
A Framework for TSV Serialization-aware Synthesis of Application Specific 3D
Networks-on-Chip

Sudeep Pasricha
Colorado State University, Fort Collins, CO, USA

sudeep@colostate.edu

Abstract – With increasing performance-per-watt implementation
requirements for emerging applications and barriers in interconnect
scaling for ultra-deep submicron (UDSM) technologies, traditional 2D
integrated circuits (2D-ICs) are being pushed to their limit. Three
dimensional integrated circuits (3D-ICs) have recently emerged as a
promising solution that can overcome many of the performance, area, and
power concerns in 2D-ICs. In this paper we propose a novel framework
(MORPHEUS) for the synthesis of application-specific 3D networks on
chip (NoCs). The goal is to generate 3D NoCs that meet application
performance constraints while minimizing power dissipation.
MORPHEUS incorporates thermal-aware core layout, 3D topology and
route generation, and placement of network interfaces (NIs), routers, and
serialized vertical through silicon vias (TSVs). Experimental studies on
several chip multiprocessor (CMP) applications indicate that our
generated solutions notably reduce power dissipation (up to 2.3×) and
average latency (up to 1.2×) over 2D NoCs. Comparisons with a previous
work on application-specific 3D NoC synthesis also show improvements
in power dissipation (up to 1.9×) and average latency (up to 1.6×).

I. INTRODUCTION
The rise in application complexity in recent years together with the

need for power efficiency in computing systems has led to more and
more cores being integrated on a single chip. Such chip
multiprocessors (CMPs) have demonstrated superior performance-
per-watt than their uniprocessor counterparts. If the trend of
integrating greater number of cores on a chip is to continue in the
coming years, two major challenges need to be overcome. Firstly, the
ongoing reduction in lithographic features is becoming increasingly
more expensive. As a result, there is a practical limitation on the
number of cores that can be integrated viably on the single active
layer available to CMPs today. Secondly, with rising core counts, the
amount of wires on chip has been steadily rising. Due to effects such
as parasitic resistivity, crosstalk, and electromigration interference in
UDSM nodes, long global interconnects have become a major delay
and power bottleneck [1]. According to the ITRS [2], focus on new
technologies and methodologies and not further reduction in feature
size is the key to further performance-per-watt enhancements.

Of the several different disruptive technologies that are being
investigated today, 3D integrated circuits (3D-ICs) with wafer-to-
wafer bonding technology is one of the most promising candidates
that can achieve power, performance, cost, and area demands of
emerging applications in the coming years [3]-[6]. In wafer-to-wafer
bonded 3D-ICs, active devices (processors, memories) are placed on
multiple layers and vertical Through Silicon Vias (TSVs) are used to
connect components across the stacked layers. Multiple active layers
in 3D-ICs can enable increased integration of cores within the same
area footprint as traditional single layer 2D-ICs. In addition, long
global interconnects between cores can be replaced by much shorter
inter-layer TSVs, improving performance and reducing on-chip power
dissipation. Recent 3D-IC test chips from IBM [3][4] and Tezzaron
[5] have confirmed the benefits of 3D integration technology.

With the advent of many-core CMPs in recent years, the on-chip
communication fabric has been evolving to cope with increased
bandwidth and reliability requirements. Traditionally used bus based
architectures have given way to packet switched network on chips
(NoCs) that offer higher bandwidth, reliability, and scalability in
UDSM technologies. With the introduction of 3D-ICs, it is expected

that NoC fabrics will be extended into the third dimension. Recent
research has begun exploring various 3D NoC topologies [7]-[9] and
shown significant performance improvements for these topologies
over 2D NoCs. However, the design of such 3D NoC fabrics
customized for specific applications has received very little attention
to date. Even though a significant body of work exists for the
synthesis of 2D bus-based [10]-[12] and 2D NoC [13]-[18]
communication architectures, the techniques are not directly
applicable for 3D NoC synthesis because of the peculiar challenges of
3D IC design. For instance, vertical TSVs have a larger pitch
(5μm×5μm or more) that takes up space in the active layers and has at
least an order of magnitude greater footprint than regular vias in the
metal layers. These TSV interconnects are therefore expected to be
limited in number. This heterogeneity and limited density of TSVs
needs to be considered while synthesizing and optimizing 3D NoCs.
Additionally, cores and routers can be placed on one of the many
layers available, which dramatically increases design space
complexity in 3D NoC based communication architectures.

In this paper, we propose a novel framework (MORPHEUS) for the
application-specific synthesis of 3D NoCs, optimized for low power
dissipation. MORPHEUS automates the process of thermal-aware
core layout, 3D topology and route generation, and placement of
network interfaces (NIs), routers, and serialized vertical TSVs.
Experimental studies on several CMP applications indicate that our
generated solutions notably reduce power dissipation (up to 2.3×) and
average latency (up to 1.2×) over 2D NoCs. Compared to solutions
generated by a previous work on application-specific 3D NoC
synthesis, MORPHEUS generates solutions with lower power
dissipation (up to 1.9×) and lower average latency (up to 1.6×).

