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Abstract – With increasing performance-per-watt implementation 
requirements for emerging applications and barriers in interconnect 
scaling for ultra-deep submicron (UDSM) technologies, traditional 2D 
integrated circuits (2D-ICs) are being pushed to their limit. Three 
dimensional integrated circuits (3D-ICs) have recently emerged as a 
promising solution that can overcome many of the performance, area, and 
power concerns in 2D-ICs. In this paper we propose a novel framework 
(MORPHEUS) for the synthesis of application-specific 3D networks on 
chip (NoCs). The goal is to generate 3D NoCs that meet application 
performance constraints while minimizing power dissipation. 
MORPHEUS incorporates thermal-aware core layout, 3D topology and 
route generation, and placement of network interfaces (NIs), routers, and 
serialized vertical through silicon vias (TSVs). Experimental studies on 
several chip multiprocessor (CMP) applications indicate that our 
generated solutions notably reduce power dissipation (up to 2.3×) and 
average latency (up to 1.2×) over 2D NoCs. Comparisons with a previous 
work on application-specific 3D NoC synthesis also show improvements 
in power dissipation (up to 1.9×) and average latency (up to 1.6×).  

I. INTRODUCTION 
The rise in application complexity in recent years together with the 

need for power efficiency in computing systems has led to more and 
more cores being integrated on a single chip. Such chip 
multiprocessors (CMPs) have demonstrated superior performance-
per-watt than their uniprocessor counterparts. If the trend of 
integrating greater number of cores on a chip is to continue in the 
coming years, two major challenges need to be overcome. Firstly, the 
ongoing reduction in lithographic features is becoming increasingly 
more expensive. As a result, there is a practical limitation on the 
number of cores that can be integrated viably on the single active 
layer available to CMPs today. Secondly, with rising core counts, the 
amount of wires on chip has been steadily rising. Due to effects such 
as parasitic resistivity, crosstalk, and electromigration interference in 
UDSM nodes, long global interconnects have become a major delay 
and power bottleneck [1]. According to the ITRS [2], focus on new 
technologies and methodologies and not further reduction in feature 
size is the key to further performance-per-watt enhancements.  

Of the several different disruptive technologies that are being 
investigated today, 3D integrated circuits (3D-ICs) with wafer-to-
wafer bonding technology is one of the most promising candidates 
that can achieve power, performance, cost, and area demands of 
emerging applications in the coming years [3]-[6]. In wafer-to-wafer 
bonded 3D-ICs, active devices (processors, memories) are placed on 
multiple layers and vertical Through Silicon Vias (TSVs) are used to 
connect components across the stacked layers. Multiple active layers 
in 3D-ICs can enable increased integration of cores within the same 
area footprint as traditional single layer 2D-ICs. In addition, long 
global interconnects between cores can be replaced by much shorter 
inter-layer TSVs, improving performance and reducing on-chip power 
dissipation. Recent 3D-IC test chips from IBM [3][4] and Tezzaron 
[5] have confirmed the benefits of 3D integration technology.  

With the advent of many-core CMPs in recent years, the on-chip 
communication fabric has been evolving to cope with increased 
bandwidth and reliability requirements. Traditionally used bus based 
architectures have given way to packet switched network on chips 
(NoCs) that offer higher bandwidth, reliability, and scalability in 
UDSM technologies. With the introduction of 3D-ICs, it is expected 

that NoC fabrics will be extended into the third dimension. Recent 
research has begun exploring various 3D NoC topologies [7]-[9] and 
shown significant performance improvements for these topologies 
over 2D NoCs. However, the design of such 3D NoC fabrics 
customized for specific applications has received very little attention 
to date. Even though a significant body of work exists for the 
synthesis of 2D bus-based [10]-[12] and 2D NoC [13]-[18] 
communication architectures, the techniques are not directly 
applicable for 3D NoC synthesis because of the peculiar challenges of 
3D IC design. For instance, vertical TSVs have a larger pitch 
(5μm×5μm or more) that takes up space in the active layers and has at 
least an order of magnitude greater footprint than regular vias in the 
metal layers. These TSV interconnects are therefore expected to be 
limited in number. This heterogeneity and limited density of TSVs 
needs to be considered while synthesizing and optimizing 3D NoCs. 
Additionally, cores and routers can be placed on one of the many 
layers available, which dramatically increases design space 
complexity in 3D NoC based communication architectures. 

