Abstract
We describe a new method to separate ballistic from the scattered photons for optical tissue characterization. It is based on the hypothesis that the scattered photons acquire a phase delay. The photons passing through the sample without scattering or absorption preserve their coherence so they may participate in interference. We implement a Mach−Zehnder experimental setup where the ballistic photons pass through the sample with the delay caused uniquely by the sample indices of refraction. We incorporate a movable mirror on the piezoelectric actuator in the sample arm to detect the amplitude of the modulation term. We present the theory that predicts the path−integrated (or total) concentration of the scattering and absorption centres. The proposed technique may characterize samples with transmission attenuation of ballistic photons by a factor of 10-14.
References
1. M. Bondani, D. Redaelli, A. Spinelli, A. Andreoni, G. Roberti, P. Riccio, R. Luizzi, and I. Rech, “Photon time−of−flight distributions through turbid media directly measured with single−photon avalanche diodes,” JOSA 20, 2383-2388 (2003).Search in Google Scholar
2. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Dexler, V. Yakovlev, G. Tempea, C. Schubert, E.M. Anger, P.K. Ahnelt, M. Stur, J.E. Morgan, A. Cowey, G. Jung, and A. Stingl, “Compact, low−cost Ti:Al2O3 laser for in vivo ultrahigh−resolution optical coherence tomography,” Opt. Lett. 28, 905-907 (2003).Search in Google Scholar
3. E. Choi, J. Na, S.Y. Ryu, G. Mudhana, and B.H. Lee, “All−fibre variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line,” Opt. Exp. 13, 1334-1345 (2005).Search in Google Scholar
4. J.B. Vakoc, S.H. Yun, J.F. de Boer, G.J. Tearney, and B.E. Bouma, “Phase−resolved optical frequency domain imaging,” Opt. Exp. 13, 5483-5493 (2005).Search in Google Scholar
5. C.W. Sun, Y.M. Wang, L.S. Lu, C.W. Lu, I.J. Hsu, M.T. Tsai, C.C. Yang, Y.W. Kiang, and C.C. Wu, “Myocardial tissue characterization based on a polarization−sensitive optical coherence tomography system with an ultra−short pulsed laser,” J. Biomed. Opt. 11, 054016 (2006).Search in Google Scholar
6. L. Wang, P.P. Ho, C. Liu, G. Zhang, and R.R. Alfano, “Ballistic 2−D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769-771 (1991).Search in Google Scholar
7. S.G. Demos and R.R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Opt. Lett. 21, 161-163 (1996).Search in Google Scholar
8. G. Jarry, E. Steimer, V. Damaschini, M. Epifanie, M. Jurczak, and R. Kaiser, “Coherence and polarization of light propagating through scattering media and biological tissues,” Appl. Opt. 37, 7357-7367 (1998).Search in Google Scholar
9. A.E. Desjardins, B.J. Vakoc, A. Bilenca, G.J. Tearney, and B.E. Bouma, “Estimation of the scattering coefficients of turbid media using angle−resolved optical frequency−domain imaging,” Opt. Lett. 32, 1560-1562 (2007).Search in Google Scholar
10. S. Andersson−Engels, R. Berg, S. Svanberg, and O. Jarlman, “Time−resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179-1181 (1990).Search in Google Scholar
11. D.G. Papaioannou, G.W. Hooft, J.J. Baselmans, and M.J. van Gemert, “Image quality in time−resolved transillumination of highly scattering media,” Appl. Opt. 34, 6144-6157 (1995). Search in Google Scholar
12. G. Le Tolguenec, F. Devaux, and E. Lantz, “Two−dimensional time−resolved direct imaging through thick biological tissues: a new step toward non−invasive medical imaging,” Opt. Lett. 24, 1047-1049 (1998).Search in Google Scholar
13. M.R. Hee, J.A. Izatt, E.A. Swanson, and J.G. Fujimoto, “Femtosecond transillumination tomography in thick tissues,” Opt. Lett. 18, 1107-1109 (1993).Search in Google Scholar
14. D. Grosenick, H. Wabnitz, and H. Rinneberg, “Time−resolved imaging of solid phantoms for optical mammography,” Appl. Opt. 36, 221-231 (1997).Search in Google Scholar
