
F r o m A p p r o x i m a t e t o O p t i m a l Solut ions:
C o n s t r u c t i n g P r u n i n g and Propaga t ion Rules

Ian P. Gent and Toby Walsh*
APES Group, Department of Computer Science

University of Strathclyde, Glasgow Gl 1XH, Scotland
{ i p g , tw}@cs. s t r a t h .ac.uk

Abs t rac t
At the heart of many optimizat ion procedures
are powerful pruning and propagation rules.
This paper presents a case study in the con­
struction of such rules. We develop a new al­
gor i thm, Complete Decreasing Best F i t , that
finds the opt imal packing of objects into bins.
The algor i thm use a branching rule based on
the well known Decreasing Best Fi t approx­
imat ion algor i thm. In addit ion, it includes a
powerful pruning rule derived from a bound on
the solution to the remaining subproblem. The
bound is constructed by using modular ari th­
metic to decompose the numerical constraints.
We show that the pruning rule adds essentially
a constant factor overhead to runtime, whilst
reducing search significantly. On the hardest
problems, runt ime can be reduced by an or­
der of magnitude. Final ly we demonstrate how
propagation rules can be buil t by adding looka-
head to pruning rules. This general approach
- opt imizat ion procedures bui l t f rom branching
rules based on good approximation algorithms,
and pruning and propagation rules derived from
bounds on the remaining subproblem - may be
effective on other NP-complete problems.

1 I n t r o d u c t i o n
When presented wi th a new combinatorial problem, how
do we construct an effective opt imizat ion procedure?
Kor f has demonstrated how to convert approximation
algorithms for number part i t ioning into branching rules
wi th in opt imizat ion procedures [Korf, 1995]. He con­
cluded that this "presents an example of an approach
that may be effective on other combinatorial problems.
Namely, we took a good polynomial-t ime approximation
algor i thm, and made it complete, so that the first solu­
t ion found is the approximation, and then better solu­
tions are found as long as the algori thm continues to run,
eventually f inding the opt imal solution" [Korf, 1995]. We
test this claim for a closely related problem, bin packing
using the Decreasing Best Fi t approximation algori thm.

• Supported by EPSRC award GR/K/65706. We thank
the members of the APES group, especially Paul Shaw.

A shortfall of Korf 's proposal is that opt imizat ion
procedures also benefit f rom pruning rules to termin­
ate unproductive lines of search, and propagation rules
to determine when branching decisions are forced. We
identify a very general pruning rule derived f rom a bound
on the solution to the remaining subproblem. The bound
is constructed by using modular arithmetic to decompose
the numerical constraints. Since pruning rules need to be
cheap to test, we describe an implementation that adds
essentially a constant factor overhead to the runtime
whilst significantly reducing the number of nodes ex­
plored. This pruning rule is more effective on harder and
more constrained problems. We then show how propaga­
tion rules can be derived f rom pruning rules. Finally, we
derive similar pruning rules for other domains including
number part i t ioning and knapsack problems.

Our pruning bound is based on reasoning about the
numerical constraints of a problem using modular ar i th­
metic. For example, can we pack objects w i th weights
8 ,6 ,4 ,2 ,2 into two equally sized bins leaving no empty
space? The parity bit alone tells us this is impossible.
As the sum of the weights is 22 and the two bins are the
same size, each bin has 11 units of capacity. It is clearly
impossible to pack objects with even weights into bins
with an odd capacity and leave no empty space. In this
paper, we generalize such reasoning to other bit positions
and to non-binary bases.

This research suggests a general strategy for bui ld­
ing optimization procedures that may be useful in other
NP-complete problems. That is, we construct branch­
ing rules from good polynomial-t ime approximation
algorithms, and pruning and propagation rules from
bounds on the solution to the remaining subproblem.
For combinatorial problems involving numbers, modu­
lar arithmetic may be able to decompose the constraints
and suggest bounds useful for pruning and propagation.

2 B i n packing
To explore Korf 's claim, we chose bin packing. There
exist several good polynomial-t ime approximation al­
gorithms for bin packing but few effective optimization
procedures. Bin packing is of practical and theoretical
importance. Many businesses like post offices have real
bin packing problems to solve that are of economical

1396 SEARCH

value [Slatford and Yeadon, 1970]. Problems such as
scheduling, processor allocation, fabric cutt ing and min­
imizat ion of VLSI circuit size and delay, can be modeled
by bin packing problems. Bin packing is NP-complete
in the strong sense [Garey and Johnson, 1979].

