
Prediction Models for
Performance, Power, and Energy Efficiency of

Software Executed on Heterogeneous Hardware

Dénes Bán, Rudolf Ferenc, István Siket, and Ákos Kiss

Department of Software Engineering

University of Szeged

Szeged, Hungary

Email: {zealot,ferenc,siket,akiss}@inf.u-szeged.hu

Abstract—Heterogeneous environments are becoming com-
monplace so it is increasingly important to understand how and
where we could execute a given algorithm the most efficiently.
In this paper we propose a methodology that uses both static
source code metrics and dynamic execution time, power and
energy measurements to build configuration prediction models.
These models are trained on special benchmarks that have both
sequential and parallel implementations and can be executed
on various computing elements, e.g., on CPUs or GPUs. After
they are built, however, they can be applied to a new system
using only the system’s static metrics which are much more
easily computable than any dynamic measurement. We found
that we could predict the optimal execution configuration fairly
accurately using static information alone.

Keywords-Green computing, heterogeneous architecture, per-
formance optimization, power-aware execution, configuration
selection

I. INTRODUCTION

As technological advancements make GPUs – or other

alternative computation units – more widespread, it is in-

creasingly important to question whether the CPU is still

the most efficient option for running specific applications. In

this document we describe a method for deriving prediction

models that can select the execution configuration best suited

for a given algorithm with regards to one of three different

aspects: time, power, or energy consumption. These models

are built by applying various machine learning methods where

the predictors are calculated from the source code (using

static analysis techniques) and the output of the models is

the optimal execution configuration.

To build the desired prediction models, first we take a

number of algorithms – referred to as benchmarks – that

have functionally equivalent sequential and parallel (OpenCL

and OpenMP-based) implementations. After this, we extract

multiple size, coupling and complexity metrics from the main

functional parts of every analyzed benchmark using static

source code analysis. Then we collect measurements on the

time and power required to run these algorithms on different

platforms and assign labels to them based on which configu-

ration performed the best. Finally, we apply multiple machine

learning methods that use the calculated metrics to predict the

optimal execution configuration for a system.

These steps yield a model – one for every machine learning

approach – that is capable of classifying new systems as

well. There are no prerequisites for using the created models

other than extracting the same static metrics from the new

subject system’s source code that were used in the model

building phase. With those metrics, one of the previously built

models can be utilized to predict the optimal configuration for

running the subject system. In this document we describe a

possible method for creating such models through a concrete

experiment and discuss their benefits as well as possible ways

for improving them even further.

The paper is organized as follows: In the next section we list

some works related to ours. Then, in Section III we describe

our methodology in detail. In Section IV we introduce the

used benchmarks, while in Section V we briefly describe the

way we performed the dynamic measurements. Afterwards, in

Section VI we describe the static metrics extraction method

in detail. In Section VII we show the results that we have

achieved. Finally, in Section VIII we draw conclusions and

outline future work.

II. RELATED WORK

As heterogeneous execution environments grew to be more

and more prevalent in recent years, it also became increasingly

important to study their individual and relative performances.

There is a multitude of related work in the area with funda-

mentally different approaches.

Some researchers tried to characterize a particular platform

alone. For example, Ma et al. [1] focused only on GPUs and

built statistical models to predict power consumption. Bran-

dolese et al. [2] concentrated on CPUs by statically analyzing

C source code and estimating their execution times. For the

OpenMP environment, Li et al. [3] derived a performance

model while Shen et al. [4] compared OpenMP to OpenCL

using some of the same benchmark systems we used. For

FPGAs, Osmulski et al. [5] introduced a tool to evaluate

the power consumption of a given circuit without needing to

actually test them. It is also evident from these references that

most of this type of research targets a single aspect (time or

power). We on the other hand, consider multiple platforms and

2015 IEEE Trustcom/BigDataSE/ISPA

978-1-4673-7952-6/15 $31.00 © 2015 IEEE

DOI 10.1109/Trustcom-BigDataSe-ISPA.2015.629

178

2015 IEEE Trustcom/BigDataSE/ISPA

978-1-4673-7952-6/15 $31.00 © 2015 IEEE

DOI 10.1109/Trustcom.2015.629

178



Fig. 1. Main steps of the model creation process

Fig. 2. Usage of a previously built model on a new subject system

aspects as our goal is to predict the optimal environment from

static information alone.