In this paper, we propose a novel framework (MORPHEUS) for the 
application-specific synthesis of 3D NoCs, optimized for low power 
dissipation. MORPHEUS automates the process of thermal-aware 
core layout, 3D topology and route generation, and placement of 
network interfaces (NIs), routers, and serialized vertical TSVs. 
Experimental studies on several CMP applications indicate that our 
generated solutions notably reduce power dissipation (up to 2.3×) and 
average latency (up to 1.2×) over 2D NoCs. Compared to solutions 
generated by a previous work on application-specific 3D NoC 
synthesis, MORPHEUS generates solutions with lower power 
dissipation (up to 1.9×) and lower average latency (up to 1.6×). 

II. RELATED WORK  
Over the last several years, there has been a growing interest in 3D 

ICs as a means to alleviate the interconnect bottleneck problem 
currently facing 2D-ICs. A key challenge with 3D-ICs is its high 
thermal density due to multiple cores being stacked together, that can 
adversely impact chip performance and reliability. Therefore several 
researchers have proposed thermal-aware floorplanning techniques 
for 3D-ICs [19]-[21]. A few researchers have explored interconnect 
architectures for 3D-ICs such as 3D mesh and stacked mesh 
topologies [7] and a hybrid bus-NoC topology [8]. Some recent work 
has looked at decomposing cores (processors [24][25], NoC routers 
[26], and on-chip cache [27]) into the third dimension which allows 
reducing wire latency at the intra-core level, as opposed to the inter-
core level. Circuit level models for TSVs were presented in [9]. 

The problem of custom interconnect architecture synthesis for 2D-
ICs has received a lot of attention in the past, for point-to-point and 
bus based architectures [10]-[12] and NoC topologies [13]-[18]. Only 
recently have approaches been proposed for the synthesis of custom 
NoCs for 3D-ICs [28]-[32]. An ILP based synthesis technique for a 
3D network with low-radix routers is proposed in [28]. However, the 
generated solution has many long links and the scalability of the 
approach is not clear. A methodology for application-specific 
topology synthesis and route computation for 3D-ICs that performs 
localized synthesis optimizations for every layer is proposed in [29], 
based on the author’s previous work on 2D NoC synthesis. The 3D 
NoC synthesis approach in [30] extends [29] by additionally 
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determining switches placement and iteratively adding TSV links 
during synthesis. A technique for application-specific 3D NoC 
synthesis based on a low-level greedy rip-up and reroute procedure 
for determining routes is proposed in [31]. Every core is initially 
allocated a router that is later merged using a greedy heuristic. 
However, the method used for router and TSV allocation in layers is 
not clearly specified. A multi-commodity flow formulation is used in 
[32] to solve a similar problem, but with analytical (e.g., queuing) 
models of the NoC and high level abstractions of applications, which 
may reduce the overall accuracy of the solution. 

Unlike existing approaches, our application-specific 3D NoC 
synthesis framework (MORPHEUS) enables a more comprehensive 
exploration of the design space by additionally integrating TSV 
serialization, NI placement, and thermal-aware core placement, 
together with layout-aware partitioning and allocation of routers and 
TSVs, to optimize power while meeting performance constraints. 

III. 3D INTEGRATED CIRCUITS 
Before presenting details of the MORPHEUS synthesis flow for 3D 

NoCs, we briefly discuss two relevant issues that are important to 
consider when designing application-specific NoCs for 3D ICs.  

