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Abstract

End-to-end design of dialogue systems has recently
become a popular research topic thanks to power-
ful tools such as encoder-decoder architectures for
sequence-to-sequence learning. Yet, most current
approaches cast human-machine dialogue manage-
ment as a supervised learning problem, aiming at
predicting the next utterance of a participant given
the full history of the dialogue. This vision may
fail to correctly render the planning problem in-
herent to dialogue as well as its contextual and
grounded nature. In this paper, we introduce a Deep
Reinforcement Learning method to optimize visu-
ally grounded task-oriented dialogues, based on the
policy gradient algorithm. This approach is tested
on the question generation task from the dataset
GuessWhat?! containing 120k dialogues and pro-
vides encouraging results at solving both the prob-
lem of generating natural dialogues and the task of
discovering a specific object in a complex image.

1 Introduction
Ever since the formulation of the Turing Test, building sys-
tems that can meaningfully converse with humans has been
a long-standing goal of Artificial Intelligence (AI). Practi-
cal dialogue systems have to implement a management strat-
egy that defines the system’s behavior, for instance to de-
cide when to provide information or to ask for clarification
from the user. Although traditional approaches use linguis-
tically motivated rules [Weizenbaum, 1966], recent meth-
ods are data-driven and make use of Reinforcement Learn-
ing (RL) [Lemon and Pietquin, 2007]. Significant progress
in Natural Language Processing via Deep Neural Nets [Ben-
gio et al., 2003] made neural encoder-decoder architectures
a promising way to train conversational agents [Vinyals and
Le, 2015; Sordoni et al., 2015; Serban et al., 2016]. The
main advantage of such end-to-end dialogue systems is that
they make no assumption about the application domain and
are simply trained in a supervised fashion from large text cor-
pora [Lowe et al., 2015].
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Figure 1: Two example games of the GuessWhat?! dataset. The
correct object is highlighted by a green mask.

However, there are many drawbacks to this approach. First,
encoder-decoder models cast the dialogue problem into one
of supervised learning, predicting the distribution over possi-
ble next utterances given the discourse so far. As with ma-
chine translation, this may result in inconsistent dialogues
and errors that can accumulate over time. As the action space
of dialogue systems is vast, and existing datasets cover only
a small subset of all trajectories, it is difficult to generalize
to unseen scenarios [Mooney, 2006]. Second, the supervised
learning framework does not account for the intrinsic plan-
ning problem that underlies dialogue, i.e. the sequential de-
cision making process, which makes dialogue consistent over
time. This is especially true when engaging in a task-oriented
dialogue. As a consequence, reinforcement learning has been
applied to dialogue systems since the late 90s [Levin et al.,
1997; Singh et al., 1999] and dialogue optimization has been
generally more studied than dialogue generation. Finally, it
is unclear whether encoder-decoder supervised training effi-
ciently integrates external contexts (larger than the history of
the dialogue) that is most often used by dialogue participants
to interact. This context can be their physical environment,
a common task they try to achieve, a map on which they try
to find their way, a database they want to access etc. These
contexts are all the more important as they are part of the so
called Common Ground, well studied in the discourse litera-
ture [Clark and Schaefer, 1989]. Over the last decades, the
field of cognitive psychology has also brought empirical evi-
dence that human representations are grounded in perception
and motor systems [Barsalou, 2008]. These theories imply
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Figure 2: Oracle model.

that a dialogue system should be grounded in a multi-modal
environment in order to obtain human-level language under-
standing [Kiela et al., 2016].

On the other hand, RL approaches could handle the plan-
ning and the non-differentiable metric problems but require
online learning (although batch learning is possible but dif-
ficult with low amounts of data [Pietquin et al., 2011]).
For that reason, user simulation has been proposed to ex-
plore dialogue strategies in a RL setting [Eckert et al., 1997;
Schatzmann et al., 2006; Pietquin and Hastie, 2013]. It also
requires the definition of an evaluation metric which is most
often related to task completion and user satisfaction [Walker
et al., 1997]. Without such a goal-achievement metric, it is
difficult to correctly evaluate dialogues [Liu et al., 2016a]. In
addition, successful applications of the RL framework to dia-
logue often rely on a predefined structure of the task, such as
slot-filling tasks [Williams and Young, 2007] where the task
can be casted as filling in a form.

