development life cycle as this will

reduce the number of efforts, time and money needed to
check and correct the defects. This approach in software

development not only enhances the quality of the end

product, but also reduces the time taken to complete the

software since most of the bugs are detected early enough

before they progress to other difficult to handle phases. Thus,

the work focuses on the preventive approach to testing

activities with an emphasis on integrating developers and

testers as often as possible: unit testing, static code analysis,

and automated testing frameworks. These strategies must

therefore be aligned to the agile and CI/CD way of working

to be able to support the needs of development cycles that are

fast. When testing is performed right from the start of the
development cycle, it produces more effective software

systems for the customers and decreases maintenance

expenses.

REFERENCES

[1]. Li, Z., Tan, L., Wang, X., Lu, S., Zhou, Y., & Zhai, C.

(2006, October). Have things changed now? An

empirical study of bug characteristics in modern open

source software. In Proceedings of the 1st workshop

on Architectural and system support for improving
software dependability (pp. 25-33).

[2]. Regehr, J., Chen, Y., Cuoq, P., Eide, E., Ellison, C., &

Yang, X. (2012, June). Test-case reduction for C

compiler bugs. In Proceedings of the 33rd ACM

SIGPLAN conference on Programming Language

Design and Implementation (pp. 335-346).

[3]. Pan, K., Kim, S., & Whitehead, E. J. (2009). Toward

an understanding of bug fix patterns. Empirical

Software Engineering, 14, 286-315.

[4]. Williams, C. C., & Hollingsworth, J. K. (2005).

Automatic mining of source code repositories to

improve bug finding techniques. IEEE Transactions
on Software Engineering, 31(6), 466-480.

[5]. Yang, X., Chen, Y., Eide, E., & Regehr, J. (2011,

June). Finding and understanding bugs in C compilers.

In Proceedings of the 32nd ACM SIGPLAN

conference on Programming language design and

implementation (pp. 283-294).

[6]. Liblit, B., Aiken, A., Zheng, A. X., & Jordan, M. I.

(2003). Bug isolation via remote program sampling.

ACM Sigplan Notices, 38(5), 141-154.

[7]. Bader, J., Scott, A., Pradel, M., & Chandra, S. (2019).

Getafix: Learning to fix bugs automatically.
Proceedings of the ACM on Programming Languages,

3(OOPSLA), 1-27.

[8]. Jin, G., Song, L., Shi, X., Scherpelz, J., & Lu, S.

(2012). Understanding and detecting real-world

performance bugs. ACM SIGPLAN Notices, 47(6),

77-88.

[9]. Nama, Prathyusha. "AI-Powered Mobile

Applications: Revolutionizing User Interaction

Through Intelligent Features and Context-Aware

Services." (2023).

[10]. Jang, J., Agrawal, A., & Brumley, D. (2012, May).

ReDeBug: finding unpatched code clones in entire os

distributions. In 2012 IEEE Symposium on Security

and Privacy (pp. 48-62). IEEE.
[11]. Meszaros, G. (2007). xUnit test patterns: Refactoring

test code. Pearson Education.

[12]. Herzig, K., Just, S., & Zeller, A. (2013, May). It's not

a bug, it's a feature: how misclassification impacts bug

prediction. In 2013 35th international conference on

software engineering (ICSE) (pp. 392-401). IEEE.

[13]. Liblit, B. R. (2004). Cooperative bug isolation.

University of California, Berkeley.

[14]. Pewny, J., Schuster, F., Bernhard, L., Holz, T., &

Rossow, C. (2014, December). Leveraging semantic

signatures for bug search in binary programs. In

Proceedings of the 30th Annual Computer Security
Applications Conference (pp. 406-415).

[15]. Sun, C., Le, V., & Su, Z. (2016, October). Finding

compiler bugs via live code mutation. In Proceedings

of the 2016 ACM SIGPLAN international conference

on object-oriented programming, systems, languages,

and applications (pp. 849-863).

[16]. Lu, S., Park, S., Seo, E., & Zhou, Y. (2008, March).

Learning from mistakes: a comprehensive study on

real world concurrency bug characteristics. In

Proceedings of the 13th international conference on

Architectural support for programming languages and
operating systems (pp. 329-339).

[17]. Tufano, M., Watson, C., Bavota, G., Penta, M. D.,

White, M., & Poshyvanyk, D. (2019). An empirical

study on learning bug-fixing patches in the wild via

neural machine translation. ACM Transactions on

Software Engineering and Methodology (TOSEM),

28(4), 1-29.

[18]. Hooimeijer, P., & Weimer, W. (2007, November).

Modeling bug report quality. In Proceedings of the

22nd IEEE/ACM international conference on

Automated software engineering (pp. 34-43).

[19]. Pewny, J., Garmany, B., Gawlik, R., Rossow, C., &
Holz, T. (2015, May). Cross-architecture bug search

in binary executables. In 2015 IEEE Symposium on

Security and Privacy (pp. 709-724). IEEE.

[20]. Park, S. B., Hong, T., & Mitra, S. (2009). Post-silicon

bug localization in processors using instruction

footprint recording and analysis (IFRA). IEEE

Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 28(10), 1545-1558.

https://doi.org/10.38124/ijisrt/IJISRT24NOV177
http://www.ijisrt.com/