Others are more closely related to our current work as they

focus on cross-platform optimization. Yang et al. [6] general-

izes the expected behavior of a program on another platform

by extrapolating from partial execution measurements while

Takizawa et al. [7] aim at energy efficiency by dynamically

selecting the execution environment at run time. Unlike these

works, we use dynamic information only for building the

prediction models which then can be used with static data

alone.

A subset of these cross-platform works concentrate on

compiled or intermediate program representations. Kuperberg

et al. [8] analyze components and platforms separately to

avoid a combinatorial explosion. They build parametric models

for performance prediction but it requires microbenchmarks

for each platform and works with Java bytecode only. Marin

and Mellor-Crummey [9] also process application binaries

and build architecture-neutral models which are then used to

estimate cache misses and execution time on an unknown

platform. One key difference of these studies compared to

our approach is that we use the source code of the training

benchmarks and not their compiled forms.

III. METHODOLOGY

This section contains the detailed description of our concept

of a prediction model and how it is built. Using source code

metrics produced by static analysis, our model is able to

predict the computing unit that allows the fastest or most

energy efficient execution of a given program in advance. The

model is qualitative, so it does not predict the possible gain of

selecting one execution configuration over another, only the

best configuration itself. The model is built following these

steps:

• Extract multiple size, coupling, and complexity metrics

from the main functional parts of the analyzed systems.

• Collect measurements of the time and power required to

run them on different platforms.

• Use various machine learning algorithms to build models

that are able to predict the optimal configuration for a

program with a specific set of metric values.

The steps and intermediate states of our methodology are

outlined in Figure 1. Each of these steps will be detailed in

their dedicated sections:

• The selected benchmarks in Section IV,

• the dynamic measurements in Section V,

• the static analysis in Section VI-A,

• the selected metrics relevant for representing the encap-

sulated algorithms in Section VI-B,

• the metric aggregation process and its result in Sec-

tion VI-C, where a single set of metrics is collected for

every benchmark,

• the configuration labeling and the combination of labels

and metrics into instances in Section VI-D, and finally,

• the model training and its results in Section VII, where

we use Weka and a number of its classifier algorithms

to build the model we aim for.

Once a prediction model is in place, new systems can

be analyzed to predict their optimal execution configuration.

Figure 2 depicts the steps of applying a model to a new

subject system (unknown to the trained model). To determine

the optimal execution configuration of a new system, all we

have to do is to calculate the same source code metrics (via

static analysis) that we used for training the model, and let the

model decide.

IV. BENCHMARKS

For subject systems to train our models on, we used the

systems found in two self-contained benchmark suites: Parboil

179179



and Rodinia. The Parboil [10] suite provides a combination

of sequential, OpenCL, and OpenMP implementations for 11

programs. Rodinia [11] contains 18 benchmark programs

with OpenCL and OpenMP implementations but without the

sequential equivalents. In this work, not all of these programs

were measured, either because they had only OpenCL or only

OpenMP implementations, but not both, or because their input

sets were too complex. Note that during metrics calculation

(see Section VI) further systems needed to be skipped either

because of a faulty build (inherent include errors) or because

a single main file contained the whole logic of the program

and therefore it could not be separated from the OpenCL

specific overhead, causing large deviations in the computed

metrics. The final number of systems that have both metric

data and measurements are 7 and 8 for Parboil and Rodinia,

respectively.

V. MEASUREMENTS

In order to train our configuration prediction models, we

needed to obtain dynamic measurements for execution time,

power consumption and energy usage. We compiled the

benchmarks with g++ 4.8.2 using standard -fopenmp or

-lOpenCL flags and ran them on a platform built from 2

Intel Xeon E5-2695 v2 CPUs (30M Cache, 2.40 GHz), 10 ×
8GB of DDR3 1600 MHz memory, a Supermicro X9DRG-

QF mainboard, and an AMD Radeon R9 290X VGA card.