II. RELATED WORK
Over the last several years, there has been a growing interest in 3D

ICs as a means to alleviate the interconnect bottleneck problem
currently facing 2D-ICs. A key challenge with 3D-ICs is its high
thermal density due to multiple cores being stacked together, that can
adversely impact chip performance and reliability. Therefore several
researchers have proposed thermal-aware floorplanning techniques
for 3D-ICs [19]-[21]. A few researchers have explored interconnect
architectures for 3D-ICs such as 3D mesh and stacked mesh
topologies [7] and a hybrid bus-NoC topology [8]. Some recent work
has looked at decomposing cores (processors [24][25], NoC routers
[26], and on-chip cache [27]) into the third dimension which allows
reducing wire latency at the intra-core level, as opposed to the inter-
core level. Circuit level models for TSVs were presented in [9].

The problem of custom interconnect architecture synthesis for 2D-
ICs has received a lot of attention in the past, for point-to-point and
bus based architectures [10]-[12] and NoC topologies [13]-[18]. Only
recently have approaches been proposed for the synthesis of custom
NoCs for 3D-ICs [28]-[32]. An ILP based synthesis technique for a
3D network with low-radix routers is proposed in [28]. However, the
generated solution has many long links and the scalability of the
approach is not clear. A methodology for application-specific
topology synthesis and route computation for 3D-ICs that performs
localized synthesis optimizations for every layer is proposed in [29],
based on the author’s previous work on 2D NoC synthesis. The 3D
NoC synthesis approach in [30] extends [29] by additionally

2012 25th International Conference on VLSI Design

1063-9667/12 $26.00 © 2012 IEEE

DOI 10.1109/VLSID.2012.82

268

determining switches placement and iteratively adding TSV links
during synthesis. A technique for application-specific 3D NoC
synthesis based on a low-level greedy rip-up and reroute procedure
for determining routes is proposed in [31]. Every core is initially
allocated a router that is later merged using a greedy heuristic.
However, the method used for router and TSV allocation in layers is
not clearly specified. A multi-commodity flow formulation is used in
[32] to solve a similar problem, but with analytical (e.g., queuing)
models of the NoC and high level abstractions of applications, which
may reduce the overall accuracy of the solution.

Unlike existing approaches, our application-specific 3D NoC
synthesis framework (MORPHEUS) enables a more comprehensive
exploration of the design space by additionally integrating TSV
serialization, NI placement, and thermal-aware core placement,
together with layout-aware partitioning and allocation of routers and
TSVs, to optimize power while meeting performance constraints.

III. 3D INTEGRATED CIRCUITS
Before presenting details of the MORPHEUS synthesis flow for 3D

NoCs, we briefly discuss two relevant issues that are important to
consider when designing application-specific NoCs for 3D ICs.

A major concern in the adoption of 3D ICs is the increased power
densities that can result from placing a core on top of another core. As
high peak temperatures due to increasing power densities can cause
catastrophic IC failure and this is already a major ckoncern in 2D
architectures, the move to 3D will accentuate the thermal problem.
The problem of thermal-aware 3D core layout is thus tightly coupled
with the problem of 3D NoC synthesis, and cannot be ignored as in
some previous 3D NoC synthesis approaches [28]-[31]. Another
critical restriction that severely constrains the design space in 3D-ICs
and must be considered during synthesis is the limitation on the
number of TSVs between layers. This limitation is due to the high
area overhead of TSV pads that are required to interface with TSVs in
each active layer. It is clear today that TSV fabrication technology
lacks maturity and has low yield due to unsuccessful wafer alignment
prior to and during the wafer bonding process. This is expected to
remain a major challenge in the years to come. A simple and effective
way to improve yield is to add hardware redundancy by using larger
(e.g., double area) TSV pads. As misalignments are caused by the
unavoidable shift of bonding pads with respect to their nominal
position, using larger square pads can improve misalignment
tolerance by an order of magnitude [6]. However, the large pads can
complicate routing in active layers. This motivates the need for some
form of serialization of TSVs to reduce TSV pad footprint in active
layers. In [33], it was shown that TSV serialization can reduce TSV
pad area overhead in active layers by as much as 70% at a negligible
performance and power overhead. This motivates utilizing TSV
serialization in our application specific 3D NoC synthesis framework.

