Abstract
Measurements of Thomson (later Lord Kelvin) coefficients are made in an evacuated region on a silver sample with a novel transducer in temperature intervals
References
[1] W. Thomson, Proc. R. Soc. Edinb. 91 (1851) and Trans. R. Soc. Edinb. 21 (1857), 123.10.1017/S0080456800032014Search in Google Scholar
[2] C. Schoute, Arch. Neerl. (2) 12 (1907), 175.10.5962/bhl.part.4574Search in Google Scholar
[3] H. B. Callen, Phys. Rev. 73 (1948), 1349.10.1103/PhysRev.73.1349Search in Google Scholar
[4] L. Onsager, Phys. Rev. 37 (1938), 405 and 38, 2265.10.1103/PhysRev.37.405Search in Google Scholar
[5] O. H. Zinke and P. B. Jacovelli, Rev. Sci. Instrum. 36 (1965), 916.10.1063/1.1719784Search in Google Scholar
[6] O. H. Zinke, Mater. Eval. 73 (2015), 1490.Search in Google Scholar
[7] P. B. Jacovelli and O. H. Zinke, J. Appl. Phys. 37 (1966), 4117.10.1063/1.1707985Search in Google Scholar
[8] C. E. Canada and O. H. Zinke, J. Appl. Phys. 289 (1978).10.1063/1.324382Search in Google Scholar
[9] B. T. Barnes, W. E. Forsythe and E. Q. Adams, J. Opt. Soc. Am. 37 (1947), 804.10.1364/JOSA.37.000804Search in Google Scholar
[10] G. M. Maxwell, J. N. Lloyd and D. V. Keller Jr., Rev. Sci. Instrum. 33 (1967), 1084.10.1063/1.1720972Search in Google Scholar
[11] E. Leroux, Ann. Chim. Phys. (4) 10 (1867), 201.Search in Google Scholar
[12] O. Berg, Ann. Phys. 32 (1910), 477.10.1002/andp.19103370803Search in Google Scholar
[13] H. R. Nettleton, Proc. R. Soc. 34 (1920), 77.10.1016/S0033-3506(20)80055-9Search in Google Scholar
[14] J. Young, Proc. R. Soc. 37 (1925), 145.10.1088/1478-7814/37/1/322Search in Google Scholar
[15] E. Lecher, Ann. Phys. 19 (1906), 853.10.1002/andp.19063240409Search in Google Scholar
[16] A. Aalderink, Arch. Neerl. (2) 15 (1910), 21.10.1086/206556Search in Google Scholar
[17] A. Battelli, Atti Accad. Sci. Torina 22 (1887), 48 and 369.10.1007/BF02719655Search in Google Scholar
[18] E. H. Hall, et al., Am. Acad. Arts Sci. 41 (1905), 23 and 42 (1907), 597.10.2307/20022035Search in Google Scholar
[19] G. Borelius and F. Gunneson, Ann. Phys. 65 (1921), 520.10.1002/andp.19213701404Search in Google Scholar
[20] P. Cermak, Ann. Phys. 33 (1910), 1195.10.1002/andp.19103381608Search in Google Scholar
[21] R. O. King, Proc. Am. Acad. Arts Sci. 33 (1898), 353.10.2307/20020807Search in Google Scholar
[22] H. Haga, Ann. 1’Ecole Polyt. Delft 1 (1885), 145, 3 (1886) 43.10.24033/asens.273Search in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Research Articles
- The Thermocouple Revisited: The Thomson Effect
- Numerical Simulation for Radiated Flow in Rotating Channel with Homogeneous-Heterogeneous Reactions
- Thermodynamic Merger of Fluctuation Theorem and Principle of Least Action: Case of Rayleigh–Taylor Instability
- The Thermocouple Revisited: The Benedicks and Seebeck Effects
- Numerical Examination of the Entropic Energy Harvesting in a Magnetohydrodynamic Dissipative Flow of Stokes’ Second Problem: Utilization of the Gear-Generalized Differential Quadrature Method
- Performance Analysis of Diesel Cycle under Efficient Power Density Condition with Variable Specific Heat of Working Fluid
- Stochastic Novikov Engine with Fourier Heat Transport
- On the Efficiency of Electrochemical Devices from the Perspective of Endoreversible Thermodynamics
- Thermal Energy Transport Across Combined Films: Thermal Characteristics
Articles in the same Issue
- Frontmatter
- Research Articles
- The Thermocouple Revisited: The Thomson Effect
- Numerical Simulation for Radiated Flow in Rotating Channel with Homogeneous-Heterogeneous Reactions
- Thermodynamic Merger of Fluctuation Theorem and Principle of Least Action: Case of Rayleigh–Taylor Instability
- The Thermocouple Revisited: The Benedicks and Seebeck Effects
- Numerical Examination of the Entropic Energy Harvesting in a Magnetohydrodynamic Dissipative Flow of Stokes’ Second Problem: Utilization of the Gear-Generalized Differential Quadrature Method
- Performance Analysis of Diesel Cycle under Efficient Power Density Condition with Variable Specific Heat of Working Fluid
- Stochastic Novikov Engine with Fourier Heat Transport
- On the Efficiency of Electrochemical Devices from the Perspective of Endoreversible Thermodynamics
- Thermal Energy Transport Across Combined Films: Thermal Characteristics