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Abstract. The rewetting of dry soils and the thawing of between biological (i.e., microbial community and gas pro-
frozen soils are short-term, transitional phenomena in termsluction) and physical (i.e., porosity, diffusivity, dissolution)

of hydrology and the thermodynamics of soil systems.changes in soil gas fluxes, apply techniques to capture rapid
The impact of these short-term phenomena on larger scalehanges (i.e., automated measurements), and explore syner-
ecosystem fluxes is increasingly recognized, and a growingjistic experimental and modelling approaches.

number of studies show that these events affect fluxes of soil
gases such as carbon dioxide (30nethane (CHj), nitrous
oxide (N,O), ammonia (NH) and nitric oxide (NO). Global
climate models predict that future climatic change is likely to
alter the frequency and intensity of drying-rewetting events
and thawing of frozen soils. These future scenarios highlight

the importance of understanding how rewetting and thawing’ he rewetting of dry soils and the thawing of frozen soils
will influence dynamics of these soil gases. This study sumJepresent abrupt step changes in soil biophysical condi-
marizes findings using a new database containing 338 studidons, with critical implications for biogeochemical cycling.
conducted from 1956 to 2011, and highlights open researcffTom an organismal perspective, soil rewetting and thaw-
questions. The database revealed conflicting results followind have similar effects because both processes increase the
ing rewetting and thawing in various terrestrial ecosystemsavailability of soil water, rehydrate cells, increase microbial
and among soil gases, ranging from large increases in fluxegetabolism, and mobilize nutrients. Both processes are also
to non-significant changes. Studies reporting lower gas fluxegelatively transient, non-stationary, and the duration of in-
before rewetting tended to find higher post-rewetting fluxesdividual rewetting and thawing events varies as a result of
for CO,, N,O and NO: in addition, increases inp® flux the effects of local climatic conditions, topography, drainage,
following thawing were greater in warmer climate regions. vegetation type, and soil thermal properties (Balser and Fire-
We discuss possible mechanisms and controls that regula@one, 2005; Vargas et al., 2010b). The sudden flush of water
flux responses, and recommend that a high temporal resoli@nd nutrients that occurs after rewetting and thawing induces
tion of flux measurements is critical to capture rapid changesshanges in plant and microbial activity, with organisms shift-

in gas fluxes after these soil perturbations. Finally, we pro-ing rapidly from dormant or senescent states to active ones

pose that future studies should investigate the interactioné;)i(‘)?gf)et al., 1987; Schimel and Clein, 1996; Kemmitt et al.,

1 Introduction
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It is important to understand the change in magnitude of(i.e., > 95 % CI) in current and past climate conditions, so
fluxes from soil gases (i.e., GOCHj, N2O, NO and NH) the results are difficult to apply under current climate condi-
following rewetting and thawing events. These fluxes aretions.
either by-products, intermediates, or end-products of soil- The growing number of studies on the individual effects
related microbial processes involved in C and N dynamicsof rewetting and thawing specifically on GGand NO
in soils. These gases also play crucial roles in atmospheriéluxes have been the focus of several reviews (Jarvis et al.,
chemistry, with the notable characteristic that£;OH, and 2007; Henry, 2007; Matzner and Borken, 2008; Borken and
N2O are greenhouse gases (GHG). In addition, soilkNH Matzner, 2009; Groffman et al., 2009; Blankinship and Hart,
emissions are of considerable interest since they constitute 2012). This review is novel in that it takes a comprehensive
significant loss of N in agricultural soils (Nelson, 1982; Fran- approach to dealing with the effects of both rewetting and
cis et al., 2008), causing soil acidification (Van der Eerdenthawing on multiple soil gas fluxes (i.e., GACH4, N2O, NO
et al., 1998; Rennenberg and Gessler, 1999), eutrophicatioand NH;), and provides a new open-access database of pub-
through atmospheric deposition (Bobbink et al., 1992), andished studies conducted between 1956 and 20H338).
are an indirect source of D (Martikainen, 1985). Nitric ox-  Our objectives were to: (1) summarize the effects of rewet-
ide is indirectly involved in global warming and contributes ting and thawing on multiple soil gas fluxes (i.e., £QHj,
to the net production of radiatively active tropospheric ozoneN2O, NO and NH) and highlight common patterns across
and the formation of acid rain (Williams et al., 1992). Nitric studies; (2) discuss the potential underlying mechanisms and
oxide is also important in controlling the oxidizing capac- drivers of variation of soil gas fluxes following rewetting and
ity of the troposphere, thereby affecting the fate of carbonthawing; and (3) identify knowledge gaps and highlight fu-
monoxide, CH and nonmethane hydrocarbons (Liu et al., ture research questions.