IV. MORPHEUS SYNTHESIS FRAMEWORK
A. Inputs and Problem Description

We assume that we are given a set of computational and memory
cores onto which application tasks have already been mapped, after a
hardware-software partitioning phase. The cores are arranged in a
core dependency graph (CDG) which is one of the inputs to our
framework. The CDG is an annotated directed graph G(V, E) where
each node vi ∈ V corresponds to a core, directed edge eij ∈ E is a
communication flow from vi to vj, and edge weight w(eij) is given by:

����� � = 	 ∗ ����� � + (1 −) ∗ �(���)

where μ(eij) and ρ(eij) are the latency and bandwidth constraints
respectively for eij, and σ is a designer-specified parameter based on
application characteristics. Each core vi is a rectangular shaped hard
macro that has a fixed width (Wi) and height (Hi) associated with it,
and the layer to which it is mapped in the 3D IC is specified by layeri.

The number of layers (ζ) in the 3D IC on which the application is to
be implemented and the maximum die dimensions (Wdie×Hdie) are
also specified as inputs to our framework. As the TSV density is
limited due to practical implementation concerns, we assume a
maximum TSV density threshold between adjacent layers (δ) as a
designer-specified input that depends on the chosen 3D-IC
implementation technology. The core to layer assignment V → ζ is
assumed as an input from the designer, and is usually based on
temperature or power density concerns. For instance, a designer may
choose to interleave high power density computational cores with
cooler layers comprising of low power density memory cores. NoC
architecture parameters (e.g., operating voltage, clock frequency, link
width) can either be specified by the designer, or varied in steps in a
user-defined range, with our framework being invoked at each step.
Finally, the technology library node (e.g., 65nm, 45nm) is an input
that enables accurate delay and power estimation in the framework.

Problem Definition: Given an application CDG with bandwidth and
latency constraints, a core to layer (V→ζ) mapping, number of 3D IC
layers (ζ), TSV density threshold (δ), maximum die dimensions (Wdie×
Hdie), NoC architecture parameters, and a target technology node, the
goal of the MORPHEUS framework is to synthesize an application-
specific 3D NoC topology with a layout for all cores, NIs, TSVs,
routers, and links that satisfies all performance (bandwidth, latency)
constraints in the application while minimizing NoC power.

Figure 1. MORPHEUS 3D NoC synthesis framework

B. MORPHEUS Synthesis Flow Overview

Fig. 1 gives a high level overview of the MORPHEUS application-
specific 3D NoC synthesis framework. In the first phase, a thermal-
aware core layout using a 3D floorplanner is performed to place the
cores assigned in each layer in a manner that minimizes peak
temperature, wirelength, and chip area. The output of this step is a
complete layout of the cores in every layer in the 3D-IC. In the next
phase, the placement of NoC routers and TSV pads on the active
layers is determined. A partitioning-based heuristic is used in this
phase to explore the design space for a spectrum of router and TSV
densities, while preserving the TSV density threshold (δ) constraint,
in part by utilizing serialization. Next the NI placement for each core
is determined to minimize critical path lengths. Finally, deadlock free
routes are determined between cores. The output of the framework is
a Pareto set of valid solutions (satisfying all performance constraints)
that trade-off power with performance slack. The following
subsections describe the various phases in the flow in more detail.

C. Thermal-aware Core Layout
Given a core to layer mapping, the MORPHEUS framework

performs 3D floorplanning in the first phase to obtain a placement of
cores in each layer. This core layout is often influenced by non-
network-based interconnections (e.g., off-chip interface pin
locations), and is an important step as it can have a significant impact
on the quality of the synthesized NoC architecture. As stacked 3D-ICs
can have significant reliability and performance issues due to higher

269

power density and peak temperatures than their 2D-IC counterparts, it
becomes essential to perform core placement with thermal-awareness.
Communication bandwidth and latency constraints must also be
satisfied, by minimizing wirelength. In addition, overall chip area
should also be minimized.

To solve this multi-objective core layout problem, we make use of
a genetic algorithm (GA) based approach. A genetic algorithm is an
iterative exploration algorithm that is based on a computational
analogy with biological adaptive systems. The algorithm starts with
an initial random pool of solutions (each represented by a
chromosome) that are evaluated at each iteration (generation) by a
fitness score obtained from an objective cost function. A new
generation is created by first increasing the population by generating
new individual solutions, and then selecting a constant number of
solutions based on their fitness criteria. Genetic operators such as
crossover and mutation are used to create an evolution of the
solutions at every iteration. The best solution is finally selected after a
specified number of generations. A detailed discussion of genetic
algorithms can be found in [34]. In our GA formulation, we encode
the location and orientation of each core in the chromosome using a
sequence-pair representation [35]. The GA objective function is
aimed at a hybrid optimization of thermal, communication, and area
costs. The thermal cost is represented by the peak temperature (Tpeak)
of the design, and the area cost (Acost) is given by the chip area. The
communication cost (Ccost) is a hybrid formulation that combines
bandwidth and latency constraints as follows:

���� = 	 ∗ � ����� � ∗ ����� �
max(�) ∗ max(�)

∀ ���

+ (1 −) ∗ � min(�) ∗ ������
������ ∗ max(�)∀ ���

where l(eij) is the wirelength between cores vi and vj, max(l) is the
maximum wirelength between two cores with a communication flow,
max(ρ) and min(μ) are the maximum bandwidth, and minimum
latency constraints among all flows, and σ is a weight parameter set
by a designer based on application characteristics. Then the objective
function for our GA formulation is given as:

������� ,
����, ������ = ��
log (�����) + �!

log (
����) + �"
log (�����)

where a1, a2, and a3 are weighting parameters used to guide the
optimization. The logarithmic values provide a more descriptive range
and characterization for input variations. For any potential layout
solution, Ccost can be calculated based on HPWL (half perimeter wire
length) distances and μ/ρ constraints for each communication flow.
The chip area Acost can also be determined after a layout of every core
is obtained. To obtain Tpeak estimates, we make use of a 3D adaptation
of Hotspot [36] which is a well-known tool for temperature estimation
in 2D-ICs. Based on the average power dissipation of each core
(known for every core based on technology library used and
application characteristics), physical dimensions, and location of a
core in the 3D-IC, Hotspot returns temperature estimates for the chip.

To accommodate placement of smaller components such as routers,
NIs, and TSV pads in subsequent phases of the synthesis flow, we
increase core dimensions by a small margin φ before core layout.
After layout, a compaction step is performed to reduce core
dimensions and create whitespace for inserting routers, NIs, and TSV
pads later. φ is set to 5% in our framework, although higher values
can also be used to ease wiring congestion. After the layout phase,
each core vi has a placement P(vi) = (xi, yi, zi) with (xi, yi) referring to
the bottom left coordinates of the core in a layer and zi referring to the
layer to which the core is mapped. Together with the core width and
height, a unique placement is obtained for every core in the 3D-IC.
Once such a layout is available, MORPHEUS can more accurately
determine inter-core wiring delays and power dissipation.

 (a) (b) (c)

Figure 2. (a) CDG, (b) ECDG, (c) ESCDG

D. Router and TSV Pad Placement
In the next phase, we determine the number and location of routers

and TSVs in the synthesized solutions. Our procedure for router
synthesis extends the technique proposed in [30] for switch synthesis
in 3D NoCs by adding support for serialization and using layout
awareness to obtain lower average power and latency
implementations. We make use of a min-cut partitioning approach to
determine the optimal number of routers in the implementation.

Algorithm 1 describes the steps in this phase for router and TSV
allocation and placement. In the initial steps we transform the core
dependency graph CDG(V,E) into an enhanced core dependency
graph ECDG(V,E’) by updating the edge weights with a relative inter-
core distance term to enable a more accurate estimation of flow
criticality (Steps 2-3). Then we transform ECDG(V,E’) into an
enhanced scaled core dependency graph ESCDG(V,E”) by scaling the
inter-layer links that need to traverse TSVs by a factor of ω*|layeri -
layerj| (Step 4). This scaling is done so that the subsequent min-cut
partitioning step does not lead to cores in different layers that do not
have any flows between layers being assigned to the same partition,
which can lead to an excessive number of inter-layer TSVs. Fig. 2
shows an example of how a CDG is transformed into an ECDG and
then into an ESCDG (with ω=4). Note how the criticality of the links
changes when going from a CDG to an ECDG due to the addition of
more accurate inter-core wirelength information available after the
core layout phase from Section IV.C.

Algorithm 1: Router and TSV Pad Allocation and Placement
1: // Generate ESCDG(V,E”) from CDG(V,E)
2: for each eij # E do
3: w(eij) = w(eij)*l(eij)/max(l)
4: if layeri ≠ layerj then w(eij) = w(eij)/(ω*|layeri - layerj|)
5: end for
6: // Create min-cut partitions
7: for t = 1 to |V| do
8: using Kerninghan-Lin min-cut heuristic, create t partitions in ESCDG
 to create solution instance st, with δ’ TSVs
9: while δ’ > δ do
10: select eij with layeri ≠ layerj and min w(eij)
11: serialize TSV(eij) by degree k
12: w(eij) = w(eij)*k
13: δ’ = δ’- (k-1)/k*link_width
14: end while
15: if δ’ ≤ δ then FP_check_store()
16: end for

Next, a wide spectrum of router counts from 1 to the number of
cores in the application (|V|) is swept (Steps 7-16). The routers are
assumed to be wormhole switched with a predictive-forwarding
enabled four-stage pipeline [22], and a parameterizable number of
ports. In each iteration, t min-cut partitions are created using the
Kerninghan-Lin algorithm (Step 8). The cores in each partition share
the same router. If there exist multiple inter-partition edges between
two partitions I and J, these are merged into a single edge eIJ with
weight w(eIJ) = ∑w(eij), ∀ eij, where i and j are cores such that i # I
and j # J. The idea behind the partitioning step is to ensure a minimal

270

Figure 3. TSV serialization example

number of hops for communication flows that are more critical. Cores
within a partition can reach each other within a single router hop.