Execution time could be easily checked using software-based

timers. Power and energy, on the other hand, required a more

sophisticated approach.

We applied a universal hardware-extension solution that

is completely reversible and yields reliable measurements

without affecting performance or stability. We placed high

precision resistors into each of the power lines of the relevant

processing units and used a multi-channel oscilloscope to

measure their voltage drops over time. Because these drops

are proportional to the current flowing through the resistors,

we could convert the data from the oscilloscope to power and

energy figures. A more detailed description of the dynamic

measurement is out of the scope of this paper.

VI. METRICS EXTRACTION

In this section we briefly describe the process of static

analysis to calculate static source code metrics. As outlined

in Section III, this static source code information is used to

predict target execution configuration for systems. We list all

the selected metrics used in the machine learning algorithms

as predictors and present how we aggregated the function level

metrics to system level.

A. Static Analysis

For metrics calculation, we ran our static analysis tool on

both benchmark suites. This tool [12] analyzes the source

code, computes different kinds of metrics and outputs the

result into .csv (comma separated values) files separately for

every type of high-level source code entity – classes, functions,

etc. Considering the procedural structure of the benchmark

systems, we used function level metrics as the basis for further

processing.

Note that the precision of the source code metrics could be

improved by using block-level metrics but that would require

the manual annotation of every benchmark system. Moreover,

the current approach does not use any dynamic information

from the source code yet, metrics are static, and do not

contemplate run time problems such as caching or memory

allocation. That is because dynamic information is much more

difficult to collect, but it should be definitely considered for

further improvement of the prediction models. As a first step,

we believe static information offers a good trade-off between

efficient data collection and prediction accuracy.

B. Metric Definitions

The following metrics were computed and used as predictors

for the classifications:

• McCabe’s cyclomatic complexity (McCC): McCC is

defined as the number of decisions within the specified

function plus 1, where each if, for, while, do . . . while
and ?: (conditional operator) counts once, each N-way

switch counts N+1 times and each try block with N catch
blocks counts N+1 times. (E.g., else does not increment

the number of decisions.)

• Nesting level (NL): NL for a function is the maximum

of the control structure depth. Only if, switch, for, while
and do. . . while instructions are taken into account.

• Nesting level else-if (NLE): NLE for a function is

the maximum of the control structure depth. Only if,
switch, for, while and do. . . while instructions are taken

into account but if ... else if does not increase the value.

• Number of incoming invocations (NII): NII for a

function is the cardinality of the set of all functions which

invoke this function.

• Number of outgoing invocations (NOI): NOI for a

function is the cardinality of the set of all function

invocations in the function.

• Logical lines of code (LLOC): LLOC is the count of all

non-empty, non-comment lines of a function.

• Number of statements (NOS): NOS is the number of

statements inside a given function.

Note that all of these metrics can be statically computed.

Nevertheless, they can be used to predict dynamic behavior

fairly well, as we will demonstrate this in Section VII.

C. Metrics Aggregation

The output of the static analysis is a set of metrics for every

function in every implementation variant of every benchmark

system. To aggregate these metrics into a system-level set

for each benchmark system, first we combined the metrics

of multiple functions per benchmark implementation. The

method we used for aggregation in the current paper is

addition, but future work may experiment with different,

potentially more complex functions, perhaps even different

ones per metric type. Note that while addition might not

always be the best aggregation method for specific metrics

180180



(e.g., inheritance depth, or comment density), it is a natural

and expressive choice for the metrics we use in this work.