A major concern in the adoption of 3D ICs is the increased power 
densities that can result from placing a core on top of another core. As 
high peak temperatures due to increasing power densities can cause 
catastrophic IC failure and this is already a major ckoncern in 2D 
architectures, the move to 3D will accentuate the thermal problem. 
The problem of thermal-aware 3D core layout is thus tightly coupled 
with the problem of 3D NoC synthesis, and cannot be ignored as in 
some previous 3D NoC synthesis approaches [28]-[31]. Another 
critical restriction that severely constrains the design space in 3D-ICs 
and must be considered during synthesis is the limitation on the 
number of TSVs between layers. This limitation is due to the high 
area overhead of TSV pads that are required to interface with TSVs in 
each active layer. It is clear today that TSV fabrication technology 
lacks maturity and has low yield due to unsuccessful wafer alignment 
prior to and during the wafer bonding process. This is expected to 
remain a major challenge in the years to come. A simple and effective 
way to improve yield is to add hardware redundancy by using larger 
(e.g., double area) TSV pads. As misalignments are caused by the 
unavoidable shift of bonding pads with respect to their nominal 
position, using larger square pads can improve misalignment 
tolerance by an order of magnitude [6]. However, the large pads can 
complicate routing in active layers. This motivates the need for some 
form of serialization of TSVs to reduce TSV pad footprint in active 
layers. In [33], it was shown that TSV serialization can reduce TSV 
pad area overhead in active layers by as much as 70% at a negligible 
performance and power overhead. This motivates utilizing TSV 
serialization in our application specific 3D NoC synthesis framework. 

IV. MORPHEUS SYNTHESIS FRAMEWORK 
A.   Inputs and Problem Description 

We assume that we are given a set of computational and memory 
cores onto which application tasks have already been mapped, after a 
hardware-software partitioning phase. The cores are arranged in a 
core dependency graph (CDG) which is one of the inputs to our 
framework. The CDG is an annotated directed graph G(V, E) where 
each node vi ∈ V corresponds to a core, directed edge eij ∈ E is a 
communication flow from vi to vj, and edge weight w(eij) is given by: 
 

����� � = 	 ∗ ����� � + (1 − 	) ∗ �(���) 
 

where μ(eij) and ρ(eij) are the latency and bandwidth constraints 
respectively for eij, and σ is a designer-specified parameter based on 
application characteristics. Each core vi is a rectangular shaped hard 
macro that has a fixed width (Wi) and height (Hi) associated with it, 
and the layer to which it is mapped in the 3D IC is specified by layeri. 

The number of layers (ζ) in the 3D IC on which the application is to 
be implemented and the maximum die dimensions (Wdie×Hdie) are 
also specified as inputs to our framework. As the TSV density is 
limited due to practical implementation concerns, we assume a 
maximum TSV density threshold between adjacent layers (δ) as a 
designer-specified input that depends on the chosen 3D-IC 
implementation technology. The core to layer assignment V → ζ is 
assumed as an input from the designer, and is usually based on 
temperature or power density concerns. For instance, a designer may 
choose to interleave high power density computational cores with 
cooler layers comprising of low power density memory cores. NoC 
architecture parameters (e.g., operating voltage, clock frequency, link 
width) can either be specified by the designer, or varied in steps in a 
user-defined range, with our framework being invoked at each step. 
Finally, the technology library node (e.g., 65nm, 45nm) is an input 
that enables accurate delay and power estimation in the framework. 
 

Problem Definition: Given an application CDG with bandwidth and 
latency constraints, a core to layer (V→ζ) mapping, number of 3D IC 
layers (ζ), TSV density threshold (δ), maximum die dimensions (Wdie× 
Hdie), NoC architecture parameters, and a target technology node, the 
goal of the MORPHEUS framework is to synthesize an application-
specific 3D NoC topology with a layout for all cores, NIs, TSVs, 
routers, and links that satisfies all performance (bandwidth, latency) 
constraints in the application while minimizing NoC power.  
 

 
Figure 1. MORPHEUS 3D NoC synthesis framework  

 
B.   MORPHEUS Synthesis Flow Overview 

Fig. 1 gives a high level overview of the MORPHEUS application-
specific 3D NoC synthesis framework. In the first phase, a thermal-
aware core layout using a 3D floorplanner is performed to place the 
cores assigned in each layer in a manner that minimizes peak 
temperature, wirelength, and chip area. The output of this step is a 
complete layout of the cores in every layer in the 3D-IC. In the next 
phase, the placement of NoC routers and TSV pads on the active 
layers is determined. A partitioning-based heuristic is used in this 
phase to explore the design space for a spectrum of router and TSV 
densities, while preserving the TSV density threshold (δ) constraint, 
in part by utilizing serialization. Next the NI placement for each core 
is determined to minimize critical path lengths. Finally, deadlock free 
routes are determined between cores. The output of the framework is 
a Pareto set of valid solutions (satisfying all performance constraints) 
that trade-off power with performance slack. The following 
subsections describe the various phases in the flow in more detail. 