We consider a general bin packing problem in which
the bins can have different capacities. This allows us to
reason about the subproblems encountered during search
when bins may be part ial ly fu l l . In addit ion, as we show
in Sec. 9, many other problems like number part i t ion­
ing can be seen as instances of such general bin packing
problems. A bin packing problem consists of a set of
objects S and a set of bins B. Each object s € S has a
weight w$) and each bin b £ B has a capacity cb. The
difference between the sum of the bin capacities and the
sum of the weights is the spare capacity, sc. The aim
is to par t i t ion the objects between the bins so that the
sum of weights in each bin is less than or equal to its
capacity. A l l weights and capacities are integers. If all
the bins have the same capacity, this is the NP-complete
problem SRI from [Garey and Johnson, 1979].

Decreasing Best F i t (D B F) is one of the best
polynomial-t ime approximation algorithms for bin pack­
ing. Best F i t puts the next object into the fullest bin
that w i l l accommodate it wi thout exceeding the capa­
city. D B F simply sorts the objects into decreasing order
of their weight before calling Best F i t . Objects with the
largest weights are thereby packed first. DBF is guaran­
teed asymptotical ly to use no more than 11/9 times the
opt imal number of bins, compared to Best Fi t which can
use 17/10 times the opt imal [Garey and Johnson, 1979].

3 A branch ing ru le
To develop an opt imizat ion procedure for bin packing,
we follow Korf 's methodology, and convert the Decreas­
ing Best F i t approximation algori thm into a branching
rule wi th in the Complete Decreasing Best Fi t (C D B F)
optimization procedure. C D B F computes a lower bound
on the number of bins required. If all the bins have the
same capacity, c then we need at least bins where

is the sum of the weights. Search begins wi th the num­
ber of available bins equal to this lower bound. If the
search tree is exhausted before a packing is found, the
number of available bins is incremented. This usually
relaxes the constraints sufficiently to make packing easy.

The objects are sorted into decreasing order of their
weight and packed into bins by the branching rule. The
first choice of the branching rule is that made by the De­
creasing Best F i t approximation algori thm. That is, it
packs the next object into the fullest bin that accommod­
ates i t . To make the opt imizat ion procedure complete,
we must decide what the branching rules does on back­
tracking. A natural generalization is to order bins by
how fu l l they are. The branching rule thus tries to pack
the next object into the fullest bin that accommodates
i t , and on backtracking, tries bins in increasing order of
their unused capacity. A branch terminates successfully
if all the objects are packed into bins. A branch ter­

minates unsuccessfully and forces backtracking when the
next object cannot be packed into any bin. That is, when
the weight of the next object exceeds the largest unused
capacity. To avoid duplicating search, the branching rule
does not pack an object into more than one bin wi th the
same unused capacity. We therefore never open more
than one new bin for any object. As a consequence, the
first object is always packed into the first bin, the second
object into the first or the second bin, etc. In the worst
case, when packing n objects into 6 bins, C D B F explores
all bn/b! different packings.

4 A prun ing rule
A bin packing problem imposes constraints on how the
weights in the bins add up. We decompose these con­
straints into constraints on how the bit positions add up.
To do this, we take the modulus of the weights and ca­
pacities to a set of bases. Often the bases wi l l be all the
powers of 2 since, as we show in Sec. 5, we can then use
simple logical operations on the binary representation.
However, other bases can be used at l i t t le extra cost.

The constraint on each bin is that the sum of the
weights is no more than the capacity of the bin. To
reason about how the spare capacity is distributed across
the bins, we construct a set containing sc "dummy"
objects, each wi th a weight of 1. We now have to find an
exact packing of so that the sum of the weights
in each bin is strictly equal to the capacity of the bin.
That is, for each

To focus on different bit positions, we take the modulus
of both sides of this equation to the base m,

And sum over the bins,

Unfortunately, we cannot use this equation directly as we
do not know which objects wi l l be put in each bin. We
can, however, give an upper bound for the left hand side
of (1) assuming the worst possible part i t ion of weights
for the mod sum. To derive the bound, we use the fact
that for any integers a and 6,

Applying this repeatedly to the left hand side of (]) gives

But the nested summation sums over all the weights in
all the bins. Hence,

GENT & WALSH 1397

This is our general pruning bound. The first two terms
of the LHS of (2) represents the maximum contributions
mod m that we can expect f rom the spare capacity and
S. The th i rd term represents the capacities mod m that
we need these contributions to reach. If at any t ime,
the LHS is less than zero, the packing of the bins is
impossible. We can then prune search.

