Research Paper:
Simple Contact Sensor for Material on Die in Sheet Hydroforming
Minoru Yamashita*,, Nozomi Minowa**, and Makoto Nikawa*
*Department of Mechanical Engineering, Gifu University
1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
Corresponding author
**Graduate School of Natural Science and Technology, Gifu University
Gifu, Japan
A simple material contact sensor on the forming tool was devised for sheet hydroforming. The applicability was investigated for the shallow forming of aluminum alloy sheet. A flat bottom axisymmetric die or a conical one was used. An antistatic electric tape was used as contact sensor. It is flexible and attached to the die cavity in the radial direction. Electrical resistance of the tape between the center and the contact position of the material changes as the forming progresses. The change in voltage of the resistance part corresponding to the contact length was captured continuously. The strain at the center of the circular test piece was also continuously measured using a strain gage for large deformation. A short contact length was captured for the flat bottom die, since the test piece deforms into a dome shape, and the tip of the dome contacts to the center of the die cavity. On the other hand, the captured length was longer in the forming with the conical die. The repetitive separation and contact motion of the test piece to the die in impact forming due to the impulsive water pressure was successfully captured by the contact sensor. The accuracy was relatively coarse due to that the diameter of the die cavity was small. However, it was found that the simple contact sensor can be applied to evaluate the deformation behavior of the material. The measured maximum strain of the test piece was larger in impact forming, and the strain concentration occurred. This may be due to the negative strain rate sensitivity of the material.
- [1] P. W. Beaver, “Localized Thinning, Fracture and Formability of Aluminium Sheet Alloys in Biaxial Tension,” J. of Mech. Working Technol., Vol.7, Issue 3, pp. 215-231, 1983. https://doi.org/10.1016/0378-3804(83)90001-3
- [2] A. G. Atkins, “Fracture in Forming,” Mater. Process. Technol., Vol.56, pp. 609-618, Issues 1-4, 1996. https://doi.org/10.1016/0924-0136(95)01875-1
- [3] M. B. Silva, K. Isik, A. E. Tekkaya, A. G. Atkins, and P. A. F. Martins, “Fracture Toughness and Failure Limits in Sheet Metal Forming,” J. Mater. Process. Technol., Vol.234, No.1, pp. 249-258, 2016. https://doi.org/10.1016/j.jmatprotec.2016.03.029
- [4] X. Chu, L. Leotoing, D. Guines, and E. Ragneau, “Temperature and Strain Rate Influence on AA5086 Forming Limit Curves: Experimental Results and Discussion on The Validity of The M-K Model,” Int. J. of Mechanical Sci., Vol.78, pp. 27-34, 2014. https://doi.org/10.1016/j.ijmecsci.2013.11.002
- [5] C. Zhang, X. Chu, D. Guines, L. Leotoing, J. Ding, and G. Zhao, “Effects of Temperature and Strain Rate on The Forming Limit Curves of AA5086 Sheet,” Procedia Eng., Vol.81, pp. 772-778, 2014. https://doi.org/10.1016/j.proeng.2014.10.075
- [6] M. Yamashita, S. Komuro, and M. Nikawa, “Effect of Strain-Rate on Forming Limit Strain of Aluminum Alloy and Mild Steel Sheets Under Strain Path Change,” Int. J. Automation Technol., Vol.15, No.3, pp. 343-349, 2021. https://doi.org/10.20965/ijat.2021.p0343
- [7] K. Vacharanukul and S. Mekid, “In-Process Dimensional Inspection Sensors,” Measurement, Vol.38, Issue 3, pp. 204-218, 2005. https://doi.org/10.1016/j.measurement.2005.07.009
- [8] R. Wegert, M. A. Alhamede, V. Guski, S. Schmauder, and H. C. Möhring, “Sensor-Integrated Tool for Self-Optimizing Single-Lip Deep Hole Drilling,” Int. J. Automation Technol., Vol.16, No.2, pp. 126-137, 2022. https://doi.org/10.20965/ijat.2022.p0126