1987).

Future climatic change is likely to alter the frequency
and intensity of drying-rewetting events (Meehl et al., 2006;2 Methodology
Sheffield and Wood, 2008; Sinha and Cherkauer, 2010).

Furthermore, the frequency and intensity of soil frost (i.e.,2.1 Data collection

freeze-thaw cycles and annual soil freezing days) are also

likely to change since warming could lead to a reduction inData on changes in gas fluxes of &QCHs, N2O, NO

the thickness of the insulating snowpack and thus colder winand NH; following rewetting and thawing were acquired
ter soil temperatures (Henry, 2008; Gu et al., 2008; Blankin-by searching existing refereed literature published between
ship and Hart, 2012). It is thus important to understand how1950 and 2011 using Web of Science and Google Scholar
soil rewetting and thawing influence soil GHG fluxes, be- with search terms such as “rewetting”, “thawing”, “peak
cause these events could influence substantially annual gdkix”, “peak emission” and name of gases. Studies with field
budgets, and increases or decreases in these fluxes may casbservations of rewetting of dry soils include events caused
tribute to either positive or negative feedbacks to climateby natural rainfall, simulated rainfall in natural ecosystems,
change. and irrigation in agricultural lands. Similarly, studies of

While abrupt increases in soil GON2O, NH3 and NO  thawing of frozen soils include field observations of natural
fluxes following rewetting are commonly observed in vari- thawing, simulated freezing-thawing events (i.e., thawing of
ous agricultural lands and natural lands (Birch, 1958; Péiem simulated frozen soil by snow removal, simulated freezing-
and Christensen, 2001; Saetre and Stark, 2005), rewettinthawing cycles in the laboratory), and thawing of seasonal ice
can either increase (Moore et al., 1998; Knorr et al., 2008)in temperate and high latitude regions. We did not include the
or inhibit (Kessavalou et al., 1998; Teh et al., 2005),Gi- long-term effects of changing active layer depths caused by
dation. Similarly, increases in GOCHz and NO fluxes fol- ~ permafrost thaw in this review, as changes in gas fluxes in
lowing soil thawing have been shown to affect total annualresponse to permafrost thaw are affected by both changing
gas budgets (Bver et al., 1998; Papen and Butterbach-Bahl, soil and plant successional processes (Turetsky et al., 2002;
1999). Despite a growing number of studies, there are stillChristensen et al., 2004; Walter et al., 2006; Anisimov, 2007;
many uncertainties in our understanding of the mechanism3uretsky et al., 2007). We define response as the behavior or
and impacts of changing rainfall patterns and freeze-thaweaction dynamics of the different soil gas fluxes that result
cycles on annual gas budgets. These uncertainties are exaftem rewetting or thawing of soils. The responses may vary
erbated by the coarse temporal sampling resolution of mosin intensity, magnitude and/or duration, depending on the gas
flux measurements that do not capture the complete pulse dyanalyzed.
namics (Groffman et al., 2006; Muhr et al., 2009). Additional  The resulting database comprised 222 field and labora-
uncertainties arise from unrealistic experiments of dry—wettory observations (C®n =54, CH; n = 15, NbO n =58,
and freeze-thaw events (as discussed in Henry, 2007; Jentsé®tiO » =87 and NH »n = 8) focused on rewetting of dry
et al., 2007). These experiments simulate events that are osbils, and 116 field and laboratory observations §GG- 23,
of the expected range of soil temperature and soil moistureCH4 n = 10, N, O n = 78, NOn = 5) focused on thawing of
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frozen soils. The version of this database used for this study
(v.1.0) has been archived at the Oak Ridge National Labora- ® } Peak period }
tory Distributed Active Archive Centehftp://daac.ornl.gov/ post-event ‘ ‘
SOILS/guides/globaitsg flux_v1.html A Global Database ~ peakfluxvalue | \
of Gas Fluxes from Soils after Rewetting or Thawing, Ver- X }
sion 1.0). z Peak soil gas fluy
o \
2.2 Determining gas flux change rates and compiled 3 |
dataset analysis |
- \ \
For studies that reported temporal changes in gas flux rates o value $ | \
pre- and post rewetting or thawing events in a single treat- = |
ment (Fig. 1a), we calculated the change in gas flux rates (%) rewetting/thawing Time
using the flux values observed before the event (i.e., rewet- event
ting or thawing) along with peak flux values that occurred ®) } }
post_event: ‘ Peak period |
pe‘:\?(sftlﬁ)‘(l ?/r;:ue I }
Flux change: (Peak ﬂwﬁost-everﬂ — (Fluxpre-even) x 100 % (1) peak soil gas flux \
(F|UXpre-even) 5 in treatment \
» \
where Flux change (%) is the relative effect of the event on E’ |
gas flux, Peak fluspst-eventsS the rate of peak gas flux follow- ] }
ing the event, and Flyxe_eventis the rate of gas flux before ———;70 ——————— et
the event (i.e., rewetting or thawing). 7 in control
For studies that compared gas fluxes between simulatec pre-event B $
(representing either rewetting or thawing treatments) and | ]
control treatments (Fig. 1b), we calculated changes in gas rewetting/thawing Time