If the total number of TSVs (δ’) in the generated solution instance
(st) is greater than the TSV density threshold (δ), we explore using
serialization of TSVs to reduce the number of TSVs. Fig. 3 shows
how TSV serialization can be beneficial during the synthesis process.
Suppose the maximum number of TSVs is limited to 3*32=96 per
layer (i.e., 3 links that are 32 bits wide each). Then the scenario
shown in Fig. 3 is an invalid solution as it has 4*32=128 TSVs
between layers. To get a valid solution, the number of TSVs must be
reduced to 96. One way to do this is by merging and replacing the
closest TSVs (A and B) with a single TSV (C). However, doing so can
end up increasing wiring costs as shown in the figure, where solid
links to TSV locations A and B from cores are now replaced by longer
(dotted) links to TSV location C in both layers. This can dramatically
increase the number of repeaters, pipeline buffers, and consequently
increase power dissipation and delay. To avoid such a scenario, if
serialization of degree 2 is employed at locations A and B, the TSV
links are reduced to half at each location. The inter layer TSV
threshold is thus satisfied without requiring TSVs at locations A and
B to be replaced by a TSV at a location C. In this manner,
serialization can prevent unnecessary routing congestion and reduce
power dissipation in the 3D network.

The serialization process in our algorithm starts by selecting the
TSV with the least communication cost (Step 10) and serializes it by a
degree k (Step 11). We set k=2 in our approach, but higher degrees
can also be considered. Next the communication cost of the edge with
the serialized link is increased by the factor k (Step 12), and the
number of TSV links in si is reduced by (k-1)/k*link_width which is
the number of TSVs reduced due to serialization (Step 13). The
serialization process continues (Steps 9-14) till the TSV threshold
constraint is no longer violated. Finally, if δ’ ≤ δ either after
serialization or as generated in Step 8, we invoke our GA floorplanner
with FP_check_store() to perform router and TSV pad placement
(Step 15). The floorplanner keeps the relative locations of cores fixed
and performs a placement of the routers and TSV pads (with area
overhead added for any serialization circuitry used) while optimizing
the GA objective function as described in the previous section. The
output layout is checked to ensure no latency constraint is violated by
calculating the number of cycles to traverse pipelined wires and
routers for each flow. If latency violations are detected, the
floorplanning phase is repeated after increasing weights on violated
edges. If a valid solution is obtained after the phase, it is stored,
otherwise it is discarded. The final output of this phase is a set of m
valid solutions S = {s1, s2, …, sm} that meet all latency and bandwidth
constraints of the application.

E. NI Allocation
The next phase is to determine the location of the network interface

(NI) component for each core. The NI is the bridge between the core
and the network, and is generally located at the core boundary.
Depending on the core internals, pin layout, and core orientation,
there can be some flexibility during NI allocation. For every core vi,
we define a set Pi = {p1, p2, …, pn} that provides valid locations for NI

location at the core periphery. For instance, Fig. 4 shows three
possible NI locations for core9. The location of a core’s NI can have a
significant impact on inter-core wire length and routing, and
consequently communication delay and power dissipation. In Fig.4,
suppose core1 has a communication flow to core3. If NI location A is
chosen for core1, the wirelength and cost will be much higher than if
location B had been selected. The pitfalls of inefficient NI placement
are exacerbated for 3D ICs. For instance, for a communication flow
between core4 and core6, and TSV location as shown in Fig. 4, if NI
locations D and E are fixed in the two layers because of their
proximity (i.e., small Manhattan distance), it may lead to an excessive
wirelength than if locations F and G were chosen that have a higher
Manhattan distance of separation. The anomaly exists due to the
limited number and location of TSVs in 3D-ICs. This is the
motivation for considering NI placement after the TSV and router
allocation phase in the MORPHEUS framework.

To determine NI locations for all cores, we make use of a greedy
shortest path heuristic for each solution in the valid solution set S. For
a given valid solution, first a topological sort in non-ascending order
is performed for all the cores based on aggregate incident
communication costs ∑w(eij) on each core. This allows us to ascertain
the relative criticality of the cores. Next, we select the core vi at the
top of the sorted list, select an NI location from Pi, calculate minimum
cost paths to each core after floorplanning, and sum up the costs to
obtain a single fitness cost for the NI location. The process is repeated
for all possible NI locations in Pi. The NI location with the lowest
fitness cost is selected and fixed for core vi. The corresponding NIs at
the destination cores that are part of the minimum cost paths from the
selected source NI location are also fixed. The process is repeated by
selecting the next core in the sorted list with an unselected NI
location, or if its NI location has been previously fixed but at least one
of its destination NIs remains unselected. The output after this process
is a layout with fixed NI locations for every core.

