Paper:
Teaching Tasks to Multiple Small Robots by Classifying and Splitting a Human Example
Jorge David Figueroa Heredia*, Jose Ildefonso U. Rubrico**, Shouhei Shirafuji**, and Jun Ota**
*Department of Precision Engineering, School of Engineering, The University of Tokyo
7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
**Research into Artifacts, Center for Engineering (RACE), The University of Tokyo
5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8568, Japan
- [1] T. Arai, E. Pagello, and L. E. Parker, “Editorial: Advances in multi-robot systems,” IEEE Trans. on Robotics and Automation, Vol.18, Issue 5, pp. 655-661, 2002.
- [2] D. Rus, B. Donald, and J. Jennings, “Moving furniture with teams of autonomous robots,” Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 235-242, 1995.
- [3] D. Stilwell and J. Bay, “Toward the development of a material transport system using swarms of ant-like robots,” IEEE Int. Conf. on Robotics and Automation, pp. 766-771, 1993.
- [4] M. Fujii, W. Inamura, H. Murakami, K. Tanaka, and K. Kosuge, “Cooperative Control of Multiple Mobile Robots Transporting a Single Object with Loose Handling,” IEEE Int. Conf. on Robotics and Biomimetics, pp. 816-822, 2007.
- [5] Z. Liu, H. Kamogawa, and J. Ota, “Fast grasping of unknown objects through automatic determination of the required number of mobile robots,” Advanced Robotics, Vol.27, Issue 6 pp. 445-458, 2013.
- [6] B. Donald, L. Gariepy, and D. Rus, “Distributed manipulation of multiple objects using ropes,” IEEE Int. Conf. on Robotics and Automation, pp. 450-457, 2000.
- [7] T. Sakuyama, J. D. Figueroa Heredia, T. Ogata, T. Hara, and J. Ota, “Object Transportation by Two Mobile Robots with Hand Carts,” Hindawi Publishing Corporation Int. Scholarly Research Notices, Vol.2014, 2014.
- [8] C. Ferrari, E. Pagello, J. Ota, and T. Arai, “Multirobot motion coordination in space and time,” Robotics and Autonomous Systems, Vol.25, pp. 219-229, 1998.
- [9] P. Svestka and M. H. Overmars, “Coordinated path planning for multiple robots,” Robotics and Autonomous Systems, Vol.23, Issue 3, pp. 125-152, 1998.
- [10] K. Yamazaki, T. Tsubouchi, and M. Tomono, “Furniture model creation through direct teaching to a mobile robot,” J. of Robotics and Mechatronics, Vol.20, No.2, pp. 213-220, 2008.
- [11] J. H. Figueroa Heredia, H. Sahloul, and J. Ota, “Teaching mobile robots using custom-made tools by a semi-direct method,” J. of Robotics and Mechatronics, Vol.28, No.2, pp. 242-254, 2016.
- [12] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot learning from demonstration,” Robotics and Autonomous Systems, Vol.57, Issue 5, pp. 469-483, 2009.
- [13] M. Riley, A. Ude, K. Wade, and C. G. Atkeson, “Enabling Real-time full-body imitation: natural way of transferring human movement to humanoids,” Proc. IEEE Int. Conf. on Robotics and Automation, Vol.2, pp. 2368-2374, 2003.
- [14] D. Matsui, T. Minato, K. F. MacDorman, and H. Ishiguro, “Generating natural motion in an android by mapping human motion,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3301-3308, 2005.
- [15] S. Calinon and A. Billard, “Incremental Learning of Gestures by Imitation in a Humanoid Robot,” ACM/IEEE Int. Conf. on Human-Robot Interaction, pp. 255-262, 2007.
- [16] M. Ogino, H. Toichi, Y. Yoshikawa, and M. Asada, “Interaction rule learning with a human partner based on an imitation faculty with a simple visuo-motor mapping,” Robotics and Autonomous Systems, Vol.54, Issue 5, pp. 414-418, 2006.
- [17] R. Dillmann, “Teaching and learning of robot tasks via observation of human performance,” Robotics and Autonomous Systems, Vol.47, Issues 2-3, pp. 109-116, 2004.
- [18] Y. Yang, Y. Li, C. Fermuller, and Y. Aloimonos, “Robot Learning Manipulation Action Plans by “Watching” Unconstrained Videos from the World Wide Web,” Conf. on Artificial Intelligence (AAAI), pp. 3686-3692, 2015.
- [19] R. A. Knepper, T. Layton, J. Romanishin, and D. Rus, “IkeaBot: An Autonomous Multi-Robot Coordinated Furniture Assembly System,” IEEE Int. Conf. on Robotics and Automation, pp. 855-862, 2013.
- [20] Y. Maeda, N. Ishido, H. Kikuchi, and T. Arai, “Teaching of grasp/graspless manipulation for industrial robots by human demonstration,” IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Vol.2, pp. 1523-1528, 2002.
- [21] S. Chernova and M. Veloso, “Confidence-Based Multi-Robot Learning from Demonstration,” Int. J. of Social Robotics, Vol.2, Issue 2, pp. 195-215, 2010.
- [22] T. Inoue, “Future tasks of research in robotics,” IEEE Int. Conf. on Robotics and Automation, Vol.1, 1995.
- [23] M. A. Goodrich and A. C. Schultz, “Human-robot interaction: a survey,” Found Trends Human-Computer Interaction, Vol.1, Issue 3, pp. 203-275, 2007.
- [24] D. J. Sturman and D. Zeltzer, “A survey of glove-based input,” Computer Graphics and Applications IEEE, Vol.14, Issue 1, pp. 30-39, 1994.
- [25] W. Premerlani and P. Bizard, “Direction cosine matrix imu: Theory,” Tech. Rep., 2009.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.