As an example, consider again the bin packing prob­
lem f rom the introduct ion. This problem has no spare
capacity. Mod 2, we have objects w i th zero weight (i.e.
the weights provide no pari ty bi ts), and two bins each
w i th a capacity of 1 (i.e. each bin needs a parity b i t) .
The LHS of (2) is 0-2. Since this is less than zero, we
cannot pack the objects into the two bins.

As a second example, can objects wi th weights 650,
540, 390, 260 and 130 be packed into two bins of ca­
pacity 1000? Consider this problem mod 128. The ob­
jects contribute weights mod 128 of 10, 28, 6, 4 and 2
respectively. In addi t ion, we have 30 units of spare ca­
pacity. However, each bin needs 1000 mod 128 = 104.
The objects cannot therefore be packed into the bins.
The pruning bound reflects this; the LHS of (2) is
30 + (10 + 28 + 6 + 4 + 2) - (104 + 104). As this is
less than zero, we cannot pack the objects into the bins.

5 I m p l e m e n t a t i o n
To implement checking the bound efficiently, we make
three crit ical observations. First, if the modul i used are
all powers of a given base (e.g. m, m2, m3 . . .) , many
computations f rom one power of the base can be reused
in the next higher power. For example, w i th powers of
10, (a mod 1000) > (6 mod 1000) if either the 100's digit
of a is larger than that of 6, or if the 100's digits of the
numbers are the same and (a mod 100) > (6 mod 100).
Similar reuse of calculated values can be made for other
operations such as longhand addit ion and subtraction.

Second, the LHS of (2) changes only slightly when an
object is assigned to a b in . In fact, detailed analysis
shows that if we put an object s into a bin 6, the value
of the LHS of (2) does not change at all if
(cb mod m) , and is otherwise simply reduced by m. It
is more efficient therefore to initialise the values of the
LHS of (2) at the start of search, and merely compute
the change to these values at each node. To restore the
values on backtracking, we use one bi t for each modulus
m indicat ing if the LHS of (2) was decremented.

These two observations combine together. We ini t ia l ly
f ind the base m expansion of the weights and capacities.
Then at each node, we perform the subtraction cb — wB

longhand in base m. In doing this, the values of the
LHS of (2) in each power of m are decremented when
there is a borrow in that digit position, since a borrow
is necessary when (ws mod m) > (c b m o d m). The com­
plexity of the operations performed at each node is thus
the same as that of the subtraction cb— w$, which has
to be performed in any case. The only other operation
is that of decrementing the LHS of (2) and incrementing
it on backtracking. The LHS of (2) is always a mult ip le
of m so we store the value divided by m and decrement
it and increment it by 1 instead of m. Since this value
is a number bounded above by n, these decrements and
increments take less than O(logn) t ime. In practice n
is small and it may take just a single machine opera­
t ion. We can thus implement checking the bound in all
powers of a given base wi th a constant factor overhead
compared to C D B F without modular pruning. Our ex­
periments support this observation.

Our th i rd observation does not affect the theoretical
complexity but does make a practical implementation
more efficient. A natural set of bases to use is all powers
of 2. This is the set of bases used in the experiments
reported here. This choice allows us to take advantage
of the binary representation of numbers in computers.
For example, f inding the value of an integer modulus a
power of 2 is very cheap. In addit ion, we do not need
to perform the subtraction longhand since the bits of
(a x o r 6 x o r a — b) indicate whether a borrow was ne­
cessary into a given bit position when computing a — b

6 Exper iments
As in previous experimental studies [McGeoch, 1986], we
pack objects wi th pseudo-random integer weights into
bins that are twice their max imum size. We generate
n objects each wi th a weight drawn uniformly and ran­
domly from (0,/] and pack into bins of capacity 2/. Ex­
ploratory tests w i th this model show large variation in
problem difficulty. For example, the worst case for a
sample of 1,000 bin packing problems wi th 20 objects of
size 21 1 took 3,522,573 nodes whereas 90% of problems
needed just 1 branch. The data suggests that problem
difficulty is very dependent on the spare capacity.