fluxes exactly as in Eq. (1), but using Peak fx (the
rate of peak gas flux following the treatment; substituted forFig. 1. Simplified hypothetical figures representing peak soil gas
Fluxpost-event and Fluxcontrol (the rate of gas flux observed flux in rewetting of dry soils and thawing of frozen soils and peak

at the control at the time peak gas flux; substituted for PeaKlux period. Peak gas flux occurred in natural rewetting or thawing
fluxpre-even)- event (solid line) and pre-event flux value (white dot) and post-event

Peak flux period was determined by identifying dura- peak flux value (black qm) useq to determ?ne flux change(@e_
tion of increased flux of soil gases following soil rewet- peak gas flux occurred in rewetting or thawing treatment (solid line)

- S . . and gas flux in control (dot line) and pre-event flux value (white dot,
ting and thawing in field (Fig. 1a) and laboratory experi- the flux value in control when post-event peak flux value is read)

ments (Fig. Jjb)' _The dataset prepareq for this _man_uscrlpgmd post-event flux value (black dot) used to determine flux change
(n = 338 studies) is dominated by experiments using discretgaie (B). The figure is a simplification of the response and does not
measurements that miss the highly detailed patterns of sojeflect the full dynamics of a pulse response as shown in Fig. 2.
gas fluxes following rewetting or thawing as shown in Fig. 2.

Thus, we used Eq. (1) as a proxy to represent a simplified

response based on discrete measurements of soil gas fluxeés. A review of the effect of rewetting and thawing on soil

It is important to recognize that discrete measurements intro-  gas fluxes

duce uncertainty in calculating flux changes as it is difficult

to determined the peak flux period, as seen in Fig. 2. If gag~or each soil gas we discuss below: (1) how rewetting and
fluxes were presented only in a figure without numeric valuesthawing events influence gas fluxes in various ecosystems
reported in the original text or tables, we calculated the corre-and experimental designs; and (2) the likely mechanisms and
sponding values from the figure using the software AcBbat €nvironmental controls underlying the observed patterns. We

8 Professional ver. 8.2 (Adobe Systems, Inc. San Jose cdefine response as the behaviour or change in soil gas fluxes
USA). (see Fig. 1, Eq. 1) that results from rewetting or thawing of