Next, we inspected the differences in the results per imple-

mentation variant for a given benchmark system. We noticed

that while the sequential and OpenMP variant nearly always

yielded the same – or negligibly different – metrics, the

OpenCL variant was significantly larger. This turned out to

be because:

• the main files (main.cpp, main.cc, main.c) of the

OpenCL variants in every benchmark system increased

the size and complexity because of the integration char-

acteristics of OpenCL itself (the represented algorithms

were not part of the main files),

• the source code of the OpenCL variant frequently con-

tained OpenCL specific headers and files which imple-

mented functionality that the other variants assumed to

be implicitly available.

By filtering out these “unnecessary files”, the computed

metrics “converged” to a single set and this supports that they

really only represent the enclosed algorithm. The remaining

marginal differences were handled by taking the maximum of

the values across the variants.

This way we got one single set of metrics for every

benchmark system, capturing its characteristics.

D. Configuration Selection

After we have obtained measurements for each aspect (time,

power, and energy) in each implementation variant (sequential,

OpenMP on CPU and OpenCL on GPU) for each benchmark

system, the question is not how fast (or energy efficient) a

given algorithm will be, but in which execution configuration

will it be the fastest (or most energy efficient). To this end,

we assigned three labels to each benchmark system, one for

each aspect, denoting the best execution configuration for

each aspect. The possible labels are SEQ-CPU, OMP-CPU and

OCL-GPU for the CPU-based sequential, CPU-based OpenMP

and GPU-based OpenCL configurations, respectively.

The resulting .csv files for systems in the two benchmark

suites can be seen in Table I and Table II. Note, that while

Rodinia (Table II) only has the two possible labels present in

its table, Parboil (Table I) could have three labels (SEQ-CPU,

OMP-CPU and OCL-GPU), but OMP-CPU is not present there

because it is never optimal.

These results were then written into .arff files with the

last three label columns interpreted as nominal values. The

.arff format (Attribute-Relation File Format) is the internal

data representation format of Weka [13]. It is an ASCII text

file that describes a list of instances sharing a set of attributes.

These attributes can be strings, dates, numerical values and

nominal values, the last of which can be used to represent

class labels.

The Tables I and II reveal that the optimal configuration

from the energy aspect was constant for both benchmark suites

and the optimal configuration from power and time aspects

were so strongly correlated that they were always identical.

Because of this, we chose not to consider energy labels and

to merge power and time labels into a single one for further

experiments.

VII. RESULTS

In this chapter we describe how and what types of predic-

tion models have been built. We also present the validation

results of the models created by different machine learn-

ing algorithms. The results are validated with 4-fold cross-

validation [14].

A. Machine Learning

Using the data shown in Tables I and II, we were able to

run various machine learning algorithms to build models that

can predict the configuration labels based on the source code

metrics. We performed the machine learning with Weka [13],

using multiple classifier algorithms and the wrapper script

shown in Listing 1.

As can be seen, we applied four different algorithms for

learning: J48 decision tree, Naive Bayes classifier, Logistic re-

gression and sequential minimal optimization function (SMO).

Listing 1. Machine learning Weka script

for BENCH in parboil rodinia
do

java −cp weka .jar weka .core .converters .CSVLoader −N 8 ←↩
. . / java /${BENCH} .csv > ${BENCH} .arff

touch ${BENCH} .txt
for CLASSIFIER in trees .J48 bayes .NaiveBayes functions .←↩

Logistic functions .SMO
do

for CLASS in 8 # possibly more
do
java −cp weka .jar weka .classifiers .${CLASSIFIER} −t←↩

${BENCH} .arff −c ${CLASS} −i −x 4 >> ${BENCH} .←↩
txt

done
done

done

B. Validation of the Models

Our first experiment was conducted using the J48 decision

tree, which is an open-source implementation of the well-

known C4.5 algorithm [15]. It produced 100% precision in

both cases which is not surprising as there is a clear division

between the two possible labels using only a single metric.

This means, that we can select a value of a metric so that

all the systems having higher metric value than that fall into

one class, while systems with lower metric value fall into

another class. The learning algorithms can find these values

and achieve 100% precision. For Parboil, it is the NOI metric

(over value 15 the label is OCL-GPU, otherwise it is SEQ-

CPU), and for Rodinia, it is the NII metric (over value 3 the

label is OCL-GPU, otherwise it is OMP-CPU). These simple

separations are illustrated in Table III and Table IV. Note

that for Rodinia, every other metric provides the same linear

separation that NII does.