In this paper, we present an architecture for end-to-end
RL optimization of a task-oriented question generator of a
dialogue system and its application to a multimodal task,
grounding the dialogue in a visual context. To do so, we start
from a corpus of 150k human-human dialogues collected via
the recently introduced GuessWhat?! game [de Vries et al.,
2016]. The goal of the game is to locate an unknown object
in a natural image by asking a series of questions. This task is
hard since it requires scene understanding and, more impor-
tantly, a dialogue strategy that leads one to rapidly identify
the target object. From this data, we first build a supervised
agent and a neural training environment. It serves to train a
Deep RL agent online which is able to solve the task. We then
quantitatively and qualitatively compare the performance of
our system to a supervised approach on the same task. In
short, our contributions are:

• to propose an original visually grounded goal-directed
dialogue system optimized via Deep RL;

• to achieve 10% improvement on task completion over a
supervised learning baseline.

2 GuessWhat?! Game
We briefly explain here the GuessWhat?! game that will serve
as a task for our dialogue system, but refer to [de Vries et al.,

LSTM
encoder

Is it a person? No 
Is it an item being worn or held? Yes
Is it a snowboard? Yes

MLP MLP MLP

obj1

Softmax

Opredict

obj2 obj3 obj4

MLP

Is it the red one? No
Is it the one being held by 
the one in blue? Yes

Figure 3: Guesser model.

2016] for more details regarding the task and the exact con-
tent of the dataset. It is composed of more than 150k human-
human dialogues in natural language collected through Me-
chanical Turk.

2.1 Rules
GuessWhat?! is a cooperative two-player game in which both
players see the image of a rich visual scene with several ob-
jects. One player – the oracle – is randomly assigned an ob-
ject (which could be a person) in the scene. This object is not
known by the other player – the questioner – whose goal is to
locate the hidden object. To do so, the questioner can ask a
series of yes-no questions which are answered by the oracle
as shown in Fig 1. Note that the questioner is not aware of
the list of objects and can only see the whole image. Once
the questioner has gathered enough evidence to locate the ob-
ject, he may choose to guess the object. The list of objects
is revealed, and if the questioner picks the right object, the
game is considered successful.

2.2 Notation
Before we proceed, we establish the GuessWhat?! nota-
tion that is used throughout the rest of this paper. A game
is defined by a tuple (I, D,O, o∗) where I ∈ RH×W is
an image of height H and width W , D a dialogue with J
question-answer pairs D = (qj , aj)

J
j=1, O a list of K objects

O = (ok)
K
k=1 and o∗ the target object. Moreover, each ques-

tion qj = (wji )
Ij
i=1 is a sequence of length Ij with each token

wji taken from a predefined vocabulary V . The vocabulary
V is composed of a predefined list of words, a question tag
<?> that ends a question and a stop token <stop> that ends
a dialogue. An answer is restricted to be either yes, no or not
applicable i.e. aj ∈ {<yes>,<no>,<na>}. For each ob-
ject k, an object category ck ∈ {1, . . . , C} and a pixel-wise
segmentation mask Sk ∈ {0, 1}H×W are available. Finally,
to access subsets of a list, we use the following notations. If
l = (lji )

I,j
i=1 is a double-subscript list, then lj1:i = (ljp)

i,j
p=1 are

the i first elements of the jth list if 1 ≤ i ≤ Ij , otherwise
lj1:p = ∅. Thus, for instance, wj1:i refers to the first i tokens
of the jth question and (q, a)1:j refers to the j first question-
answer pairs of a dialogue.