C.   Thermal-aware Core Layout 
Given a core to layer mapping, the MORPHEUS framework 

performs 3D floorplanning in the first phase to obtain a placement of 
cores in each layer. This core layout is often influenced by non-
network-based interconnections (e.g., off-chip interface pin 
locations), and is an important step as it can have a significant impact 
on the quality of the synthesized NoC architecture. As stacked 3D-ICs 
can have significant reliability and performance issues due to higher 
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power density and peak temperatures than their 2D-IC counterparts, it 
becomes essential to perform core placement with thermal-awareness. 
Communication bandwidth and latency constraints must also be 
satisfied, by minimizing wirelength. In addition, overall chip area 
should also be minimized.  

To solve this multi-objective core layout problem, we make use of 
a genetic algorithm (GA) based approach. A genetic algorithm is an 
iterative exploration algorithm that is based on a computational 
analogy with biological adaptive systems. The algorithm starts with 
an initial random pool of solutions (each represented by a 
chromosome) that are evaluated at each iteration (generation) by a 
fitness score obtained from an objective cost function. A new 
generation is created by first increasing the population by generating 
new individual solutions, and then selecting a constant number of 
solutions based on their fitness criteria. Genetic operators such as 
crossover and mutation are used to create an evolution of the 
solutions at every iteration. The best solution is finally selected after a 
specified number of generations. A detailed discussion of genetic 
algorithms can be found in [34]. In our GA formulation, we encode 
the location and orientation of each core in the chromosome using a 
sequence-pair representation [35]. The GA objective function is 
aimed at a hybrid optimization of thermal, communication, and area 
costs. The thermal cost is represented by the peak temperature (Tpeak) 
of the design, and the area cost (Acost) is given by the chip area. The 
communication cost (Ccost) is a hybrid formulation that combines 
bandwidth and latency constraints as follows:  
 


���� =  	 ∗ � ����� � ∗ ����� �
max(�) ∗ max(�)

∀ ���

+ (1 − 	) ∗ � min(�) ∗ ������
������ ∗ max(�)∀ ���

 

 

where l(eij) is the wirelength between cores vi and vj, max(l) is the 
maximum wirelength between two cores with a communication flow, 
max(ρ) and min(μ) are the maximum bandwidth, and minimum 
latency constraints among all flows, and σ is a weight parameter set 
by a designer based on application characteristics. Then the objective 
function for our GA formulation is given as: 
 

������� , 
����, ������ = ��
log (�����) + �!

log (
����) + �"
log (�����) 

 

where a1, a2, and a3 are weighting parameters used to guide the 
optimization. The logarithmic values provide a more descriptive range 
and characterization for input variations. For any potential layout 
solution, Ccost can be calculated based on HPWL (half perimeter wire 
length) distances and μ/ρ constraints for each communication flow. 
The chip area Acost can also be determined after a layout of every core 
is obtained. To obtain Tpeak estimates, we make use of a 3D adaptation 
of Hotspot [36] which is a well-known tool for temperature estimation 
in 2D-ICs. Based on the average power dissipation of each core 
(known for every core based on technology library used and 
application characteristics), physical dimensions, and location of a 
core in the 3D-IC, Hotspot returns temperature estimates for the chip.  

To accommodate placement of smaller components such as routers, 
NIs, and TSV pads in subsequent phases of the synthesis flow, we 
increase core dimensions by a small margin φ before core layout. 
After layout, a compaction step is performed to reduce core 
dimensions and create whitespace for inserting routers, NIs, and TSV 
pads later. φ is set to 5% in our framework, although higher values 
can also be used to ease wiring congestion. After the layout phase, 
each core vi has a placement P(vi) = (xi, yi, zi) with (xi, yi) referring to 
the bottom left coordinates of the core in a layer and zi referring to the 
layer to which the core is mapped. Together with the core width and 
height, a unique placement is obtained for every core in the 3D-IC. 
Once such a layout is available, MORPHEUS can more accurately 
determine inter-core wiring delays and power dissipation.  