The relationship between rate change of soil gas fluxesOIlS-
following rewetting and thawing and Flg%_eventand mean
annual temperature was determined by fitting linear mod-
els, with logarithmic transformations when necessary for
heteroschedasticity. All analyses were performed using
R 2.14.1. (R Development Core Team, 2011).
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5 CO, flux increases after rewetting in soils from cropland
A) (Beare et al., 2009), grazing pasture (Wu et al., 2010b), forest
4l (Fierer and Schimel, 2003), grassland (Xiang et al., 2008),
peatland (Goldhammer and Blodau, 2008) and desert (Spon-
34 seller and Fisher, 2008) ecosystems. For example, in an up-
per Sonoran Desert ecosystem, Cflux increased up to
21 30-fold immediately following experimental rewetting, and
within 48 h returned to the rate of gas flux before the event
1] (Sponseller, 2007). In soil moisture manipulations in a Nor-
way spruce plantation, drought and rewetting treatments in-
o i , , creased the annual G@ux by 51 % compared with a control
o1 240 250 260 . plot (Borken et al., 1999). Lee et al. (2004) estimated that the
Soilwater contont increase in CQ flux in a single intensive storm amounted
—=— Soiltemperature to a loss of 0.18tChd to the atmosphere, or 5-10% of
the annual net ecosystem production in a mid-latitude forest.
These studies have reported increased @@x after rewet-
ting in short-term (ca. 6—24 h) (Table 1, Fig. 3), and relative
CO, flux increases ranging from 40 % 09000 % (Table 1,
Fig. 4). The relative C@flux increase following rewetting in
desert (mean 8425 %) is higher than those of cropland, for-
est, grassland, savanna and wetland (100-4400 %) (Table 2).
o0 . . ‘ . Together, these studies support the hypothesis that rewetting
240 250 260 270 a variety of soil types can have substantial effects on the C
Day of year balance of terrestrial ecosystems (Borken et al., 1999; Lee et
al., 2004; Xu et al., 2004).

Some studies showed no response or small increased CO
Jsluxes following rewetting or thawing events and did not sub-
the same dates of the soil G@Blux measurementéB). Measure- tantially "’.‘ﬁeCt annuallﬂux rates (_Coxson and Parkinson,
ments were done during thec)é/ear 2008 at the Sar??])acinto Mountain%987; Schimel and Clein, 1996; Neilsen et al., 2901; Muhr
James Reserve, CA, USA (Vargas et al., 2010b). and Borken, 2009; Muhr et al., 2010). Other studies showed
reduced CQ fluxes during drying periods, but the abruptly
increased fluxes following rewetting did not compensate for

CO, flux (umoles CO, m?s™)

°

o

»
Soil temperature
(°C, 2cm depth)

Soil water content
(m®m, 2-16 cm depth)

o
-
N

Fig. 2. High temporal resolution (hourly data) of soil G&lux dy-
namics before and after a rewetting evgkt, and soil water content
(2—16 cm depth) and soil temperature (2 cm depth) dynamics durin

3.1 Patterns of soil gas flux response to rewetting the reduced rates during the dry period at the seasonal scale
and thawing (Borken and Matzner, 2009; Joos et al., 2010). In addition,
soil CO;, flux could be suppressed during or after rainfall as
3.1.1 Carbon dioxide previously reported: (1) large (10-fold) decreases during light

rainfall in arable soils (Rochette et al., 1991), and (2) sharp

Soil surface CQflux provides an integrated result of biolog- soil CO, flux decreases in no-tillage agricultural fields (Ball
ical CO, production throughout the soil column, changes in et al., 1999).
soil CO, diffusivity in the soil profile, and in some areas geo-  Increased CQ flux after thawing has been observed in
logical processes (Raich and Schlesinger, 1992; Schlesingefarious terrestrial ecosystems, including forest (Wu et al.,
and Andrews, 2000). Carbon dioxide is the dominant loss2010a), alpine tundra (Brooks et al., 1997), and arctic heath
pathway in most terrestrial ecosystems, as well as the mogiElberling and Brandt, 2003), and in incubation experiments
important GHG in the atmosphere. Our database contains 7With soils from cropland (Kurganova et al., 2007), grass-
studies that measured G@nd are equivalent te- 23% of  land (Wu et al., 2010b), forest (Goldberg et al., 2008), bog
all studies. This shows that GQGs the soil gas that has re- (Panikov and Dedysh, 2000), taiga and tundra (Schimel and
ceived the third most attention for studying the effects of Clein, 1996), and Antarctica (Zhu et al., 2009). Reported
rewetting and thawing of soils. CO, flux increases after thawing can range up to 5000 % (Ta-