Figure 4. Network interface placement issues

F. Deadlock Free Route Generation
Finally, after the core, router, TSV, and NI locations have been

fixed in the 3D-IC for each valid solution, it is important to check for
possible deadlock conditions. To analyze deadlocks, we create a flow
dependency graph and check for possible cycles. To avoid possible
deadlock conditions, we make use of the rich body of literature in the
area of deadlock avoidance in interconnection networks [16][18] and
make use of escape virtual channels in the routers as a means to break
deadlocks, wherever our analysis indicates a need.

V. EXPERIMENTS
To validate our proposed MORPHEUS synthesis framework, we

used it to synthesize different CMP applications on a 3D IC. Six
applications from the well-known SPLASH-2 benchmark suite
(Barnes, Water-NSq, FFT, Cholesky, Ocean, Raytrace) [37] were
selected, then parallelized, and mapped onto multiple irregular sized
cores. These CMP applications were used as inputs to our synthesis
approach. Table I summarizes the details of the CMP applications,
such as number of cores (including processors and on-chip
memories), and the number of layers on which the cores are to be
mapped in the 3D IC implementation.

271

TABLE I. CMP Applications

CMP
applications

Description Cores Layers

Barnes Galaxy evolution 32 2
Water-NSq Forces/potentials of H2O molecules 38 2

FFT FFT kernel 44 2
Cholesky Cholesky factorization kernel 76 4

Ocean Ocean movements 88 4
Raytrace 3-D ray tracing 112 4

The maximum TSV threshold (δ) between adjacent layers was
fixed at 1024 (i.e., 32 32-bit links) and the maximum die area
constraint was kept at 16mm×16mm. A pad size of 5μm×5μm was
assumed for each TSV. We made use of an in-house SystemC-based
3D NoC simulator to simulate and generate performance and power
results. Power estimation modules were integrated into the simulator
from a modified version of Orion 2.0 [38] and CACTII [39]. Long
links were pipelined to maintain high operating frequency operation.
The latency and power impact of pipelining was considered in our
final results. We targeted our results for the 45nm technology library,
and the NoC was clocked at 1 GHz. For the GA floorplanner, we set
the population size to 100, crossover and mutation probabilities to 0.9
and 0.01 respectively, and maximum generation to 100,000 based on
our experience and guidelines from extensive simulations in [23].

(a)

(b)

Figure 5. Application-specific 2D vs. 3D NoC comparison (a) average power
dissipation, (b) energy and average latency

Our first experiment compares the results generated by the
MORPHEUS framework for an application-specific 3D NoC, with an
application-specific 2D NoC. The 2D NoC was synthesized using a
subset of techniques in MORPHEUS that are relevant to 2D NoCs, to
ensure a fair comparison. Fig. 5(a) shows the percentage improvement
in power dissipation for the most power efficient application-specific
3D NoC solution, over the most power efficient application-specific
2D NoC solution, for each CMP application. In general, 3D-ICs
replace long interconnects with much shorter TSVs, resulting in a
significant reduction in wiring, and consequently link power
dissipation. The routers however become more complicated, due to
additional ports for vertical transfers and the overhead of
serialization/de-serialization circuitry. Overall there is as much as a
2.3× reduction in average power dissipation for the generated
application-specific 3D NoCs compared to their 2D counterparts.
While a reduction in average power can improve reliability and
reduce cooling costs (particularly relevant for 3D ICs that have high
power densities due to active layer stacking), energy consumption is
also an important metric relevant especially for battery-driven

devices. Fig. 5(b) shows the percentage improvement in total energy
consumption and average latency for the synthesized application-
specific 3D NoC solutions over the synthesized application-specific
2D NoC solutions. The average latency goes down slightly as high
latency long interconnects are replaced by much shorter and low
latency TSVs. The overall energy consumption also decreases by as
much as 2.4× for the application-specific 3D NoC solutions,
compared to the application-specific 2D NoC solutions. Finally, peak
temperature estimates were found to be higher by 5.9%-13.3% for the
3D-IC implementations compared to the 2D-IC implementations,
underscoring the need for additional thermal-aware design techniques
such as throttling, adaptive voltage/frequency scaling in 3D-ICs.