We therefore modify the model to generate problems
wi th a predetermined spare capacity. We use two addi­
t ional parameters: a lower bound on the number of bins,
d,and a spare capacity, sc. The new model constructs
bin packing problems which, if they pack into d bins of
capacity 2/, leave a spare capacity of sc. We generate
n — 1 objects wi th weights randomly and uniformly dis­
tr ibuted on (0, /] . Let w be This is the
weight the n th and final object would need to have to
give the required spare capacity. If then we
assign the n th object this weight. If not, we throw away
the n — 1 objects and start again. We experimented with
a variety of spare capacities, but found that performance
was broadly similar w i th weights in the range (0, /] and
spare capacity sc as w i th weights in the range
and spare capacity 0. In the rest of the paper we restrict

1398 SEARCH

attention to problems wi th no spare capacity.
To determine the overhead modular pruning adds to

CDBF in practice, Fig. 1 gives a scatter plot of nodes
searched to find the opt imal packing against C P U time
wi th and wi thout modular pruning. We use 100 prob­
lems at each value of n f rom 8 to 20 and random 10-bit
weights which leave no spare capacity when packed into
n/4 bins. In this and subsequent experiments, we prune
wi th bases that are powers of 2. C D B F was coded into
Common Lisp and run on a network of identical DEC
Alpha 300LX's wi th 125MHz processors. This graph
supports our claim that pruning adds a constant factor
overhead to runt ime. Regression for cpu seconds per
node suggests that the overhead is about a factor of 5.4
for n = 8 but declines to 2.4 at n = 20. The nearly linear
nature of this graph also supports the practice of using
nodes searched as a proxy for cpu t ime.

Figure 1: Nodes searched against C P U time

The pruning rule can reduce search significantly. Fig.
2 shows the mean nodes searched to find the optimal
packing against log2(/) . We again generate bin pack­
ing problems w i th 8 to 20 objects which have no spare
capacity when packed into n/4 bins. We use 1,000 prob­
lems at each value of n and /. As in other NP-complete
problem classes [Cheeseman et al 1991], there is a phase
transition as the constrainedness varies. At small log2(/),
almost all problems pack into n/4 bins easily. At large
l o g 2 (l) l m o s t all problems require an extra bin. The
hardest b in packing problems tend to occur in the phase
transit ion inbetween. We see similar behavior to Fig. 2
in the median and other percentiles of performance.

As was expected, the effectiveness of the pruning rule
increases as log2(/) increases and we have more bits with
which to prune. For example at n = 20 and log2(/) = 45
mean cpu t ime was reduced from 274 to 246 seconds wi th
mod pruning, despite the overhead. The effectiveness
of the pruning rule also increases as the number of ob­
jects being packed increases. Fig. 2 supports our claim
that modular pruning reduces search significantly. On
the harder problems, runtimes can reduce by an order
of magnitude even in the phase transition region. For
example, at n = 20 and log2(/) = 10, one problem took

Figure 2: Mean number of nodes searched against the
size of the weights

1,258 cpu seconds without modular pruning but only 80
seconds wi th i t . The pruning rule cannot increase the
number of nodes searched, so where cpu t ime is greater
it is by no more than the implementation overhead.

In conclusion, the pruning rule adds essentially a con­
stant factor overhead to but reduces search significantly.
On the hardest problems, runtime can be reduced by an
order of magnitude. For problems larger than considered
here, the search tree may become too large to explore
exhaustively. On such problems, we might consider a
search strategy like ILDS [Korf, 1996]. This systematic­
ally explores decisions made against the branching heur­
istic. Unlike depth-first search, ILDS can undo branching
mistakes high in the search tree at l i t t le cost, as well as
taking advantage of pruning and propagation rules.

7 M u l t i p l e mod prun ing
If we mult ip ly the weights and capacities by some con­
stant then we get an equivalent bin packing problem.
However, the modulus of the numbers may now offer new
pruning opportunities. To test this hypothesis, Fig. 3
plots median and 99th percentile in nodes searched with
pruning bounds derived by mult iply ing the weights and
capacities by 1, 3, 5, and 7. We use 100 problems n = 20
for varying /. Fig. 3 shows that multiple modular prun­
ing offers further reductions in search over the regular
bound. By adding pruning possibilities we can only re­
duce the number of nodes searched. These reductions in
search can result in shorter runtimes on harder problems
than single modular pruning or no modular pruning.

8 A propagat ion rule
Propagation rules determine when branching decisions
are forced. For example, the Davis Putnam satisfiab­
i l i ty procedure [Davis and Putnam, I960] has the unit
propagation rule. This assigns truth values to variables
in unit clauses as these values are forced. This rule con­
tributes significantly to the effectiveness of the Davis
Putnam procedure. Propagation rules can often be con­
structed by adding look-ahead to a suitable pruning rule.

