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Soil organic matter (SOM) and soil moisture content (SMC) are critical indicators of soil 

health, yet their measurement using conventional methods is often prohibitive due to high 

time, labor, and financial costs. To address these challenges, a novel model employing image 

processing techniques has been developed to predict SOM and SMC based on soil colour 

features. This model utilizes stepwise multiple linear regression (SMLR) to correlate soil 

colour attributes, such as colour moments, Gray Level Co-occurrence Matrices (GLCMs), 

and various colour models, with the moisture and organic content of the soil. Field samples 

were systematically collected at defined intervals to represent continuous variation in soil 

properties. The ground truth for model calibration was established using the loss of ignition 

method. The efficacy of the model was validated externally, with the selection of 34 initial 

and then 6 optimal predictor variables, yielding an R2 of 0.67 and a Root Mean Square Error 

(RMSE) of 0.76 for SOM prediction, and an R2 of 0.77, RMSE of 0.55, and a Ratio of 

Performance to Inter-Quartile (RPIQ) of 1.07 for SMC. These results demonstrate the 

potential of using image-based modeling as a robust tool for soil property analysis. 

Keywords: 

predictive analysis, soil moisture content 

(SMC), step-wise linear regression, soil 

organic matter (SOM), cubist, Vtreat, 

ANOVA, computer vision, soil colour 

1. INTRODUCTION

For human beings, images are one of the best sources of 

information because they support deeply understanding any 

kind of scene. With that influence, scientists and researchers 

have attempted to utilize this quality visual information in 

different applications. Image processing involves synthesizing 

the images using computers. As a result, images are an 

enormous source of information that can be used if their 

features are properly examined. For getting different kinds of 

results, there are different processes, namely, image 

restoration, image compression, image enhancement, image 

registration, etc. For the last many years, the agriculture field 

has found many applications using image processing and 

machine learning. Some of the applications are fruit grading 

[1], precision farming [2], weed detection [3], crop prediction 

[4], soil texture classification and prediction [5], soil pH level 

prediction [6], etc. 

One of the streaming applications is SMC and SOM 

prediction [7]. SOM is an essential component of high-quality 

and healthy soil. It is comprised of organic remains from 

animals and plants along with material converted by 

microorganisms present in the soil at various decomposition 

stages. This shows an effect on agriculture and forestry 

production. Good-quality soils with steady levels of organic 

matter are capable of preventing and fighting soil-borne 

diseases. Moreover, SOM has a key role in boosting soil 

quality and fertility. SOM gives an idea of the extent of 

nitrogen supply that soil can provide for determining crop 

growth. Although organic matter varies greatly on the surface 

within the field [7], these spatial SOM statistics help to decide 

the management of site-wise agricultural resources, which 

involves applying nitrogen fertilizer and achieving a trade-off 

between environmental pollution reduction and crop 

production increase [8], which is one of the important 

components of precision agriculture [9]. SMC is the quantity 

of water present in soil. It is one of the most important soil 

properties and has many advantages associated with knowing 

the amount of moisture present in it, such as the measure of 

the need for irrigation, the availability of nutrients and 

chemicals, erosion, biological activity, and compaction 

potential. Thus, knowing the properties of soils like SOM and 

SMC has an association with the health of the soil. So, it helps 

farmers and land managers make decisions to enhance soil 

conditions. Some of the challenges in estimating and assessing 

SOM and SMC are labor and time-exhaustive laboratory 

evaluation [10], supervising variability in SMC and SOM [11], 

diversification in space [12], and the effectiveness of 

component-like types of soil [13, 14]. 

The above-mentioned challenges have made the researchers 

conscious of developing and generating cost-effective and 

rapid ways to estimate soil properties. Soil colour is one of the 

most result-oriented characteristics in determining soil 

properties. Soil colour has also been used in soil identification 

[15]. It is a feature that has been observed to have a strong 

correlation with spectral reflectance features and between 

SOM and soil colour [16-21] and SMC and soil colour [22-25]. 