 
                   (a)                              (b)                            (c) 

Figure 2. (a) CDG, (b) ECDG, (c) ESCDG 

D. Router and TSV Pad Placement 
In the next phase, we determine the number and location of routers 

and TSVs in the synthesized solutions. Our procedure for router 
synthesis extends the technique proposed in [30] for switch synthesis 
in 3D NoCs by adding support for serialization and using layout 
awareness to obtain lower average power and latency 
implementations. We make use of a min-cut partitioning approach to 
determine the optimal number of routers in the implementation. 

Algorithm 1 describes the steps in this phase for router and TSV 
allocation and placement. In the initial steps we transform the core 
dependency graph CDG(V,E) into an enhanced core dependency 
graph ECDG(V,E’) by updating the edge weights with a relative inter-
core distance term to enable a more accurate estimation of flow 
criticality (Steps 2-3). Then we transform ECDG(V,E’) into an 
enhanced scaled core dependency graph ESCDG(V,E”) by scaling the 
inter-layer links that need to traverse TSVs by a factor of ω*|layeri - 
layerj| (Step 4). This scaling is done so that the subsequent min-cut 
partitioning step does not lead to cores in different layers that do not 
have any flows between layers being assigned to the same partition, 
which can lead to an excessive number of inter-layer TSVs. Fig. 2 
shows an example of how a CDG is transformed into an ECDG and 
then into an ESCDG (with ω=4). Note how the criticality of the links 
changes when going from a CDG to an ECDG due to the addition of 
more accurate inter-core wirelength information available after the 
core layout phase from Section IV.C. 
 

Algorithm 1: Router and TSV Pad Allocation and Placement 
1:    // Generate ESCDG(V,E”) from CDG(V,E) 
2:    for each eij # E do 
3:        w(eij) = w(eij)*l(eij)/max(l) 
4:        if layeri ≠ layerj then w(eij) = w(eij)/(ω*|layeri - layerj|) 
5:    end for 
6:    // Create min-cut partitions 
7:    for t = 1 to |V| do 
8:         using Kerninghan-Lin min-cut heuristic, create t partitions in ESCDG 
            to create solution instance st, with δ’ TSVs 
9:        while δ’ > δ do 
10:           select eij with layeri ≠ layerj and min w(eij)  
11:           serialize TSV(eij) by degree k 
12:           w(eij) = w(eij)*k 
13:           δ’ = δ’- (k-1)/k*link_width 
14:       end while 
15:       if δ’ ≤ δ then FP_check_store() 
16:  end for 
 

 

Next, a wide spectrum of router counts from 1 to the number of 
cores in the application (|V|) is swept (Steps 7-16). The routers are 
assumed to be wormhole switched with a predictive-forwarding 
enabled four-stage pipeline [22], and a parameterizable number of 
ports. In each iteration, t min-cut partitions are created using the 
Kerninghan-Lin algorithm (Step 8). The cores in each partition share 
the same router. If there exist multiple inter-partition edges between 
two partitions I and J, these are merged into a single edge eIJ with 
weight w(eIJ) = ∑w(eij), ∀ eij, where i and j are cores such that i # I 
and j # J. The idea behind the partitioning step is to ensure a minimal  
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Figure 3. TSV serialization example 

number of hops for communication flows that are more critical. Cores 
within a partition can reach each other within a single router hop. 

If the total number of TSVs (δ’) in the generated solution instance 
(st) is greater than the TSV density threshold (δ), we explore using 
serialization of TSVs to reduce the number of TSVs. Fig. 3 shows 
how TSV serialization can be beneficial during the synthesis process. 
Suppose the maximum number of TSVs is limited to 3*32=96 per 
layer (i.e., 3 links that are 32 bits wide each). Then the scenario 
shown in Fig. 3 is an invalid solution as it has 4*32=128 TSVs 
between layers. To get a valid solution, the number of TSVs must be 
reduced to 96. One way to do this is by merging and replacing the 
closest TSVs (A and B) with a single TSV (C). However, doing so can 
end up increasing wiring costs as shown in the figure, where solid 
links to TSV locations A and B from cores are now replaced by longer 
(dotted) links to TSV location C in both layers. This can dramatically 
increase the number of repeaters, pipeline buffers, and consequently 
increase power dissipation and delay. To avoid such a scenario, if 
serialization of degree 2 is employed at locations A and B, the TSV 
links are reduced to half at each location. The inter layer TSV 
threshold is thus satisfied without requiring TSVs at locations A and 
B to be replaced by a TSV at a location C. In this manner, 
serialization can prevent unnecessary routing congestion and reduce 
power dissipation in the 3D network. 