15. X. Liang, L. Wang, P.P. Ho, and R.R. Alfano, “Time−resolved polarization shadowgrams in turbid media,” Appl. Opt. 36, 2984-2989 (1997).Search in Google Scholar
16. B. Devaraj, M. Usa, K.P. Chan, T. Akatsuka, and H. Inaba, “Recent advances in coherent detection imaging (CDI) in biomedicine: laser tomography of human tissues in vivo and in vitro,” IEEE J. Sel. Top. Quantum Electron. 2, 1008-1016 (1996).Search in Google Scholar
17. Y. Watanabe, T. Yuasa, B. Devaraj, T. Akatsuka, and H. Inaba, “Transillumination computed tomography of high scattering media using laser linewidth broadening projections,” Opt. Commun. 174, 383-389 (2000).Search in Google Scholar
18. C. W. Sun, K.C. Liu, Y.M. Wang, H.H. Wang, Y.W. Kiang, H.K. Liu, and C.C. Yang, “Determination of target depth in a turbid medium with polarization−dependent transmitted signals,” J. Opt. Soc. Am. A20, 2106-2112 (2003).10.1364/JOSAA.20.002106Search in Google Scholar
19. Y. Sasaki, S. Tanosaki, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, “Fundamental imaging properties of transillumination laser CT using optical fibre applicable to bio−medical sensing,” IEEE Sens. J. 3, 658-667 (2003).Search in Google Scholar
20. H.J. van Staveren, C.J. Moes, J. van Marle, S.A. Prahl, and M.J. van Gemert, “Light scattering in Intralipid−10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30, 4507-4514 (1991).Search in Google Scholar
21. J. Bai, T. Gao, K. Ying, and N. Chen, “Locating inhomogeneities in tissue by using the most probable diffuse path of light,” J. Biomed. Opt. 10, 024024 (2005).Search in Google Scholar
22. G. Jarry, L. Poupinet, J. Watson, and T. Lepine, “Extinction measurements in diffusing mammalian tissue with heterodyne detection and a titanium: sapphire laser,” Appl. Opt. 34, 2045-2054 (1995).Search in Google Scholar
23. R. Jones, G. Huynh, G. Jones, and D. Fried, “Near−infrared trans−illumination at 1310−nm for the imaging of early dental decay,” Opt. Exp. 11, 2259-2265 (2003).Search in Google Scholar
24. M. Strojnik, G. Paez, R. Murty, “Lateral shearing interferomtry,” in Optical Shop Testing, D. Malacara, Ed., Marcel Dekker, pp. 649-700, 2007.Search in Google Scholar
25. G. Popescu and A. Dogariu, “Ballistic attenuation of low−coherence optical fields,” Appl. Opt. 39, 4469-4472 (2000).Search in Google Scholar
26. P. Vacas−Jacques, G. Paez, and M. Strojnik, “Pass−through photon−based biomedical trans−illumination,” J. Biomed. Opt. 13, 041307 (2008); doi: 10.1117/1.2953191.10.1117/1.2953191Search in Google Scholar PubMed
27. M.D. Modell, V. Ryabukho, D. Lyakin, V. Lychagov, E. Vitkin, I. Itzkan, and L.T. Perelman, “Autocorrelation low coherence interferometry,” Opt. Commun. 281, 1991-1996 (2008).Search in Google Scholar
28. G. Paez, M. Strojnik, M.K. Scholl, “Interferometric tissue characterization: I. Theory,” Proc. SPIE 5883, 58830Y1−12, (2005).Search in Google Scholar
29. P. Vacas−Jacques, M. Strojnik, G. Paez, “Forward−calculated analytical interferograms in pass−through photon−based biomedical transillumination,” JOSA A26, 602-612 (2009); DOI:10.1364/JOSAA.26.000602.10.1364/JOSAA.26.000602Search in Google Scholar PubMed
30. M. Strojnik and G Paez, “Spectral dependence of absorption sensitivity on concentration of oxygenated hemoglobin: pulse oximetry implications,” J. Biomed. Opt. 18, 108001 (2013); doi: 10.1117/1.JBO.18.10.108001.10.1117/1.JBO.18.10.108001Search in Google Scholar PubMed
31. M.S. Scholl, “Measured spatial properties of the CW Nd−YAG laser beam,” Appl. Opt. 19, 3655-3659 (1980), doi: 10.1364/AO.19.003655.10.1364/AO.19.003655Search in Google Scholar PubMed
32. M.S. Scholl, “Target temperature distribution generated and maintained by a scanning laser beam,” Appl. Opt. 21, 2146-2152 (1982); doi: 10.1364/AO.21.002146. 10.1364/AO.21.002146Search in Google Scholar PubMed
© 2015 SEP, Warsaw
This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.