3 Training Environment
From the GuessWhat?! dataset, we build a training environ-
ment that allows RL optimization of the questioner task by
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Figure 4: Question generation model.

creating models for the oracle and guesser tasks. We also
describe the supervised learning baseline to which we will
compare. This mainly reproduces models introduced in [de
Vries et al., 2016].
Question generation architecture We split the ques-
tioner’s job into two different tasks: one for asking the ques-
tions and another one for guessing the object. The ques-
tion generation task requires to produce a new question qj+1,
given an image I and a history of j questions and answers
(q, a)1:j . We model the question generator (QGen) with a
recurrent neural network (RNN), which produces a sequence
of RNN state vectors sj1:i for a given input sequence wj

1:i by
applying the transition function f : sji+1 = f(sji , w

j
i ).We use

the popular long-short term memory (LSTM) cell [Hochreiter
and Schmidhuber, 1997] as our transition function. In order
to construct a probabilistic sequence model, one can add a
softmax function g that computes a distribution over tokens
wji from vocabulary V . In the case of GuessWhat?!, this out-
put distribution is conditioned on all previous questions and
answers tokens as well as the image I:

p(wji |w
j
1:i−1, (q, a)1:j−1, I).

We condition the model on the image by obtaining its VGG16
FC8 features and concatenating it to the input embedding at
each step, as illustrated in Fig. 4. We train the model by min-
imizing the conditional negative log-likelihood:

− log p(q1:J |a1:J , I) = − log
J∏
j=1

p(qj |(q, a)1:j−1, I),

= −
J∑
j=1

Ij∑
i=1

log p(wji |w
j
1:i−1, (q, a)1:j−1, I).

At test time, we can generate a sample p(qj |(q, a)1:j−1, I)
from the model as follows. Starting from the state sj1,
we sample a new token wji from the output distribution
g and feed the embedded token e(wji ) back as input to
the RNN. We repeat this loop till we encounter an end-of-
sequence token. To approximately find the most likely ques-
tion, maxqj p(qj |(q, a)1:j−1, I), we use the commonly used
beam-search procedure. This heuristics aims to find the most
likely sequence of words by exploring a subset of all ques-
tions and keeping theK-most promising candidate sequences
at each time step.
Oracle The oracle task requires to produce a yes-no an-
swer for any object within an image given a natural lan-
guage question. We outline here the neural network ar-
chitecture that achieved the best performance and refer to

[de Vries et al., 2016] for a thorough investigation of the
impact of other object and image information. First, we
embed the spatial information of the crop by extracting an
8-dimensional vector of the location of the bounding box
[xmin, ymin, xmax, ymax, xcenter, ycenter, wbox, hbox] where
wbox and hbox denote the width and height of the bounding
box , respectively. We normalize the image height and width
such that coordinates range from −1 to 1, and place the ori-
gin at the center of the image. Second, we convert the object
category c∗ into a dense category embedding using a learned
look-up table. Finally, we use a LSTM to encode the current
question q. We then concatenate all three embeddings into a
single vector and feed it as input to a single hidden layer MLP
that outputs the final answer distribution p(a|q, c∗, x∗spatial)
using a softmax layer, illustrated in Fig. 2.

Guesser The guesser model takes an image I and a se-
quence of questions and answers (q, a)1:N , and predicts the
correct object o∗ from the set of all objects. This model con-
siders a dialogue as one flat sequence of question-answer to-
kens and use the last hidden state of the LSTM encoder as our
dialogue representation. We perform a dot-product between
this representation and the embedding for all the objects in the
image, followed by a softmax to obtain a prediction distribu-
tion over the objects. The object embeddings are obtained
from the categorical and spatial features. More precisely, we
concatenate the 8-dimensional spatial representation and the
object category look-up and pass it through an MLP layer to
get an embedding for the object. Note that the MLP parame-
ters are shared to handle the variable number of objects in the
image. See Fig 3 for an overview of the guesser.

3.1 Generation of Full Games
With the question generation, oracle and guesser model we
have all components to simulate a full game. Given an ini-
tial image I, we generate a question q1 by sampling to-
kens from the question generation model until we reach the
question-mark token. Alternatively, we can replace the sam-
pling procedure by a beam-search to approximately find the
most likely question according to the generator. The oracle
then takes the question q1, the object category c∗ and x∗spatial
as inputs, and outputs the answer a1. We append (q1, a1) to
the dialogue and repeat generating question-answer pairs un-
til the generator emits a stop-dialogue token or the maximum
number of question-answers is reached. Finally, the guesser
model takes the generated dialogue D and the list of objects
O and predicts the correct object.