The dark colour of the soil is essentially linked to higher values 

of SOM, SMC, and intrinsic soil fertility [26-28]. Therefore, 

this kind of content comes through modeling. 
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Existing research work on image processing-based SOC 

and SOM predictions [29-33] has soil colour as a main link. 

Dark soil colour is usually associated with high contents of 

organic matter; this kind of soil is fertile and capable of 

supporting plant growth [19]. The Munsell colorimetric 

system [34] is a conventional method for quantifying soil 

colour, which involves subjective visual matching between 

standard colour chips and soil samples. Therefore, when 

accurate colour dynamics and automatic colour matching are 

required, the Munsell colorimetric system is a suitable method. 

Modern image acquisition devices have control over the 

drawbacks of the Munsell colorimetric system and enhance 

SOM predictions. In some of the research work [30], a NIR 

high-resolution digital camera with controlled conditions was 

used for SOM prediction. It was stated that SOM was 

associated with the intensity of all the wavebands. It was 

observed that the CIEL*c*h* and CIEL*u*v* models were a 

good fit for SOC prediction [31]. A later study [32] predicted 

SOC in a comparative format by using different colour spaces. 

Other various studies also considered a stronger relationship 

between the colour of the soil sample and SOM [30, 31, 35-

38]. Later, this relationship was tested on the cell-phone 

application SOCIT [39]. 

In many studies [29, 32, 39, 40], for SOM prediction, a 

prime parameter used is soil colour in order to develop a 

prediction model, but with no intention of using other factors 

like surface residue, soil moisture, or surface roughness [41]. 

Out of all such factors, SMC is an important factor that 

controls the practical assessment of SOM. Generally, wet soils 

[42, 43] are darker in colour than dry soils. Soil macro- and 

micropores slowly permeate with water, which changes the 

physical composition of the soil with an increase in SMC. As 

a consequence, the relative refractivity of soil particles [14] 

changes, which causes a change in soil colour. This in turn 

complicates the relationship between soil colour and SOM, 

which becomes one of the deciding factors for predicting SOM 

from images. In the above-mentioned studies, SMC was an 

absolute factor in predictive models as soil samples have a 

variable value of moisture content. Furthermore, some of the 

research work introduced the concept of finding a moisture 

content, which is a SMC threshold value. The values below or 

above this threshold have different soil colours [14, 29]. Many 

reasons contribute to the decision about the value of the SMC 

threshold. Few researchers also observed soil reflectance as a 

change in the visible region only until SMC reaches 20% [44-

47]. A study suggested a critical SMC of 15% [14]. There are 

some proofs of the critical value of the SMC influencing the 

soil reflectance and the way it can impact the SOM prediction 

using digital images. 

The objective of this study was to predict SMC and SOM 

using colour and textural features extracted from soil sample 

images (Figure 1). This paper evaluates the ability of soil 

sample images acquired from a smartphone camera. The 

models are calibrated and validated for developing predictive 

analyses between features extracted from images and 

laboratory-measured SMC and SOM. Additionally, a few 

best-performing features are also sorted out of all the features. 

Figure 2 shows the overall workflow in the form of a block 

diagram. 

 

 
 

Figure 1. Few examples of soil sample dataset 

 

 
 

Figure 2. Proposed model for SOM and SMC prediction 
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2. EXPERIMENT AND IMAGE ACQUISITION SETUP 

 

A set of 250 soil samples was considered in this study. 

These consist of samples from five different crops: potato, 

sugarcane, mustard, wheat, and rice. The sample collection 

site is located at 25°56'30"N latitude and 83°33'40"E longitude. 

These samples were collected from the district Mau, Uttar 

Pradesh, India. For every crop, 10 fields of approximately the 

same size are considered. Five samples of soil are dug out of 

10 fields. So, 250 soil samples comprising all five crops were 

captured. Multiple samples were considered from multiple 

fields as the fields demonstrated high spatial (within the field) 

variations [48] in SOM and SMC. A large number of soil 

samples constitute the variation in soil conditions precisely; 

here, 250 soil samples were collected, representing a broad 

variation in organic matter content (2.5-74.6%). These 

samples are dug out from a depth of 2 inches below the surface 

of the field. These samples were uniformly taken out on a 

white sheet for image acquisition. Images (3024×4032 pixels) 

were captured with a 16-megapixel smartphone camera. The 

device was kept 20 inches above the surface of the soil sample. 