The serialization process in our algorithm starts by selecting the 
TSV with the least communication cost (Step 10) and serializes it by a 
degree k (Step 11). We set k=2 in our approach, but higher degrees 
can also be considered. Next the communication cost of the edge with 
the serialized link is increased by the factor k (Step 12), and the 
number of TSV links in si is reduced by (k-1)/k*link_width which is 
the number of TSVs reduced due to serialization (Step 13). The 
serialization process continues (Steps 9-14) till the TSV threshold 
constraint is no longer violated. Finally, if δ’ ≤ δ either after 
serialization or as generated in Step 8, we invoke our GA floorplanner 
with FP_check_store() to perform router and TSV pad placement 
(Step 15). The floorplanner keeps the relative locations of cores fixed 
and performs a placement of the routers and TSV pads (with area 
overhead added for any serialization circuitry used) while optimizing 
the GA objective function as described in the previous section. The 
output layout is checked to ensure no latency constraint is violated by 
calculating the number of cycles to traverse pipelined wires and 
routers for each flow. If latency violations are detected, the 
floorplanning phase is repeated after increasing weights on violated 
edges. If a valid solution is obtained after the phase, it is stored, 
otherwise it is discarded. The final output of this phase is a set of m 
valid solutions S = {s1, s2, …, sm} that meet all latency and bandwidth 
constraints of the application. 

E.   NI Allocation 
The next phase is to determine the location of the network interface 

(NI) component for each core. The NI is the bridge between the core 
and the network, and is generally located at the core boundary. 
Depending on the core internals, pin layout, and core orientation, 
there can be some flexibility during NI allocation. For every core vi, 
we define a set Pi = {p1, p2, …, pn} that provides valid locations for NI 

location at the core periphery. For instance, Fig. 4 shows three 
possible NI locations for core9. The location of a core’s NI can have a 
significant impact on inter-core wire length and routing, and 
consequently communication delay and power dissipation. In Fig.4, 
suppose core1 has a communication flow to core3. If NI location A is 
chosen for core1, the wirelength and cost will be much higher than if 
location B had been selected. The pitfalls of inefficient NI placement 
are exacerbated for 3D ICs. For instance, for a communication flow 
between core4 and core6, and TSV location as shown in Fig. 4, if NI 
locations D and E are fixed in the two layers because of their 
proximity (i.e., small Manhattan distance), it may lead to an excessive 
wirelength than if locations F and G were chosen that have a higher 
Manhattan distance of separation. The anomaly exists due to the 
limited number and location of TSVs in 3D-ICs. This is the 
motivation for considering NI placement after the TSV and router 
allocation phase in the MORPHEUS framework.  

To determine NI locations for all cores, we make use of a greedy 
shortest path heuristic for each solution in the valid solution set S. For 
a given valid solution, first a topological sort in non-ascending order 
is performed for all the cores based on aggregate incident 
communication costs ∑w(eij) on each core. This allows us to ascertain 
the relative criticality of the cores. Next, we select the core vi at the 
top of the sorted list, select an NI location from Pi, calculate minimum 
cost paths to each core after floorplanning, and sum up the costs to 
obtain a single fitness cost for the NI location. The process is repeated 
for all possible NI locations in Pi. The NI location with the lowest 
fitness cost is selected and fixed for core vi. The corresponding NIs at 
the destination cores that are part of the minimum cost paths from the 
selected source NI location are also fixed. The process is repeated by 
selecting the next core in the sorted list with an unselected NI 
location, or if its NI location has been previously fixed but at least one 
of its destination NIs remains unselected. The output after this process 
is a layout with fixed NI locations for every core. 
 