4 GuessWhat?! from RL Perspective
One of the drawbacks of training the QGen in a supervised
learning setup is that its sequence of questions is not explic-
itly optimized to find the correct object. Such training ob-
jectives miss the planning aspect underlying (goal-oriented)
dialogues. In this paper, we propose to cast the question gen-
eration task as a RL task. More specifically, we use the train-
ing environment described before and consider the oracle and
the guesser as part of the RL agent environment. In the fol-
lowing, we first formalize the GuessWhat?! task as a Markov

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2767



Decision Process (MDP) so as to apply a policy gradient al-
gorithm to the QGen problem.

4.1 GuessWhat?! as a Markov Decision Process
We define the state xt as the status of the game at step t.
Specifically, we define xt = ((wj1, . . . , w

j
i ), (q, a)1:j−1, I)

where t =
∑j−1
j=1 Ij + i corresponds to the number of tokens

generated since the beginning of the dialogue. An action ut
corresponds to select a new word wji+1 in the vocabulary V .
The transition to the next state depends on the selected action:

• If wji+1 = <stop>, the full dialogue is terminated.
• If wji+1 = <?>, the ongoing question is terminated and

an answer aj is sampled from the oracle. The next state is
xt+1 = ((q, a)1:j , I) where qj = (wj1, . . . , w

j
i , <?>).

• Otherwise the new word is appended to the ongoing ques-
tion and xt+1 = ((wj1, . . . , w

j
i , w

j
i+1), (q, a)1:j−1, I).

Questions are automatically terminated after Imax words.
Similarly, dialogues are terminated after Jmax questions.
Furthermore, a reward r(x, u) is defined for every state-
action pair. A trajectory τ = (xt, ut,xt+1, r(xt, ut))1:T is a
finite sequence of tuples of length T which contains a state, an
action, the next state and the reward where T ≤ Jmax ∗Imax.
Thus, the game falls into the episodic RL scenario as the di-
alogue terminates after a finite sequence of question-answer
pairs. Finally, the QGen output can be viewed as a stochastic
policy πθ(u|x) parametrized by θ which associates a proba-
bility distribution over the actions (i.e. words) for each state
(i.e. intermediate dialogue and image).

4.2 Training the QGen with Policy Gradient
While several approaches exist in the RL literature, we opt for
policy gradient methods because they are known to scale well
to large action spaces [Silver et al., 2016]. This is especially
important in our case because the vocabulary size is nearly
5k words. The goal of policy optimization is to find a policy
πθ(u|x) that maximizes the expected return, also known as
the mean value:

J(θ) = Eπθ

[ T∑
t=1

γt−1r(xt, ut)
]
,

where γ ∈ [0, 1] is the discount factor, T the length of the
trajectory and the starting state x1 is drawn from a distribu-
tion p1. Note that γ = 1 is allowed as we are in the episodic
scenario [Sutton et al., 1999]. To improve the policy, its pa-
rameters can be updated in the direction of the gradient of the
mean value:

θh+1 = θh + αh∇θJ |θ=θh ,
where h denotes the training time-step and αh is a learning
rate such that

∑∞
h=1 αh =∞ and

∑∞
h=1 α

2
h <∞.

Thanks to the gradient policy theorem [Sutton et al., 1999],
the gradient of the mean value can be estimated from a batch
of trajectories Th sampled from the current policy πθh by:

∇J(θh) =
〈 T∑
t=1

∑
ut∈V

∇θh log πθh(ut|xt)(Qπθh (xt, ut)−b)
〉
Th
,

(1)

where Qπθh (x, u) is the state-action value function that esti-
mates the cumulative expected reward for a given state-action
couple and b some arbitrarily baseline function which can
help reducing the variance of the estimation of the gradient.
More precisely

Qπθh (xt, ut) = Eπθ

[ T∑
t′=t

γt
′−tr(xt′ , ut′)

]
.