The camera settings are kept in default conditions, such as 

exposure time = 1/30s, F-stop = f/1.8, focal length = 1.12, and 

images were saved as a joint photographic experts group 

(JPEG). At the time of creating the soil image dataset, 8 

images of each sample were captured. Therefore, there are a 

total 2000 soil images in the dataset. Figure 1 shows some 

examples of the soil sample images from the dataset. 

In this study, SMC was consistently maintained during 

laboratory experiments, similar to other studies [49], despite 

its quasi-normal distribution in field observations [8]. The 

SMC and SOM were measured using the loss on ignition (LOI) 

method [48]. Maintaining constant SMC in samples can 

introduce bias in feature extraction through image processing, 

as different soil samples vary not only in SOM but also in 

water holding capacity. For instance, a sample with 2.59% 

SOM registered an SMC of 25.51%, whereas a sample with 

6.91% SOM showed an SMC of 53.47%. Figure 2 outlines the 

methodological steps followed: initially, soil samples are 

collected and the ground truth is established; subsequently, 

illumination normalization is applied to the images; features 

are then extracted for various colour models; finally, a 

regression model is assessed using diverse output parameters. 
 

 

3. IMAGE PROCESSING ANALYSIS 

 

3.1 Segmentation of region of interest 

 

Before providing images to any feature extraction network, 

the soil images are first segmented to generate the region of 

interest. For this purpose, two different methods are applied: 

the threshold method and Otsu’s method. First, the threshold 

method is used to segment the image. Figure 3 shows the 

outcome of applying different values of thresholds. It is clear 

from this image that the method operates best at a threshold 

value of 0.50. It shows that the selected threshold value is best 

according to the fraction of pixels. The histogram from Figure 

4 clearly shows why the optimal threshold value is in the range 

of 0.40 to 0.60. 

After this, Otsu’s method is used to segment the region of 

interest from the image. It is a better solution than determining 

the best threshold value by binarizing the image. However, this 

method relies on the fact that the image consistently consists 

of a background and a foreground, indicating that the 

histogram should clearly show only two separable 

distributions. Figure 5 shows the outcome of Otsu’s method. 

Though the result of this method performs the task of 

segmentation, certain areas in the region of interest are 

predicted as background. As can be observed from the 

segmentation results, the threshold method generated better 

segmentation results than Otsu’s method. So, further image 

processing analysis is performed on the output images of the 

threshold method. 

 

 
 

Figure 3. Result of threshold segmentation method 
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Figure 4. Histogram for optimal value of threshold 

 

 
 

Figure 5. Result of Otsu’s segmentation method 

 

3.2 Illumination normalization 

 

In the soil image dataset, there can be illumination variation 

in the images due to changes in lighting, shadows, noise, and 

also because the images were captured on different days. 

Illumination normalization was performed by dividing every 

pixel of the segmented region of interest in soil images by the 

mean value of the intensity of its corresponding reference, as 

shown in Eq. (1): 

 

𝑁(𝑎, 𝑏)𝐼𝜆 = 𝑁(𝑎, 𝑏)𝑂𝜆/𝑀𝑒𝑎𝑛𝑁(𝑎, 𝑏)𝑅𝜆 (1) 

 

where, 𝑁(𝑎, 𝑏)𝑂𝜆= original pixel value at the ath row and bth 

column of soil ROI; 𝑁(𝑎, 𝑏)𝑂𝜆= Illumination normalized pixel 

value at the ath row and bth column of soil ROI; 

𝑀𝑒𝑎𝑛𝑁(𝑎, 𝑏)𝑅𝜆= Mean pixel of the corresponding reference 

for specific waveband λ. As a suggestion for future work, a 

band or a colour pallet can be used as a reference for 

illumination normalization. 