(a)

(b)

Figure 6. Impact of varying TSV threshold in MORPHEUS (a) power
dissipation, (b) average latency

The next set of experiments show the impact of changing the TSV
threshold (δ) on the power and average latency of the application-
specific 3D NoC solutions generated by MORPHEUS. The solutions
considered are the most power efficient ones from the set of
synthesized solutions for each TSV threshold value. Fig. 6(a) shows
the percentage power improvement for the synthesized application-
specific 3D NoC over the synthesized 2D application-specific NoC
baseline. It can be seen that for applications with fewer cores, the
power dissipation reduces rapidly initially as the allowed number of
TSVs is increased, but the improvements begin to saturate because of
relatively few inter-layer communication flows that can take
advantage of the increased number of allowed TSVs. For applications
with larger numbers of cores and additional layers, the inter-layer
communication demand is higher in general, leading to greater
reduction in link power dissipation as the allowed number of TSVs is
increased. However, the increased power dissipation in routers
negates some of the benefits of lower link power dissipation. Fig 6(b)
shows the percentage average latency improvement for the
synthesized application-specific 3D NoC over the synthesized
application-specific 2D NoC baseline. For almost all applications, the
latency improvement saturates after a point. Except for FFT, the
average latency is reduced for all the applications by as much as 19%.
For FFT, the increase in complexity and greater traffic loading in the
3D-enabled routers translates into lesser opportunities for predictive
forwarding in the router, and thus the latency increases slightly.

The final set of experiments compare the solutions generated by
MORPHEUS with and without serialization, and with the solutions
obtained from a previously proposed framework for synthesizing
application-specific 3D NoCs [30]. Even though [30] does not address

272

core layout, to ensure a fair comparison we use the same core layout
for [30] as generated by MORPHEUS for our solutions. In this
manner, we specifically compare the algorithmic effectiveness of the
two approaches independent of the initial core layout step. For the
comparison, we again select the most power efficient solution
generated by the approach outlined in [30] and by MORPHEUS for
the given applications. Fig 7(a) shows the percentage improvement in
power dissipation, while Fig 7(b) shows the improvement in average
latency for the solutions generated by MORPHEUS compared to the
solutions generated by [30]. While applications with fewer cores
(Barnes, Water-NSq) do not particularly benefit from serialization,
other larger applications can be seen to clearly gain from using the
TSV serialization technique. The improvements over [30] come from
better NI allocation, serialization, and better allocation for routers and
TSVs in the 3D IC. Overall our results indicate an up to 98%
improvement in power dissipation and up to 62% improvement in
average latency for the MORPHEUS framework, compared to [30].
These results highlight the effectiveness of the automated
MORPHEUS application-specific 3D NoC synthesis framework for
emerging CMP designs that utilize 3D-IC technology.

(a)

(b)

Figure 7. Comparing MORPHEUS vs. MORPHEUS without serialization vs.
[30] (a) power dissipation, (b) average latency

VI. CONCLUSION
On-chip communication architectures are significant factors in

determining performance and power dissipation for emerging CMP
applications. However, designing an on-chip interconnect fabric
especially for 3D ICs is a major challenge due its much larger design
space compared to 2D ICs. In this paper, we proposed a framework
(MORPHEUS) for the automated synthesis of application-specific 3D
NoCs. MORPHEUS combines techniques for thermal-aware core
layout, TSV serialization, allocation of routers, NIs, and TSVs, and
deadlock-free path generation with the goal of generating low power
solutions that satisfy all application performance constraints. The
effectiveness of this framework can be seen from the notable power
and latency improvements obtained over application-specific 2D
NoCs, as well as solutions generated by heuristics from previously
proposed work in the area of application-specific 3D NoC synthesis.
Our future work will explore incorporating the reliability metric
during 3D NoC synthesis within MORPHEUS.

REFERENCES
[1] S. Pasricha, and N. Dutt. “On-Chip Communication Architectures”,
Morgan Kauffman, ISBN 978-0-12-373892-9, Apr 2008
[2] International Technology Roadmap for Semiconductors (ITRS), 2007.
[3] A. W. Topol et al., “Three-dimensional integrated circuits,” IBM J. Res. &