GENT & WALSH 1399

Figure 3: Modular pruning wi th the multiples, { 1 ,3 ,5 ,7 }

For instance, the Davis Putnam procedure also has an
empty clause pruning rule. This prunes search when an
empty clause is generated. The uni t propagation rule is
merely a one-step look-ahead on top of the empty clause
pruning rule. Suppose we have a unit clause, /. Look­
ing ahead, if we instantiate / to False, then the empty
clause pruning rule would fire. We therefore assign / to
True. But this is precisely the uni t clause propagation
rule: if we have a uni t clause, / then we assign / to True.

We can construct a propagation rule based on the
pruning rule for bin packing in an identical fashion. In
each base, the propagation rule packs the object wi th
largest weight in that modulus into one of the bins, and
tests the pruning bound. If the bound rejects every bin,
we prune search. If the bound rejects all but one bin,
we pack the object into the relevant b in. This adds an
inter-node cost of if we use all powers
of 2 as bases, as we do here. Fig. 4 shows the median
and 99th percentile in nodes searched wi th and without
this propagation rule. We again use 100 problems at
n = 20. Despite the larger overheads, the reductions in
search can result in shorter runtimes on the harder prob­
lems compared to CDBF either w i th or wi thout modular
pruning.

Figure 4: Modular pruning and propagation

9 Other appl icat ions
We now describe some other application domains.

9 .1 S u b s e t s u m
Given a set is there a subset whose weights have a

target sum Subset sum is problem SP13 in
[Garey and Johnson, 1979]. It is equivalent to bin pack­
ing into two bins w i th capacities t and where is
the sum of the weights. The pruning bound becomes,

For example, is there a subset of 17, 12, 9 and 4 wi th sum
23? Consider the numbers mod 4. We have 1, 0, 1 and
0 w i th which to meet the target sums of 23 mod 4 and
19 mod 4 (that is, 3 and 3). It is therefore impossible to
find a subset wi th the required sum. This is confirmed
by the bound, w i th the LHS being less than zero.

9.2 Number part i t ioning
Given a set S is there a part i t ion of S into sets whose
weights have an equal sum? For this is SP12
in [Garey and Johnson, 1979]. Number part i t ioning is
equivalent to bin packing into equal bins wi th capa­
cities where is the sum of the weights, assumed
to be a mult iple of To construct a pruning bound
that applies in the middle of search, we assume that we
have constructed a part ial part i t ion o f S , that the part ial
partit ions have weights wi th sums and that
Let be the numbers st i l l to be part i t ioned. The re­
maining problem is equivalent to bin packing into bins
wi th capacities This gives the pruning boumd,

Note that the first term is less than and the second
is less than For a fixed number of objects, we are
therefore more likely to break the bound for large
This agrees wi th our intuit ions. The more bins we have,
the more likely we wi l l be able to deduce using modular
arithmetic that we cannot f i l l one of the bins. A similar
bound can be derived for inexact number part i t ioning
problems in which the sum of the weights is not neces­
sarily a mult iple of and the sums of the part i t ions is
wi th in some To construct a bound here, we add
to S an extra set of "dummy" objects w i th unit weight.

9 .3 K n a p s a c k p r o b l e m s

In the 0 /1 knapsack problem, we have a set of objects
5, each object 8 S has a weight and a value
We also have a target value v and a knapsack which can
contain a weight Is it possible to put objects in the
knapsack to reach the target value wi thout exceeding the
weight? This is problem MP9 in [Garey and Johnson,
1979]. For simplicity, consider the special case where the
weights of the objects equal their values. Let be the
sum of the weights. Then we wish to f ind a subset of

1400 SEARCH

S w i th weight at least v but no more than w. This is
equivalent to packing into two bins, wi th capacities w
and and w i th a spare capacity of

10 Re la ted W o r k
Korf converted the Greedy and the Karmarkar-Karp
approximation algorithms for number part i t ioning into
branching rules for opt imizat ion procedures [Korf, 1995].
The pruning rules Kor f used are the analogues of the
simple pruning rule in C D B F without modular pruning.

McGeoch has performed extensive experiments on the
First F i t , Best F i t , Decreasing First F i t and Decreas-
ing Best F i t approximation algorithms [McGeoch, 1986],
using objects w i th integer weights and bins of capacity
230 — 1. She observed a 'cr i t ical region' in which Decreas­
ing First F i t gave packings w i th a large amount of empty
space. As these packings tended to occur when there was
a statistical excess of objects w i th large weights, this re­
gion may become less important as n increases and the
distr ibution of weights tends to become more uniform.