The final decision trees produced by the J48 algorithm for

Parboil (left) and Rodinia (right) can be seen in Figure 3.

The Logistic regression model [16] – similarly to the deci-

sion tree – is perfectly accurate as there is a clear separation

based on numeric predictors as described above.

181181



Benchmark McCC NL NLE NII NOI LLOC NOS TimeLabel PowerLabel EnergyLabel
Mri-Q 20 6 6 6 17 129 50 OCL-GPU OCL-GPU SEQ-CPU
Mri-Gridding 24 11 11 6 6 135 56 SEQ-CPU SEQ-CPU SEQ-CPU
Spmv 5 2 2 2 15 48 15 SEQ-CPU SEQ-CPU SEQ-CPU
Lbm 59 35 35 19 25 519 135 OCL-GPU OCL-GPU SEQ-CPU
Stencil 8 4 4 2 19 60 18 OCL-GPU OCL-GPU SEQ-CPU
Histo 13 5 5 3 10 97 33 SEQ-CPU SEQ-CPU SEQ-CPU
Cutcp 53 18 18 9 29 340 157 OCL-GPU OCL-GPU SEQ-CPU

TABLE I
TRAINING INSTANCES FROM THE PARBOIL SUITE

Benchmark McCC NL NLE NII NOI LLOC NOS TimeLabel PowerLabel EnergyLabel
Streamcluster 249 66 66 49 160 1263 735 OCL-GPU OCL-GPU OMP-CPU
Leukocyte 672 134 134 99 260 2426 1627 OCL-GPU OCL-GPU OMP-CPU
Kmeans 100 22 22 9 53 487 240 OCL-GPU OCL-GPU OMP-CPU
Nw 21 3 3 3 14 104 58 OMP-CPU OMP-CPU OMP-CPU
Bfs 17 5 5 2 13 107 56 OMP-CPU OMP-CPU OMP-CPU
Pathfinder 20 6 6 3 10 87 52 OMP-CPU OMP-CPU OMP-CPU
Cfd 156 62 54 70 142 1424 776 OCL-GPU OCL-GPU OMP-CPU
Lavamd 85 6 6 7 17 370 128 OCL-GPU OCL-GPU OMP-CPU

TABLE II
TRAINING INSTANCES FROM THE RODINIA SUITE

McCC NL NLE NII NOI LLOC NOS Label
53 18 18 9 29 340 157 OCL-GPU
59 35 35 19 25 519 135 OCL-GPU
8 4 4 2 19 60 18 OCL-GPU
20 6 6 6 17 129 50 OCL-GPU

5 2 2 2 15 48 15 SEQ-CPU
13 5 5 3 10 97 33 SEQ-CPU
24 11 11 6 6 135 56 SEQ-CPU

TABLE III
CLEAR SEPARATION OF THE PARBOIL BENCHMARK SUITE BY THE NOI

METRIC

McCC NL NLE NII NOI LLOC NOS Label
672 134 134 99 260 2426 1627 OCL-GPU
156 62 54 70 142 1424 776 OCL-GPU
249 66 66 49 160 1263 735 OCL-GPU
100 22 22 9 53 487 240 OCL-GPU
85 6 6 7 17 370 128 OCL-GPU

21 3 3 3 14 104 58 OMP-CPU
20 6 6 3 10 87 52 OMP-CPU
17 5 5 2 13 107 56 OMP-CPU

TABLE IV
CLEAR SEPARATION OF THE RODINIA BENCHMARK SUITE BY THE NII

METRIC

Next, we tried the Naive Bayes classifier that yielded 71.4%

precision for Parboil and 100% precision for Rodinia. The

confusion matrix for the first case can be seen in Table V.