Notice that the estimate in Eq (1) only holds if the prob-
ability distribution of the initial state x1 is uniformly dis-
tributed. The state-action value-function Qπθh (x, u) can
then be estimated by either learning a function approxima-
tor (Actor-critic methods) or by Monte-Carlo rollouts (REIN-
FORCE [Williams, 1992]). In REINFORCE, the inner sum
of actions is estimated by using the actions from the trajec-
tory. Therefore, Eq (1) can be simplified to:

∇J(θh) =
〈 T∑
t=1

∇θh log πθh(ut|xt)(Qπθh (xt, ut)−b)
〉
Th
.

(2)
Finally, by using the GuessWhat?! game notation for Eq (2),
the policy gradient for the QGen can be written as:

∇J(θh) =
〈 J∑
j=1

Ij∑
i=1

∇θh log πθh(w
j
i |w

j
1:i−1, (q, a)1:j−1, I)

(Qπθh ((wj1:i−1, (q, a)1:j−1, I), w
j
i )− b)

〉
Th
. (3)

4.3 Reward Function
One tedious aspect of RL is to define a correct and valuable
reward function. As the optimal policy is the result of the
reward function, one must be careful to design a reward that
would not change the expected final optimal policy [Ng et al.,
1999]. Therefore, we put a minimal amount of prior knowl-
edge into the reward function and construct a zero-one reward
depending on the guesser’s prediction:

r(xt, ut) =

{
1 If argmaxo[Guesser(xt)] = o ∗ and t = T

0 Otherwise
.

So, we give a reward of one if the correct object is found from
the generated questions, and zero otherwise.

Note that the reward function requires the target object o∗
while it is not included in the state x = ((q, a)1:J , I). This
breaks the MDP assumption that the reward should be a func-
tion of the current state and action. However, policy gradi-
ent methods, such as REINFORCE, are still applicable if the
MDP is partially observable [Williams, 1992].

4.4 Full Training Procedure
For the QGen, oracle and guesser, we use the model architec-
tures outlined in section 3. We first independently train the
three models with a cross-entropy loss. We then keep the ora-
cle and guesser models fixed, while we train the QGen in the
described RL framework. It is important to pretrain the QGen
to kick-start training from a reasonable policy. The size of the
action space is simply too big to start from a random policy.
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Algorithm 1 Training of QGen with REINFORCE
Require: Pretrained QGen,Oracle and Guesser
Require: Batch size K

1: for Each update do
2: # Generate trajectories Th
3: for k = 1 to K do
4: Pick Image Ik and the target object o∗k ∈ Ok
5: # Generate question-answer pairs (q, a)k1:j
6: for j = 1 to Jmax do
7: qkj = QGen(q, a)k1:j−1, Ik)
8: akj = Oracle(qkj , o

∗
k, Ik)

9: if <stop> ∈ qkj then
10: delete (q, a)kj and break;
11: p(ok|·) = Guesser((q, a)k1:j , Ik, Ok)

12: r(xt, ut) =

{
1 If argmaxokp(ok|·) = o∗k
0 Otherwise

13: Define Th = ((q, a)k1:jk , Ik, rk)1:K
14: Evaluate∇J(θh) with Eq. (3) with Th
15: SGD update of QGen parameters θ using∇J(θh)
16: Evaluate∇L(φh) with Eq. (4) with Th
17: SGD update of baseline parameters using∇L(φh)

In order to reduce the variance of the policy gradient, we
implement the baseline bφ(xt) as a function of the current
state, parameterized by φ. Specifically, we use a one layer
MLP which takes the LSTM hidden state of the QGen and
predicts the expected reward. We train the baseline function
by minimizing the Mean Squared Error (MSE) between the
predicted reward and the discounted reward of the trajectory
at the current time step:

L(φh) =
〈[
bφh

(xt)−
T∑
t′=t

γt
′
rt′
]2〉
Th

(4)

We summarize our training procedure in Algorithm 1.