- [9] T. Yoneyama, “Development of A New Pressure Sensor and Its Application to The Measurement of Contacting Stress in Extrusion,” J. Mater. Proc. Technol., Vol.95, Issues 1-3, pp. 71-77, 1999. https://doi.org/10.1016/S0924-0136(99)00110-7
- [10] P. Mangin, L. Langlois, and R. Bigot, “Contact Pressure Measurement System in Cross Wedge Rolling,” Int. Conf. on Advances in Mater. and Process. Technol. (AMPT2010), Vol.1315, Issue 1, pp. 545-550, 2010. https://doi.org/10.1063/1.3552503
- [11] R. Lupoi and F. H. Osman, “Under Surface Pressure Sensing Technique for The Evaluation of Contact Stresses,” J. Mater. Proc. Technol., Vols.164-165, pp. 1537-1543, 2005. https://doi.org/10.1016/j.jmatprotec.2005.02.022
- [12] P. Groche and M. Brenneis, “Manufacturing and Use of Novel Sensoric Fasteners for Monitoring Forming Processes,” Measurement, Vol.53, pp. 136-144, 2014. https://doi.org/10.1016/j.measurement.2014.03.042
- [13] S. Y. Kim, A. Ebina, A. Sano, and S. Kubota, “Monitoring of Process and Tool Status in Forging Process by Using Bolt Type Piezo-Sensor,” Procedia Manufact., Vol.15, pp. 542-549, 2018. https://doi.org/10.1016/j.promfg.2018.07.275
- [14] M. Yang, “Sensing Technologies for Metal Forming,” Sensors and Mater., Vol.31, No.10, pp. 3121-3128, 2019. https://doi.org/10.18494/SAM.2019.2399
- [15] M. Yamashita, T. Murase, and M. Nikawa, “Prediction of Tool Fracture in Punching of Thick Steel Plate,” Sensors and Mater., Vol.32, No.10, pp. 3283-3295, 2020. https://doi.org/10.18494/SAM.2020.2943
- [16] T. Fujihashi, F. Suga, R. Araki, J. Kido, T. Abe, and M. Sohgawa, “Tactile Sensor with High-Density Microcantilever and Multiple PDMS Bumps for Contact Detection,” J. Robot. Mechatron., Vol.32, No.2, pp. 297-304, 2020. https://doi.org/10.20965/jrm.2020.p0297
- [17] K. Siegert, M. Häussermann, B. Lösch, and R. Rieger, “Recent Developments in Hydroforming Technology,” J. Mater. Proc. Technol., Vol.98, Issue 2, pp. 251-258, 2000. https://doi.org/10.1016/S0924-0136(99)00206-X
- [18] D. Y. Chen, Y. Xu, S. H. Zhang, Y. Ma, A. A. El-Aty, D. Banabic, A. I. Pokrovsky, and A. A. Bakinovskaya, “A Novel Method to Evaluate The High Strain Rate Formability of Sheet Metals under Impact Hydroforming,” J. Mater. Proc. Technol., Vol.287, 116553, 2021. https://doi.org/10.1016/j.jmatprotec.2019.116553
- [19] Y. Ma, Y. Xu, S. H. Zhang, D. Banabic, A. A. El-Aty, D. Y. Chen, M. Cheng, H. W. Song, A. I. Pokrovsky, and G. Q. Chen, “Investigation on Formability Enhancement of 5A06 Aluminium Sheet by Impact Hydroforming,” CIRP Annals, Vol.67, Issue 1, pp. 281-284, 2018. https://doi.org/10.1016/j.cirp.2018.04.024
- [20] C. Nikharea, M. Weiss, and P. D. Hodgson, “Buckling in Low Pressure Tube Hydroforming,” J. Manufact. Processes, Vol.28, pp. 1-10, 2017. https://doi.org/10.1016/j.jmapro.2017.05.015
- [21] K. V. Vijoy, H. John, and K. J. Saji, “Self-Powered Ultra-Sensitive Millijoule Impact Sensor Using Room Temperature Cured PDMS Based Triboelectric Nanogenerator,” Microelectronic Eng., Vol.251, 111664, 2022. https://doi.org/10.1016/j.mee.2021.111664
- [22] M. Yamashita, H. Kenmotsu, and T. Hattori, “Dynamic Crush Behavior of Adhesive-Bonded Aluminum Tubular Structure – Experiment and Numerical Simulation –,” Thin-Walled Struct., Vol.69, pp. 45-53, 2013. https://doi.org/10.1016/j.tws.2013.04.005
- [23] N. Abedrabbo, M. A. Zampaloni, and F. Pourboghrat, “Wrinkling Control in Aluminum Sheet Hydroforming,” Int. J. Mech. Sci., Vol.47, Issue 3, pp. 333-358, 2005. https://doi.org/10.1016/j.ijmecsci.2005.02.003
- [24] M. Yamashita, M. Gotoh, and E. Fujita, “Development of Drop-Hammer Tension Apparatus with Controlled Stopping Device and High-Rate Tension Test,” Proc. Int. Conf. Mater. and Mechanics (ICM&M97), pp. 525-532, 1997. https://doi.org/10.1299/jsmec.40.525
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.