Increases in Cflux following rewetting of dry soils have ble 1, Fig. 4). The relative C&Xlux increase following thaw-
been reported in multiple terrestrial ecosystems and variougng in tundra (5530 %) is higher than those of cropland, for-
land-use types, including cropland (Kessavalou et al., 1998)est, grassland other ecosystems (150—-1630 %; Table 2). Such
grazing pasture (Xu and Baldocchi, 2004), forest (Kim et al.,increases in C&flux after seasonal thawing were important
2010b), grassland (Joos et al., 2010), savannas (Castaldi & the annual budget of COlux in arable soils (Prie@and
al., 2010), and desert (Sponseller and Fisher, 2008). IncuChristensen, 2001; Kurganova et al., 2007), but did not af-
bation experiments have yielded similar patterns, showingect the annual budget in some natural sites (Coxson and

Biogeosciences, 9, 2459483 2012 www.biogeosciences.net/9/2459/2012/
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Table 2. Change rate (%) of soil gas flux following rewetting and thawing events observed in various ecosystems (results from compiled
dataset analysis). F =field observation; L =laboratory experiment.

Rewetting event

Ecosystem type C§® CHy N2O NO NH;
Cropland F: 10@: 19 (9¥, F: 67+ 3 (6) F: 487+ 87 (3), F: 1008t 474 (5), -
L: 1042+ 503 (4) L: 68 600+ 21 169 (7) L: 65G 250 (2)
Desert F: 84234625 (2) - - F: 118%572 (4), F: 561 182 (4),
L: 2100+ 1200 (2) L: 575+ 85 (4)
Forest F: 10226 (9), L:—538+98 (3) F:978A 6528 (13), F: 1723731 (17), -
L: 800+ 530 (5) L: 8521083675 (5) L:138Qt1002 (9)
Grassland F: 4444 2510 (4), - F: 945-411 (5), F: 47823 44 885 (18), -
L: 675+ 217 (5) L: 3497320571 (6) L:290Qt 1806 (7)
Rice paddy - - F: 458 126 (3) - -
Sand dune - - - L: 6900 (1) -
Savanna F: 756 413 (5) - F: 1609 374 (7) F: 4920t 1835 (18) -
Wetland L: 130: 18 (2) F:471112(3) F: 1250 (1), L: 1700 (1) -
L: 8457+ 7157 (2)
Thawing event
Ecosystemtype C® CHy NoO NO NH3
Arctic heath F: 150 (1) - - - -
Cropland L: 918418 (3) - F: 1755:-416 (15), - -
L: 62 250+ 22 683 (4)
Forest F:22@-42 (3), - F: 41761771 (9), - -
L: 525+ 266 (4) L: 6194173 (5)
Grassland L: 752 262 (4) F:33(1) F: 836-33 (3), L: 500 (2) -
L: 35052+ 20 585 (6)
Sand dune L: 900 (1) - L: 100 (1) L: 40 (1) -
Tundra F: 5227 (1) F: 43367 (2) F: 748 (1) - -
Wetland L: 16311519 (2) F:538:227(3), L:32712581 (3) L: 200 (1) -
L: 1100 (1)

* Mean+ standard error (number of samples); “~” no data.

Parkinson, 1987; Schimel and Clein, 1996; Neilsen et al.,(Joabsson et al., 1999). Methane also can be stored in soils
2001). However, we caution that most of these studies lackand consequently released to the atmosphere during changes
the high temporal sampling resolution necessary to capturén pressure such as with freezing (Mastepanov et al., 2008).
the full dynamic of the pulse (Groffman et al., 2006; Muhr et Plant mediated release likely reduces Lsforage in soils

al., 2009, Vargas et al., 2011), as shown in Fig. 2. and thus could reduce episodic releases of, @Ehanton,
2005; Tagesson et al., 2012), though other studies have found
no relationship between vascular plant abundance and ebul-