5 Related Work
Outside of the dialogue literature, RL methods have been
applied to encoder-decoder architectures in machine transla-
tion [Ranzato et al., 2016; Bahdanau et al., 2017] and image
captioning [Liu et al., 2016b]. In those scenarios, the BLEU
score is used as a reward signal to fine-tune a network trained
with a cross-entropy loss. However, the BLEU score is a sur-
rogate for human evaluation of naturalness, so directly opti-
mizing this measure does not guarantee improvement in the
translation/captioning quality. In contrast, our reward func-
tion encodes task completion, and optimizing this metric is
exactly what we aim for. Finally, the BLEU score can only
be used in a batch setting because it requires the ground-truth
labels from the dataset. In GuessWhat?!, the computed re-
ward is independent from the human generated dialogue.

Although visually-grounded language models have been
studied for a long time [Roy, 2002], important breakthroughs
in both visual and natural language understanding has led to
a renewed interest in the field. Especially image caption-

(a) CE (sampling) (b) REINFORCE (sampling)

Figure 5: (a-b) Each line represents a dialogue of size N and de-
scribe the evolution of the average probability of the guesser to find
the correct object question after question.

ing [Lin et al., 2014] and visual question answering [An-
tol et al., 2015] has received much attention over the last
few years, and encoder-decoder models [Liu et al., 2016b;
Lu et al., 2016] have shown promising results for these tasks.
Only very recently the language grounding tasks have been
extended to a dialogue setting with the Visual Dialog [Das et
al., 2017a; 2017b] and GuessWhat?! [de Vries et al., 2016]
datasets. Both games are goal-oriented and can be cast into
an RL framework. However, only the GuessWhat?! game
requires the question generation task to be visually grounded.

6 Experiments
As already said, we used the GuessWhat?! dataset
that includes 155,281 dialogues containing 821,955 ques-
tion/answer pairs composed of 4900 words on 66,537 unique
images and 609,543 objects.

6.1 Training Details
We pre-train the networks described in Section 31. After
training, the oracle network obtains 21.5% error and the
guesser network reports 36.2% error on the test set. Through-
out the rest of this section we refer to the pretrained QGen as
Cross-Entropy trained model (CE).

We then initialize our environment with the pre-trained
models and train the QGen with REINFORCE for 80 epochs
with plain stochastic gradient descent (SGD) with a learning
rate of 0.001 and a batch size of 64. For each epoch, we sam-
ple each training images once, and randomly choose one of
its object as the target. We simultaneously optimize the base-
line parameters φ with SGD with a learning rate of 0.001.
Finally, we set the maximum number of questions to 8 and
the maximum number of words to 12

6.2 Results
Accuracy We report the accuracies of the QGen trained
with REINFORCE and CE in Table 2. We compare sampling
objects from the training set (New Objects) and test set (New
Images) i.e. unseen Images. We report the standard deviation
over 5 runs in order to account for the sampling stochastic-
ity. On the test set, training with CE obtains 38.0% accu-
racy, while training with REINFORCE improves to 52.3%.
This is also a significant improvement over the beam-search
CE, which achieves 44.8% on the test-set. Our proposed
framework thus closes the gap towards human-performance

1Source code available at: https://guesswhat.ai
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Image Beam Search REINFORCE Image Beam Search REINFORCE
Is it a person ? no Is it a person ? no Is it a cat ? no Is it a cat ? no
Is it a ball ? no Is a glove ? no Is it a book ? no Is it on the table ? yes
Is it a ball ? no Is an umbrella ? no Is it a book ? no Is it the book ? no
Is it a ball ? no Is in the middle ? no Is it a book ? no Is it fully visible? yes
Is it a ball ? no On a person? no Is it a book ? no

is it on on far right? yes
Failure (blue bat) Success (red chair) Failure (person) Success (bowl)

Is it a person ? yes Is it a person ? yes Is it a bag ? yes Is it a suitcase? yes
Is it the one in front ? yes Is it girl in white ? yes Is it red ? no Is it in the left side ? yes
Is it the one on the left ? no Is it the one in the middle ? no
Is it the one in the middle
with the red umbrella ? yes

Is it the one on the far right ?
no

Is it the one to the right of
the girl in ? no

Is it the one with the blue bag
? yes

Failure (umbrella) Success (girl) Success (most left bag) Failure (left bag)

Table 1: Samples extracted from the test set. The blue (resp. purple) box corresponds to the object picked by the guesser for the beam-search
(resp. REINFORCE) dialogue. The small verbose description is added to refer to the object picked by the guesser.