 
 

Figure 4. Network interface placement issues 

F.   Deadlock Free Route Generation 
Finally, after the core, router, TSV, and NI locations have been 

fixed in the 3D-IC for each valid solution, it is important to check for 
possible deadlock conditions. To analyze deadlocks, we create a flow 
dependency graph and check for possible cycles. To avoid possible 
deadlock conditions, we make use of the rich body of literature in the 
area of deadlock avoidance in interconnection networks [16][18] and 
make use of escape virtual channels in the routers as a means to break 
deadlocks, wherever our analysis indicates a need. 

V. EXPERIMENTS 
To validate our proposed MORPHEUS synthesis framework, we 

used it to synthesize different CMP applications on a 3D IC. Six 
applications from the well-known SPLASH-2 benchmark suite 
(Barnes, Water-NSq, FFT, Cholesky, Ocean, Raytrace) [37] were 
selected, then parallelized, and mapped onto multiple irregular sized 
cores. These CMP applications were used as inputs to our synthesis 
approach. Table I summarizes the details of the CMP applications, 
such as number of cores (including processors and on-chip 
memories), and the number of layers on which the cores are to be 
mapped in the 3D IC implementation.  
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TABLE I. CMP Applications 

CMP 
applications 

Description Cores Layers 

Barnes Galaxy evolution 32 2 
Water-NSq Forces/potentials of H2O molecules 38 2 

FFT FFT kernel 44 2 
Cholesky Cholesky factorization kernel 76 4 

Ocean Ocean movements 88 4 
Raytrace 3-D ray tracing 112 4 

 

The maximum TSV threshold (δ) between adjacent layers was 
fixed at 1024 (i.e., 32 32-bit links) and the maximum die area 
constraint was kept at 16mm×16mm. A pad size of 5μm×5μm was 
assumed for each TSV. We made use of an in-house SystemC-based 
3D NoC simulator to simulate and generate performance and power 
results. Power estimation modules were integrated into the simulator 
from a modified version of Orion 2.0 [38] and CACTII [39]. Long 
links were pipelined to maintain high operating frequency operation. 
The latency and power impact of pipelining was considered in our 
final results. We targeted our results for the 45nm technology library, 
and the NoC was clocked at 1 GHz. For the GA floorplanner, we set 
the population size to 100, crossover and mutation probabilities to 0.9 
and 0.01 respectively, and maximum generation to 100,000 based on 
our experience and guidelines from extensive simulations in [23]. 

 
(a) 

 
(b) 

Figure 5. Application-specific 2D vs. 3D NoC comparison (a) average power 
dissipation, (b) energy and average latency 

Our first experiment compares the results generated by the 
MORPHEUS framework for an application-specific 3D NoC, with an 
application-specific 2D NoC. The 2D NoC was synthesized using a 
subset of techniques in MORPHEUS that are relevant to 2D NoCs, to 
ensure a fair comparison. Fig. 5(a) shows the percentage improvement 
in power dissipation for the most power efficient application-specific 
3D NoC solution, over the most power efficient application-specific 
2D NoC solution, for each CMP application. In general, 3D-ICs 
replace long interconnects with much shorter TSVs, resulting in a 
significant reduction in wiring, and consequently link power 
dissipation. The routers however become more complicated, due to 
additional ports for vertical transfers and the overhead of 
serialization/de-serialization circuitry. Overall there is as much as a 
2.3× reduction in average power dissipation for the generated 
application-specific 3D NoCs compared to their 2D counterparts. 
While a reduction in average power can improve reliability and 
reduce cooling costs (particularly relevant for 3D ICs that have high 
power densities due to active layer stacking), energy consumption is 
also an important metric relevant especially for battery-driven 

devices. Fig. 5(b) shows the percentage improvement in total energy 
consumption and average latency for the synthesized application-
specific 3D NoC solutions over the synthesized application-specific 
2D NoC solutions. The average latency goes down slightly as high 
latency long interconnects are replaced by much shorter and low 
latency TSVs. The overall energy consumption also decreases by as 
much as 2.4× for the application-specific 3D NoC solutions, 
compared to the application-specific 2D NoC solutions. Finally, peak 
temperature estimates were found to be higher by 5.9%-13.3% for the 
3D-IC implementations compared to the 2D-IC implementations, 
underscoring the need for additional thermal-aware design techniques 
such as throttling, adaptive voltage/frequency scaling in 3D-ICs.  
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Figure 6. Impact of varying TSV threshold in MORPHEUS (a) power 
dissipation, (b) average latency 