 

3.3 Feature extraction 

 

After segmentation and illumination normalization, feature 

extraction is carried out. At the time of storing soil images, the 

colour space was RGB with R, G, B as the primary colour 

parameters. Afterwards, images were transformed into 

different colour models with multiple or secondary colour 

metrics with different information levels. In this proposed 

work, 34 different features were extracted, including colour 

features. Sample images were acquired and stored in RGB 

colour space. For this step, the images were converted to other 

colour spaces, including HSV, YIQ, YCbCr, CIEL*a*b. 

Along with these colour moments, a gray co-occurrence 

matrix was also calculated. 34 features, including median R, 

G, B, H, S and V, mean R, G, B, H, S, V, mean gray, median 

gray, homogeneity, contrast, and energy were taken into 

account. These features have mean and median of different 

colour spaces. Table 1 shows the definition of these features. 

 

Table 1. Description of features extracted from images 

 
Feature Description 

Mean Average of values of all pixels in an image 

Median 
Middle pixel value after all the pixels is sorted in 

numerical order 

Entropy Statistical measure of randomness 

Contrast 
Measure of intensity contrast between a pixel 

and its neighbour over the whole image 

Energy 
Sum of squared elements in the gray level co-

occurrence matrix (GLCM) 

Homogeneity 
Closeness of distribution of elements in the 

GLCM to the GLCM 

 

 

4. MODEL DEVELOPMENT  

 

A total of 2000 soil images were captured while acquiring 

the dataset from soil samples. For result evaluation, the model 

is analyzed using 10-fold cross-validation. The dataset is 

divided into calibration and validation with a ratio of 80:20. 

The Kennard-Stone [50-52] algorithm was used for this data 

division. Features extracted from images were used to build a 

predictive relationship to the laboratory-measured SMC and 

SOM values. The results are verified using internal and 

external validation. For internal validation, 10-fold cross-

validation is used, where data is divided into 80:20 for training 

and testing. For external validation, leave one out cross-

validation (LOOCV), where the model is trained using all the 

data except one image, which is used for testing. This is 

repeated until every single image is used for testing. A 

stepwise multiple linear regression (SMLR) predictive model 

is developed to use the relation between colour parameters 

SOM (and also SMC). The SMLR model is also proposed 

(Figure 2) between colour features and SMC, which includes 

SOM. At every step of forward SMLR, one of the most 

statistically significant features with the lowest p-value is 

added to the model, and accordingly, the variation in p-value 

and F-statistics is logged. The threshold for the p-value was 

set at 0.07 to exclude or include a colour feature. Multi-

collinearity was taken into consideration as a strong 

correlation is found between colour features, which can be 

observed in Table 2. The root mean square error (RMSE) and 

coefficient of determination (R2) are used to evaluate the 

model. The subscripts c, v, and cv represent calibration, 

validation, and LOOCV. 
 

𝑅𝑀𝑆𝐸𝑐𝑣 = √∑(𝑌𝑒  − 𝑌𝑚)2

𝑛

𝑖=1

𝑛⁄  (2) 

 

where, Ye is the predicted SOM; Ym is the measured SOM, and 

n is the number of samples. RMSEC and RMSEv were 

calculated by using Eq. (2) too.  
 

𝑅𝑃𝐷𝐶𝑉 =  𝑆𝐷 𝑅𝑀𝑆𝐸𝑐𝑣⁄  (3) 

 

RPDC and RPDV were calculated by using Eq. (3) too. In the 

study, RPD classification followed Chang et al. [51]. 
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Table 2. SOM and SMC descriptive statistics with soil 

colour 

 
Parameter Mean SD Skewness COV(%) 