) lition (Coulthard et al., 2009; Green and Baird, 2012). Our
Net CH;, flux is the result of the balance between methano-yatapase contains 25 studies that measured @i are

genesis (microbial production under anaerobic Conditions)equivalent to~ 7% of all studies. This shows that GHs

and methanotrophy (microbial consumption) (Dutaur andqne of the soil gases that have received the least attention for
Verchot, 2007). Methanogenesis occurs via the anaeroblgtudying the effects of rewetting and thawing of soils.
degradation of organic matter by methanogenic archaea Tpe reported effects of rewetting and thawing on CH
within the archaeal phyluriuryarchaeota(Thauer, 1998).  fxes were variable within our database. Rewetting re-
Methanotrophy occurs by methanotrophs metabolizing CH 4,ced CH consumption or increased GHproduction in

as their source of carbon and energy (Hanson and HansoRyapie Jand (Syamsul Arif et al., 1996; Kessavalou et al.,
1996). In anoxic soils, emergent vegetation also influenceslggg; Hergoualc'h et al., 2008), peatlands (Kettunen et al.,
CHjy flux to the atmosphere, as plants enable oxygen transy 9g96: Blodau and Moore, 2003: Dinsmore et al., 2009),

port to the rhizosphere through aerenchymateous tissue anghq ropical forests (Silver et al., 1999). In a wheat-fallow
through the production of labile substrates via root exudation

3.1.2 Methane

Biogeosciences, 9, 2459483 2012 www.biogeosciences.net/9/2459/2012/
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cropping system, ClHconsumption declined by about 60 %
for 3-14 d after rewetting (Kessavalou et al., 1998). In peat-and Cai, 2007; Yu et al., 2007). In a subarctic peatland; CH
land, a pulse of Chiwas observed after water table draw- flux increased from 2.6 mgnfd—*to 22.5mgnr?d—* dur-
down (Moore and Knowles, 1990; Shurpali et al., 1993), ing thawing, with the latter rate equivalent to approximately
and substantial pulses of GHluxes were produced with 25% of the mid-summer flux (Friborg et al., 1997). A few
both drainage (700 ug‘n’ﬁ) h—1 above the pre-change mean) studies have also shown enhanceds@Hnsumption during
and rewetting (over 160 ugm™h—1 above the value of Seasonal thawing periods (Ding and Cai, 2007; Wu et al.,
prior to rewetting) within 1-2 days in a mesocosm study 2010b). In addition to affecting rates of Glgroduction and
(Dinsmore et al., 2009). In contrast, other studies have reoxidation, seasonal soil thaw also may affectaransport
ported that rewetting increased GHonsumption, or re- mechanisms (Friborg et al., 1997; Kim and Tanaka, 2003;
duced CH production, both in the field (Davidson et al., Tokida et al., 2007). For example, surface seasonal thawing
2004, 2008; Borken et al., 2006; Fiedler et al., 2008) andin a bog appeared to trigger ebullition events, with flux up to
laboratory (Czepiel et al., 1995; West and Schmidt, 1998;25.3mg CH m~2h~! (Tokida et al., 2007). In Alaskan bo-
Estop-Arago@s and Blodau, 2012). In incubation exper- real forestsoils damaged by fire, @fux increased 7-142 %
iments with alpine soil, Cli oxidation increased signifi- during seasonal thawing (Kim and Tanaka, 2003). Longer-
cantly from 11 pmol CH (gdryweighty1h—! to —67.0-  termincreases in an active layer depth with permafrost thaw
—29.5pmol CH (g dry weighty L h~19 days after rewetting ~ also tend to increase GHlux in high latitude wetlands and
(West and Schmidt, 1998). Enhanced LCbkidation was lakes (Turetsky et al., 2002; Christensen et al., 2004; Wal-
promoted after rewetting for days to weeks in peatlandter et al., 2006; Anisimov, 2007), although these processes
(Oquist and Sundh, 1998; Kettunen et al., 1999; Goldham-are not the focus of this review. In summary, studies re-
mer and Blodau, 2008) and rice field (Ratering and Conradport a large uncertainty in CHesponses after rewetting and
1998). However, in an in situ water table drawdown experi- thawing, but there are much smaller responses in magnitude
ment, CH, production declined in hummocks but stayed con- and fewer observations compared with other gases (Table 1,
stant in hollows relative to control plots, suggesting a strongFig. 3).
role of microtopography in the effects of rewetting on £H
fluxes (Strack and Waddington, 2007). 3.1.3 Nitrous oxide