Bin packing has a polynomial-t ime asymptotic ap­
proximation scheme [Papadimitr iou, 1994]. This uses
modular ar i thmetic to reduce the grain size of the
weights! To approximate w i th in each weight w is re­
placed by [w/q] where q is the quantum size of weights,

and c is the bin capacity. Knapsack problems have
been proposed as the basis of a public-key cryptosystem
[Merkle and Hel lman, 1978]. The receiver deciphers the
encoded message by mul t ip ly ing the weights of the knap­
sack problem by a secret key and taking the modulus us­
ing a second secret key. This gives a knapsack instance
that can be rapidly solved. Brickell (personal commu­
nication cited in [Lagarias and Odlyzko, 1985]) sugges­
ted that diff icult and 'dense' cryptographic knapsack
problems wi th many objects and small weights might
be solved by converting them to ' low-density'problems
through one or more modular mult ipl icat ions. [Bright et
a/., 1994] describes a parallel method for solving knap­
sack problems. Modular ar i thmetic may st i l l be of use in
such methods for e l iminat ing parts of the search space.

11 Conclusions
The main contributions of this paper are new pruning
and propagation rules for bin packing and some closely
related problems. The pruning rule uses a bound con­
structed by decomposing the numerical constraints wi th
modular ar i thmetic. We incorporated this rule into a
new opt imizat ion procedure, Complete Decreasing Best
Fit. We showed that the pruning rule adds essentially
a constant factor overhead to runt ime whilst reducing
search significantly. On the hardest problems, runtime
can be reduced by an order of magnitude. Finally, we
demonstrated how propagation rules can be buil t by
adding lookahead to pruning rules. There are many dir­
ections for future research. For example, how do we
identify good sets of bases and multiples for pruning?

What contributions might this research make beyond
bin packing? First , the pruning bound can be applied to

many other part i t ion problems like subset sum, number
partit ioning, and knapsack problems. Second, modular
arithmetic may be useful in constructing pruning bounds
and propagation rules in other combinatorial problems
involving numerical constraints. Th i rd , new propagation
rules may be developed by adding lookahead to existing
pruning rules. Fourth, this paper presents an example
of a general methodology for building optimization pro-
cedures in new domains. That is, we construct a branch­
ing rule based on a good approximation algorithm, and
pruning and propagation rules derived from a bound
on the solution to the remaining subproblem. This ap­
proach may be effective on other NP-complete problems.

References
[Bright et al, 1994] J. Bright, S. Kasif, and L. Stiller

Exploit ing algebraic structure in parallel state space
search In Proceedings of AAAI-94, pages 1341-1346,
1994.

[Cheeseman et ai, 1991] P. Cheeseman, B. Kanefsky,
and W. M. Taylor. Where the really hard problems
are. In Proceedings of 12th IJCAI, pages 331-337,
1991.

[Davis and Putnam, I960] M. Davis and H. Putnam. A
computing procedure for quantification theory. J. As-
sociation for Computing Machinery, 7:201-215, 1960.

[Garey and Johnson, 1979] M. R. Garey and D. S. John­
son. Computers and intractability : a guide to the
theory of NP-completeness. W H Freeman, 1979.

[Korf, 1995] R.E. Korf. From approximate to optimal
solutions: A case study of number part i t ioning. In
Proceedings of 14th IJCAI, pages 266-272, 1995.

[Korf, 1996] R. Korf. Improved l imited discrepancy
search. In Proceedings of AAAI-96, pages 288-291,
1996.

[Lagarias and Odlyzko, 1985] J.C. Lagarias and A . M .
Odlyzko. Solving low-density subset sum problems.
Journal of the Association for Computing Machinery,
12(l):229-246, 1985.

[McGeoch, 1986] C. C. McGeoch. Experimental Ana­
lysis of Algorithms. PhD thesis, Carnegie Mellon Uni­
versity, 1986. Also available as CMU-CS-87-124.

[Merkle and Hellman, 1978] R.C. Merkle and M.E. Hell-
man. Hiding information and signatures in trapdoor
knapsacks. IEEE Transactions on Information The­
ory, 24:525-530,1978.

[Papadimitriou, 1994] C.H. Papadimitriou. Computa­
tional Complexity. Addison-Wesley, 1994.

[Slatfordand Yeadon, 1970] J .M. Slatford and N.B.
Yeadon. Report on the packing efficiency of parcel
containers. Technical Report 12, Parcel and Bulk Mail
Mechanisation Branch, Design and Development Di­
vision, Post Office, London EC1, 1970.

GENT & WALSH 1401