Mean R 0.45 0.22 -0.07 48.89 

Mean G 0.42 0.21 -0.15 50.00 

Mean B 0.40 0.20 -0.19 50.00 

Mean H 0.20 0.13 4.08 65.00 

Mean S 0.26 0.15 0.77 57.69 

Mean V 0.35 0.21 -0.06 60.00 

Mean L* 0.17 0.11 0.09 62.53 

Mean a* 0.13 0.13 -0.14 100.62 

Mean b* 0.16 0.17 -0.17 103.53 

Mean Y 0.72 0.20 -0.19 27.78 

Mean Cb 0.52 0.21 0.42 40.38 

Mean Cr 0.62 0.16 0.54 25.81 

Mean Y 0.65 0.24 0.72 36.15 

Mean I 0.17 0.21 -0.15 123.53 

Mean Q 0.066 0.20 -0.17 30.30 

Median R 0.48 0.24 0.24 50.00 

Median G 0.46 0.23 0.23 50.00 

Median B 0.43 0.22 0.22 50.00 

Median H 0.20 0.10 0.15 50.00 

Median S 0.30 0.15 0.15 50.00 

Median V 0.37 0.16 0.18 43.78 

Median L* 0.20 0.10 0.10 50.50 

Median a* 0.17 0.15 0.08 88.23 

Median b* 0.26 0.13 0.13 50.00 

Median Y 0.85 0.42 0.42 49.42 

 Median Cb 0.54 0.22 0.27 40.74 

Median Cr 0.72 0.36 0.36 50.00 

Median Y 0.68 0.35 0.34 51.47 

Median I 0.74 0.37 0.28 50.00 

Median Q 0.075 0.032 0.034 42.67 

Entropy 5.82 0.49 -0.82 8.42 

Contrast 3.37 3.07 3.20 91.09 

Energy 0.42 0.41 2.80 97.62 

Homogeneity 0.92 0.08 0.81 8.69 

SOM (%) 21.05 19.65 2.23 93.35 

SMC (%) 26.07 30.12 2.01 115.53 

 

Initially, all 34 features were used to predict SOM (%) and 

SMC (%) as predictor variables. Internally, 10-fold cross-

validation was also performed. The difference between the 

ground truth and the predicted value was also taken into 

account. This difference function was found advantageous for 

pedo-transfer function development. Performance metrics 

calculated to analyze the model were: 

RMSE (Root Mean Square Error); 

R2 (coefficient of determination); 

Bias (mean of the residuals); 

LCCC (Lin’s Concordance Correlation Coefficient); 

RPIQ (Ratio of Performance to Interquartile Distance); 

RPD (Ratio of Performance to Deviation). 

The ratio of the standard deviation of measured values to 

the standard error of prediction is known as RPD [51]. RPD 

values greater than 2 indicate that a model is qualitatively good. 

RPIQ is also calculated because RPD is linked closely to R2 

[52]. RPIQ gives a better representation of the spread of values 

in the dataset. Low values of bias and RMSE, and large values 

of R2 and LCCC represent higher prediction accuracies. 

Z-score was described on top of the performance of each 

predictor, and four different analysis tests were done, namely, 

ANOVA (Analysis of Variance), Cubist, Correlation, and 

Vtreat. Predictors were given a rating in a range of 0 to 100 

(with 0 as the least important and 100 as the most important), 

and then these were averaged to get a z-score. Cubist analysis 

gives information on variable importance in a range of 0 to 100; 

results that are not on the same scale are converted to the same 

range of 0 to 100. The analysis of correlation showed a 1:1 

correlation between the dependent variable and each predictor. 

It had values between 0 (the least important) and 100 (the most 

important) correlation coefficients. In ANOVA, the p-value 

for every predictor is calculated between 0 and 100, with 0 

being the lowest and 100 being the highest p-value. R2 values 

are recorded between 0 and 100, with 0 as the lowest value and 

100 as the highest value. These values are then added and 

averaged to generate the scaled values in the described range 

of 0 to 100; these values are z-scores for a certain predictor. 

After this, the four highest predictor variables were then 

identified as the optimum predictors for both SOM and SMC. 

All this development of the model was again trained on these 

four predictors as independent variables, and model 

assessment metrics were calculated. 

 

 

5. RESULT AND DISCUSSION 

 

5.1 Descriptive analysis 

 

Observed descriptive statistics of SOM and SMC have 

shown a high level of alteration in coefficient of variation, 

COV (%); the values were between 8.42% and 123.53% for 

soil properties and image features (Table 2). Values of SOM 

are observed between 3.45% and 81.50%, with 21.05% as the 

mean value and 19.65% as the standard deviation. These soil 

samples are highly variable and were chosen to make sure that 

the results are versatile. Taking from the high values of SOM, 

observed SMC values varied between 10.12% and 120.34%, 

with 26.07% as the mean value and 30.12% as the standard 

deviation value. Mean I indicated a high value of COV, which 

is 123.53%. But on the other side, homogeneity was less 

variable, with a COV of 8.69%. 