The next set of experiments show the impact of changing the TSV 
threshold (δ) on the power and average latency of the application-
specific 3D NoC solutions generated by MORPHEUS. The solutions 
considered are the most power efficient ones from the set of 
synthesized solutions for each TSV threshold value. Fig. 6(a) shows 
the percentage power improvement for the synthesized application-
specific 3D NoC over the synthesized 2D application-specific NoC 
baseline. It can be seen that for applications with fewer cores, the 
power dissipation reduces rapidly initially as the allowed number of 
TSVs is increased, but the improvements begin to saturate because of 
relatively few inter-layer communication flows that can take 
advantage of the increased number of allowed TSVs. For applications 
with larger numbers of cores and additional layers, the inter-layer 
communication demand is higher in general, leading to greater 
reduction in link power dissipation as the allowed number of TSVs is 
increased. However, the increased power dissipation in routers 
negates some of the benefits of lower link power dissipation. Fig 6(b) 
shows the percentage average latency improvement for the 
synthesized application-specific 3D NoC over the synthesized 
application-specific 2D NoC baseline. For almost all applications, the 
latency improvement saturates after a point. Except for FFT, the 
average latency is reduced for all the applications by as much as 19%. 
For FFT, the increase in complexity and greater traffic loading in the 
3D-enabled routers translates into lesser opportunities for predictive 
forwarding in the router, and thus the latency increases slightly. 

The final set of experiments compare the solutions generated by 
MORPHEUS with and without serialization, and with the solutions 
obtained from a previously proposed framework for synthesizing 
application-specific 3D NoCs [30]. Even though [30] does not address 
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core layout, to ensure a fair comparison we use the same core layout 
for [30] as generated by MORPHEUS for our solutions. In this 
manner, we specifically compare the algorithmic effectiveness of the 
two approaches independent of the initial core layout step. For the 
comparison, we again select the most power efficient solution 
generated by the approach outlined in [30] and by MORPHEUS for 
the given applications. Fig 7(a) shows the percentage improvement in 
power dissipation, while Fig 7(b) shows the improvement in average 
latency for the solutions generated by MORPHEUS compared to the 
solutions generated by [30]. While applications with fewer cores 
(Barnes, Water-NSq) do not particularly benefit from serialization, 
other larger applications can be seen to clearly gain from using the 
TSV serialization technique. The improvements over [30] come from 
better NI allocation, serialization, and better allocation for routers and 
TSVs in the 3D IC. Overall our results indicate an up to 98% 
improvement in power dissipation and up to 62% improvement in 
average latency for the MORPHEUS framework, compared to [30]. 
These results highlight the effectiveness of the automated 
MORPHEUS application-specific 3D NoC synthesis framework for 
emerging CMP designs that utilize 3D-IC technology. 
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Figure 7. Comparing MORPHEUS vs. MORPHEUS without serialization vs. 
[30] (a) power dissipation, (b) average latency 

VI. CONCLUSION 
On-chip communication architectures are significant factors in 

determining performance and power dissipation for emerging CMP 
applications. However, designing an on-chip interconnect fabric 
especially for 3D ICs is a major challenge due its much larger design 
space compared to 2D ICs. In this paper, we proposed a framework 
(MORPHEUS) for the automated synthesis of application-specific 3D 
NoCs. MORPHEUS combines techniques for thermal-aware core 
layout, TSV serialization, allocation of routers, NIs, and TSVs, and 
deadlock-free path generation with the goal of generating low power 
solutions that satisfy all application performance constraints. The 
effectiveness of this framework can be seen from the notable power 
and latency improvements obtained over application-specific 2D 
NoCs, as well as solutions generated by heuristics from previously 
proposed work in the area of application-specific 3D NoC synthesis. 
Our future work will explore incorporating the reliability metric 
during 3D NoC synthesis within MORPHEUS. 
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