The upper left value shows how many instances were correctly

identified as OCL-GPU and the upper right value shows the

number of SEQ-CPU instances that were wrongly classified

Fig. 3. The final J48 decision trees for Parboil (left) and Rodinia (right)

as OCL-GPU. Similarly, the lower right value is the number

of correctly classified SEQ-CPUs while the lower left is the

number of OCL-GPUs that were classified as SEQ-CPU.

Predicted
OCL-GPU SEQ-CPU

Measured
OCL-GPU 2 2
SEQ-CPU 0 3

TABLE V
THE BAYES CONFUSION MATRIX FOR PARBOIL

Finally, we used a sequential minimal optimization function

(SMO). It produced 71.4% and 75% precision for Parboil and

Rodinia, respectively. The corresponding confusion matrices

can be seen in Table VI (Parboil) and Table VII (Rodinia).

Predicted
OCL-GPU SEQ-CPU

Measured
OCL-GPU 2 2
SEQ-CPU 0 3

TABLE VI
THE SMO CONFUSION MATRIX FOR PARBOIL

Predicted
OCL-GPU OMP-CPU

Measured
OCL-GPU 3 2
OMP-CPU 0 3

TABLE VII
THE SMO CONFUSION MATRIX FOR RODINIA

For the time being, the results are validated with 4-fold

cross-validation [14] inside Weka. In a 4-fold cross-validation

process, the original data set is randomly partitioned into 4

subsamples, possibly equal in size. Out of the 4 subsamples,

1 subsample is retained as the validation data for testing the

model, and the other 3 subsamples are used as training data.

The cross-validation process is then repeated 4 times (the

number of folds), with each of the 4 subsamples used exactly

once as the validation data. The results from the folds are then

averaged to produce a single estimation.

182182



Although these findings can hardly be considered widely

generalizable due to the small number of instances, the main

result of this study is the streamlined process by which they

were produced. With the described infrastructure in place,

making the model more precise is largely just a matter of

integrating more benchmark source code into the analysis.

VIII. CONCLUSIONS AND FUTURE WORK

The goal of this paper was to present our work addressing

the creation of prediction models that are able to automatically

determine the optimal execution configuration of a program

(i.e., sequential, OpenCL, or OpenMP). For this, we developed

a highly generalizable and reusable methodology for produc-

ing such models. Moreover, these models do not depend on

dynamic behavior information so they can be easily applied

for classifying new subject systems.

Building these models required a set of algorithms that are

each implemented on every relevant target platform. After

thorough research, we found two independent benchmark

suites containing multiple systems that fulfill this criterion.

To be able to build the necessary models, we also needed

to measure the time, power, and energy consumption of the

algorithms on different configurations. For this, we used a uni-

versal solution to measure the power and energy consumption

of the hardware components. We then successfully applied

our methodology on these systems to create prediction models

based on different machine learning approaches, using source

code metrics as predictors.

The resulting models are qualitative which means that

they can predict the optimal execution configuration, but not

how much better it is compared to the other alternatives.

Nevertheless, since all the necessary performance information

is available, the methodology will be later expanded to produce

quantitative models that will make it possible to even estimate

the differences.

There are other opportunities for improving the model

building process in the future, as well. One of these is

increasing the number of instances on which the models

are based. Another factor can be the granularity of metric

values which can possibly skew because the function-level

calculation covered more – or did not cover all – functionality

the benchmark systems represent. We tried to mitigate this

skewing by filtering unnecessary files but a more general and

reliable solution would be block scope-level metric calculation

and manual benchmark annotation. A task of that magnitude,

however, was outside the scope of this work. We also intend

to take platform specific configurations and compiler settings

into account.

Overall, we consider the results of this paper encouraging.

Despite the small number of subject systems, we were able to

demonstrate that statically computed metrics are appropriate

and useful for configuration selection. For example, some

of the built models reached 100% accuracy in inferring the

optimal execution configuration. The models are promising

by themselves, but we feel that another main result of this

paper is the methodology behind their creation. We now have

a flexible, expandable and configurable infrastructure in place

and the generalizability of its output models depend only on

the number of initial benchmark systems we use for training.