New Objects New Images

CE
Sampling 39.2% ± 0.2 38.0% ± 0.1

Greedy 40.7% ± 0.1 39.4%
BSearch 46.1% ± 0.0 44.8%

REINFORCE Sampling 53.3%± 0.3 52.3%± 0.2
Greedy 49.5% ± 0.0 48.5%

BSearch 44.9% ± 0.1 45.8%
Human 84.4%

Human with Guesser 63.8%
Random 18,1%

Table 2: Guessing accuracy of the QGen with CE and REINFORCE.
New objects refers to uniformly sampling objects within the training
set, new images refer to sampling objects from the test set.

(84.4%) with more than 10%. The beam-search procedure
improves over sampling from CE, but lowers the score for
REINFORCE.

Samples We qualitatively compare the two methods by an-
alyzing a few generated samples, as shown in Table 1. We
observe that the beam-search trained with CE keeps repeating
the same questions, as can be seen in the two top examples in
Tab. 1. We noticed this behavior especially on the test set i.e.
when confronted with unseen images, which may highlight
some generalization issues. We also find that the beam-search
CE generates longer questions (7.1 tokens on average) com-
pared to REINFORCE (4.0 tokens on average). This quali-
tative difference is clearly visible in the bottom-left example,
which also highlights that CE sometimes generates visually
relevant but incoherent sequences of questions. For instance,
asking ”Is it the one to the right of the girl in?” is not a very
logical follow-up of ”Is it the one in the middle with the red
umbrella?”. In contrast, REINFORCE seem to implement a
more grounded and relevant strategy.In general, we observe
that REINFORCE favors enumerating object categories (”is
it a person?”) or absolute spatial information (”Is it left?”).
Note these are also the type of questions that the oracle is ex-
pected to answer correctly. Differently, REINFORCE is able
to efficiently tailor its strategy toward the current dialogue
context as shown in Fig 5. REINFORCE successfully nar-
rows the space of objects towards the correct one while CE
faces more difficulties to output discriminative questions.

Dialogue Length For the REINFORCE trained QGen, we
investigate the impact of the dialogue length on the success

ratio. Interestingly, REINFORCE learns to stop on average
after 4.1 questions, although we did not encode a question
penalty into the reward function. This policy may be enforced
by the guesser since asking additional but noisy questions
greatly lower the prediction accuracy of the guesser as shown
in Tab. 1. Therefore, the QGen learns to stop asking questions
when a dialogue contains enough information to retrieve the
target object. However, we observe that the QGen sometimes
stops too early, especially when the image contains too many
objects of the same category. Interestingly, we also found
that the beam-search fails to stop the dialogue. Beam-search
uses a length-normalized log-likelihood to score candidate se-
quences to avoid a bias towards shorter questions. However,
questions in GuessWhat?! almost always start with ”is it”,
which increases the average log likelihood of a question sig-
nificantly. The score of a new question might thus (almost)
always be higher than emitting a single <stop> token.

Vocabulary Sampling from the REINFORCE trained
model uses 1,2k distinct words while CE (beam-search) vo-
cabulary is reduced to 0.5k unique words. Thus, REIN-
FORCE seems to benefit from exploring the space of words
in the training process.

7 Conclusion
In this paper, we proposed to build a training environment
from supervised deep learning baselines in order to train a
Deep RL agent to solve a goal-oriented multi-modal dia-
logue task. We show the promise of this approach on the
GuessWhat?! dataset, and observe quantitatively and quali-
tatively an encouraging improvement over a supervised base-
line model. While supervised learning models fail to generate
a coherent dialogue strategy, our method learns when to stop
after generating a sequence of relevant questions.
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