Dev. Vol. 50 No. 4/5 Jul/Sep 2006.
[4] K. Bernstein, et al., “Interconnects in the Third Dimension: Design
Challenges for 3D ICs,” Proc. DAC 2007, pp.562-567.
[5] R. S. Patti, “Three-Dimensional Integrated Circuits and the Future of
System-on-Chip Designs”, Proc IEEE, Vol 94, No. 6, Jun 2006.
[6] V. F. Pavlidis, E. G. Friedman, “Three-dimensional Integrated Circuit
Design”, Morgan Kaufmann, Sep 2008.
[7] B. Feero, P.P. Pande, “Performance Evaluation for Three-Dimensional
Networks-On-Chip”, Proc. ISVLSI 2007.
[8] F. Li et al., “Design and Management of 3D Chip Multiprocessors Using
Network-in-Memory”, Proc. ISCA 2006, pp. 130-141.
[9] I. Loi et al., “Supporting vertical links for 3D networks on chip: toward an
automated design and analysis flow”, Proc. NanoNet 2007.
[10] S. Pasricha, et al., "Floorplan-aware Automated Synthesis of Bus-based
Communication Architectures", IEEE/ACM DAC 2005.
[11] J. Hu et al., “System-Level Point-to-Point Communication Synthesis
Using Floorplanning Information”, Proc. ASPDAC 2002.
[12] S. Pasricha, N. Dutt, M. Ben-Romdhane, “Constraint-Driven Bus Matrix
Synthesis for MPSoC”, Proc. ASPDAC 2006.
[13] S. Murali, et al. “Synthesis of Predictable Networks-on-Chip-Based
Interconnect Architectures for Chip Multiprocessors”, IEEE TVLSI 15:8, 2007
[14] A.Pinto et al., “Efficient Synthesis of Networks on Chip”, ICCD 2003, pp.
146-150, Oct 2003.
[15] K. Srinivasan et al., “An Automated Technique for Topology and Route
Generation of Application Specific On-Chip Interconnection Networks”, Proc.
ICCAD 2005.
[16] S. Kwon, S. Pasricha, "POSEIDON: A Framework for Application-
Specific Network-on-Chip Synthesis for Heterogeneous Chip
Multiprocessors", IEEE ISQED 2011
[17] J. Xu et al., “A design methodology for application-specific networks-on-
chip”, ACM TECS, 2006.
[18] S. Murali et al., “Designing Application-Specific Networks on Chips with
Floorplan Information”, pp. 355-362, ICCAD 2006.
[19] Z. Li, et al., “Efficient thermal-oriented 3D floorplanning and thermal via
planning for two-stacked-die integration”, ACM TODAES 11:2, Apr 2006.
[20] C. Addo-Quaye, “Thermal-aware mapping and placement for 3-D NoC
designs,” Proc. IEEE Int. Syst.-on-Chip Conf., 2005, pp. 25–28.
[21] E. Wong, et al. “3D Floorplanning with Thermal Vias” Proc. DATE 2006.
[22] H. Matsutani, “Prediction Router: Yet Another Low Latency On-Chip
Router Architecture”, Proc. HPCA 2009.
[23] J.Schaffer et al., “A study of control parameters affecting online
performance of genetic algorithms for function optimization,” Proc. of
International Conference on Genetic Algorithms, pp.51-60, 1989.
[24] K. Puttaswamy, G.H.Loh, “Thermal Herding: Microarchitecture
Techniques for Controlling Hotspots in High-Performance 3D-Integrated
Processors”, Proc. HPCA 2007, pp. 193-204.
[25] Y. Liu, et al., "Fine Grain 3D Integration for Microarchitecture Design
Through Cube Packing Exploration", Proc. ICCD, 2007.
[26] D. Park et al. “MIRA: A Multi-layered On-Chip Interconnect Router
Architecture”, Proc. ISCA 2008, pp. 251-261.
[27] K. Puttaswamy, G. H. Loh, "Implementing caches in a 3D technology for
high performance processors" Proc. ICCD 2005.
[28] Y. Xu, et al., “A Low-Radix and Low-Diameter 3D Interconnection
Network Design”, Proc. HPCA 2009.
[29] S. Murali, C. Seiculescu, L. Benini, G. De Micheli, “Synthesis of
Networks on Chips for 3D Systems on Chips”, Proc. ASPDAC 2009.
[30] C. Seiculescu, et al., “SunFloor 3D: A Tool for Networks on Chip
Topology Synthesis for 3D Systems on Chips”, Proc. DATE 2009.
[31] S. Yan, B. Lin, “Design of Application-Specific 3D Networks-on-Chip
Architectures”, Proc. ICCD, 2008.
[32] P. Zhou, P.-H. Yuh, S. Sapatnekar, “Application-Specific 3D Network-
on-Chip Design Using Simulated Allocation”, Proc. ASPDAC 2010
[33] S. Pasricha, “Exploring Serial Vertical Interconnects for 3D ICs”, Proc.
DAC, 2009.
[34] A. Eiben, et al, “Introduction to Evolutionary Computing”, Springer 2003.
[35] S. Nakaya et al., “An Adaptive Genetic Algorithm For Vlsi Floorplanning
Based On Sequence-Pair”, Proc. ISCAS 2000.
[36] W. Huang, et al. "Differentiating the Roles of IR Measurement and
Simulation for Power and Temperature-Aware Design." Proc. ISPASS 2009.
[37] S.C. Woo et al.“The SPLASH-2 programs: Characterization and
methodological considerations”, Proc. ISCA, 1995.
[38] A. Kahng, et al., “ORION 2.0: A Fast and Accurate NoC Power and Area
Model for Early-Stage Design Space Exploration”, Proc. DATE, 2009.
[39] CACTI 6.5, http://www.hpl.hp.com/research/cacti/

273