ACKNOWLEDGMENTS

The authors would like to thank Péter Molnár and Róbert

Sipka for their extensive help with dynamic measurements.

The publication is supported by the European Union FP7

project “REPARA – Reengineering and Enabling Performance

And poweR of Applications” (project number: 609666).

REFERENCES

[1] X. Ma, M. Dong, L. Zhong, and Z. Deng, “Statistical power consumption
analysis and modeling for gpu-based computing.”

[2] C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto, “Source-level ex-
ecution time estimation of c programs,” in Hardware/Software Codesign,
2001. CODES 2001. Proceedings of the Ninth International Symposium
on, 2001, pp. 98–103.

[3] D. Li, B. de Supinski, M. Schulz, K. Cameron, and D. Nikolopoulos,
“Hybrid mpi/openmp power-aware computing,” in Parallel Distributed
Processing (IPDPS), 2010 IEEE International Symposium on, April
2010, pp. 1–12.

[4] J. Shen, J. Fang, H. Sips, and A. Varbanescu, “Performance gaps
between openmp and opencl for multi-core cpus,” in Parallel Processing
Workshops (ICPPW), 2012 41st International Conference on, 2012.

[5] T. Osmulski, J. T. Muehring, B. Veale, J. M. West, H. Li,
S. Vanichayobon, S.-H. Ko, J. K. Antonio, and S. K. Dhall,
“A probabilistic power prediction tool for the xilinx 4000-series
fpga,” in Proceedings of the 15 IPDPS 2000 Workshops on
Parallel and Distributed Processing, ser. IPDPS ’00. London,
UK, UK: Springer-Verlag, 2000, pp. 776–783. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645612.663302

[6] L. Yang, X. Ma, and F. Mueller, “Cross-platform performance prediction
of parallel applications using partial execution,” in Supercomputing,
2005. Proceedings of the ACM/IEEE SC 2005 Conference, Nov 2005.

[7] H. Takizawa, K. Sato, and H. Kobayashi, “Sprat: Runtime processor
selection for energy-aware computing,” in Cluster Computing, 2008
IEEE International Conference on, Sept 2008, pp. 386–393.

[8] M. Kuperberg, K. Krogmann, and R. Reussner, “Performance prediction
for black-box components using reengineered parametric behaviour
models,” in Proceedings of the 11th International Symposium on
Component-Based Software Engineering, ser. CBSE ’08. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 48–63. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-87891-9 4

[9] G. Marin and J. Mellor-Crummey, “Cross-architecture performance
predictions for scientific applications using parameterized models,” in
Proceedings of the Joint International Conference on Measurement and
Modeling of Computer Systems, ser. SIGMETRICS ’04/Performance
’04. New York, NY, USA: ACM, 2004, pp. 2–13. [Online]. Available:
http://doi.acm.org/10.1145/1005686.1005691

[10] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W. mei W. Hwu, “Parboil: A Revised
Benchmark Suite for Scientific and Commercial Throughput Comput-
ing,” University of Illinois, at Urbana-Champaign, Tech. Rep., 2012.

[11] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous Com-
puting,” in Workload Characterization, 2009. IISWC 2009. IEEE Inter-
national Symposium on, Oct 2009, pp. 44–54.

[12] Rudolf Ferenc et al., REPARA deliverable D2.2: Static analysis
techniques for AIR generation, 2014. [Online]. Available: http:
//repara-project.eu/

[13] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The WEKA Data Mining Software: An Update,” in SIGKDD
Explorations, vol. 11. ACM, Jun. 2009, pp. 10–18.

[14] S. Arlot and A. Celisse, “A survey of cross-validation procedures for
model selection,” in Statistics Surveys, vol. 4, 2010, pp. 40–79.

[15] J. Quinlan, C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993.

[16] D. Hosmer and S. Lemeshow, Applied Logistic Regression. Wiley-
Interscience, 1989.

183183