 

5.2 Correlation of SMC and SOM with soil colour 

 

The advantages of soil colour were evaluated by examining 

the relationship between digital measurement of the colour of 

the soil, SOM, and SMC. Median H is weakly correlated (r = 

0.16) to SMC. Median B and SMC are highly correlated (r = - 

0.75) to each other which is followed by median V (r = - 0.72) 

and median Y (r = - 0.70). SOM is strongly correlated with 

mean H (r = - 0.60), then to energy (r = - 0.57) and mean S (r 

= - 0.53). The lowest correlation (r = 0.09) of SOM is with 

entropy. The value correlation was also significant in many 

cases for both SMC and SOM. 

 

5.3 Predictive analysis 

 

Four different study criteria are presented in radial plots 

(Figures 6-8) to show the comparative gravity of predictors in 

predicting SMC and SOM. In many studies, colour features of 

soil have shown a significant role in the prediction of SOM 

and SMC in comparison to textural features. Researchers 

found that colour spaces RGB and HSV were more important 

in predicting SMC and SOM than other colour spaces. 

Moreover, median values taken from the channels of colour 

spaces were more significant while predicting than the mean 

values. Significant predictors in SMC prediction are Median R 

and Median Cb, followed by Median Y, Median Cr, Median 

V, and Mean G. The less significant variable was mean S 

(Figure 7). In the case of SOM prediction, the most significant 

1177



 

variable is Mean V. The least significant variable was Mean S 

(Figure 8). SMLR was established with 34 and 6 features. It 

was first calibrated and then validated against the laboratory-

measured SOM and SMC. Table 3 and Table 4 present detailed 

prediction statistics results obtained using 34 and 6 predictor 

variables. 

 

5.3.1 Prediction of SMC 

For predicting SMC, the model was calibrated and validated 

for 34 (all) predictor variables, and then, using z-score 

statistics, six optimal predictor variables were finalized. Based 

on the z-scores from the radial graph presented in Figure 6(a), 

Median R was identified as the most important variable in 

predicting SMC, followed by Median Cb, Median Y, Median 

Cr, Mean G, and Median V. Finally, the model is calibrated 

and validated for those six predictor variables. Both internal 

and external validation processes recorded the output metrics 

for the prediction of SMC. When considering all the features, 

the R2, LCCC, RMSE, RPD, and RPIQ values were 0.62, 0.67, 

7.90%, 2.78, and 1.57, respectively, for 10-fold cross-

validation, which is the internal validation. For the test dataset, 

meaning external validation, R2, LCCC, RMSE, RPD, and 

RPIQ values were 0.67, 0.55, 7.60%, 1.64, and 1.00, 

respectively. For six predictor variables with internal 

validation, the R2, LCCC, RMSE, RPD, and RPIQ values 

were 0.67, 0.65, 7.50%, 5.56, and 1.79, respectively. For 

external validation, the R2, LCCC, RMSE, RPD, and RPIQ 

values were 0.56, 0.56, 6.70%, 1.87, and 1.14, respectively. 

 

5.3.2 Prediction of SOM 

The method of predicting SOM follows the same steps as 

the prediction of SMC: the model was calibrated and validated 

for 34 (all) predictor variables, and then, using z-score 

statistics, six optimal predictor variables were finalized. Based 

on the z-scores from the radial graph presented in Figure 6(b), 

Mean V was identified as the most important variable in 

predicting SOM, followed by Median G, Median Q, Mean H, 

Mean S and Mean L*. Finally, the model is calibrated and 

validated for those six predictor variables. The output metrics 

for the prediction of SMC were recorded through internal and 

external validation processes. When considering all the 

features, the R2, LCCC, RMSE, RPD, and RPIQ values were 

0.75, 0.73, 7.80%, 2.13, and 1.36, respectively. For the test 

dataset, meaning external validation, R2, LCCC, RMSE, RPD, 

and RPIQ values were 0.77, 0.75, 5.5%, 1.88, and 1.07, 

respectively. For six predictor variables with internal 

validation, the R2, LCCC, RMSE, RPD, and RPIQ values 

were 0.81, 0.78, 7.3%, 2.11, and 1.57, respectively. For 

external validation, the R2, LCCC, RMSE, RPD, and RPIQ 

values were 0.92, 0.85, 4.4%, 1.98, and 1.21, respectively. 
 

Table 3. Prediction accuracy for SMC using 34 and 6 predictor variables. The results are of 10 fold cross validation internal 

validation (IV) and external validation (EV) 
 

Model 
R2 LCCC RMSE RPD RPIQ 

IV EV IV EV IV EV IV EV IV EV 

Using 34 predictor variables 

SMLR 0.62 0.67 0.67 0.55 0.79 0.76 2.78 1.64 1.57 1.00 

Using 6 predictor variables 

SMLR 0.67 0.56 0.65 0.56 0.75 0.67 2.56 1.87 1.79 1.14 

 

Table 4. Prediction accuracy for SOM using 34 and 6 predictor variables. The results are of 10 fold cross validation internal 

validation (IV) and external validation (EV) 
 

Model 
R2 LCCC RMSE RPD RPIQ 

IV EV IV EV IV EV IV EV IV EV 

Using 34 predictor variables 

SMLR 0.75 0.77 0.73 0.75 0.78 0.55 2.13 1.88 1.36 1.07 

Using 6 predictor variables 

SMLR 0.81 0.92 0.78 0.85 0.73 0.44 2.11 1.98 1.57 1.21 

 

 
 

Figure 6. Z-score for features representing the priority towards SMC and SOM prediction 
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Figure 7. Significance of individual feature as a predictor for SMC prediction corresponding to ANOVA, Cubist, Vtreat, 

Correlation 

 

 
 

 
 

Figure 8. Significance of individual feature as a predictor for SOM prediction corresponding to ANOVA, Cubist, Vtreat, 

Correlation 
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6. CONCLUSION 

 

The performance of the SMLR model was assessed for its 

effectiveness in providing both reasonable and rapid 

estimations of SOM and SMC using a dataset acquired in a 

laboratory setting with a smartphone camera. This cost-

effective method utilized a smartphone camera to classify soil 

properties based on texture and colour features derived from 

soil images. Experiments involved soil samples from five 

different crops, reflecting variable organic matter content. 

Images were captured at various heights to account for 

continuous changes in both SMC and SOM. Initially, all 34 

features were analyzed, followed by a refined selection of 6 

optimal features for both SOM and SMC. It was observed that 

darker soil coloration correlates strongly with higher organic 

and moisture content. The model underwent both internal and 

external calibration and validation, with performance metrics 

recorded for each. While this study includes samples from 

diverse crop fields exhibiting significant variations in organic 

matter, future research should explore the impact of SMC 

variations on soil organic content more thoroughly. Further 

studies should also investigate the relationship between soil 

colour and its properties, SMC and SOM, to enhance 

predictive accuracy. Table 5 shows a comparison of proposed 

model with existing models. 

 

 

Table 5. Comparison of existing literature and proposed model 
 

Ref. Output Algorithms Dataset Acquisition Device 
Performance (%) 

SMC SOM 

Fu et al. [7] Stepwise linear regression Cellular phone, 10- megapixel - 

R2 = 0.819 

RMSE= 7.747% 

RPD = 2.328 

Wu et al. [37] - 
Canon 5D Mark III. 

camera, 22.3 megapixel 
- 

R2 = 0.52 

 

Rienzi et al. [46] Partial least square regression - - R2 = 0.64 

Proposed model Stepwise linear regression Motorola one power smartphone 

R2 = 0.67 

LCCC = 0.65 

RMSE = 7.5% 

RPD = 5.56 

RPIQ = 1.79 

R2 = 0.81 

LCCC = 0.78 

RMSE= 7.3% 

RPD = 2.11 

RPIQ = 1.57 
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