Seasonal thawing of soils increased £Hux in a peat-
land (Tokida et al., 2007), forest (Kim and Tanaka, 2003), Three main processes producgNin soils: (1) nitrification,
and wetlands (Friborg et al., 1997; Song et al., 2006; Dingthe stepwise oxidation of N¢to nitrite (NG, ) and to nitrate

www.biogeosciences.net/9/2459/2012/ Biogeosciences, 9, 2v88-2012
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(NO3) (Kowalchuk and Stephen, 2001); (2) denitrification, rewetting (Table 3) and O fluxes increase up to 17 000 %
the stepwise reduction of NDto NO,, NO, N,O and ul-  (Table 3, Fig. 4). Increase of® flux following thawing in
timately Np, where facultative anaerobic bacteria useNO forest (4180 %) is higher than those of cropland, grassland
as an electron acceptor in the respiration of organic materiagnd other ecosystems (750-1760 %; Table 2). Thaw-induced
under low oxygen (®) conditions (Knowles, 1982); and (3) N20 fluxes constituted a major component of annuaDN
nitrifier denitrification, which is carried out by autotrophic fluxes from arable field (Regina et al., 2004; Johnson et al.,
NHs-oxidizing bacteria and the pathway whereby Nilox- ~ 2010), temperate grassland (Kammann et al., 199@jevi
idized to nitrite NG, followed by the reduction of NDto et al.,, 2002), steppe (Holst et al., 2008; Wolf et al., 2010),
nitric oxide NO, NoO and molecular nitrogen @ (Wrage et ~ Wetland (Yu et al., 2007) and forest ecosystems (Papen and
al., 2001). Our database contains 165 studies that measurdgHtterbach-Bahl, 1999; Wu et al., 2010a; Guckland et al.,
N,O and are equivalent te 40 % of all studies. This shows 2010), with contributions exceeding 50 % of the annual bud-
that NoO is the soil gas that has received the most attentior@€t in some years.
for studying the effects of rewetting and thawing of soils. In contrast, some studies showed no response or small in-
Field studies have observed increased soiDNIux fol-  creased NO fluxes following rewetting or thawing events
|0wing Wettmg in Crop|and (Barton etal., 2008)’ grazed pas-that did not Substantia"y affect annual flux rates (GarCia'
ture (Kim et al., 2010a), tropical forest (Butterbach-Bahl et Montiel et al., 2003; Neill et al., 2005; Borken and Matzner,
al., 2004), grassland (Hao et al., 1988), savannah (Martin e2009). Some studies showed reducegONfluxes during
al., 2003), and fen (Goldberg et al., 2010a). Laboratory incu-drying periods, but the abruptly increased fluxes following
bation experiments with cropland (Beare et al., 2009), forestewetting did not compensate for the reduced or nil uptake
(Dick et al., 2001), grassland (Yao et al., 2010), and peattates during the dry period at the seasonal scale (Borken and
land soils (Dinsmore et al., 2009) have yielded similar re- Matzner, 2009; Goldberg and Gebauer, 2009).
sults of increased O flux after rewetting. In tropical soils
in Costa Rica, MO flux pulses began within 30 min, peaking 3.1.4 Nitric oxide
no later than 8 h after rewetting, and 25 g¢N ha ! was
emitted for three simulated rain events over a 22-day period\itric oxide can be produced from: (1) nitrification
(Contr0| emitted 149 NO-N ha_l), and one episodic MO (KOWE\IChUk and Stephen, 2001), (2) denitrification
production event driven by one moderate rain accounted fofKnowles, 1982); and (3) nitrifier denitrification (Wrage et
15-90 % of the total weekly production (Nobre et al., 2001). al., 2001), as described in Sect. 3.1.3. Our database contains
These studies have observed increased sdl filux follow- 92 studies that measured NO and are equivalent &Y %
ing rewetting in short-term~ 12 h-15d; Table 3, Fig. 3), ©f all studies. This shows that NO is the soil gas that has
and an increase of 2 flux up to 80 000 % with respect to eceived the second most attention for studying the effects
the background conditions (Table 3, Fig. 4). Increases of for-0f rewetting and thawing of soils.
est NbO fluxes following rewetting (9790 %) are higher than  Increases in soil NO flux following rewetting have been
those of cropland, grassland other ecosystems (4501250 %§ported in various terrestrial ecosystems, including crop-
(Table 2). Noteworthy, our dataset reveals that even a singléand (Guenzi et al., 1994), grazing pasture (Hutchinson and
wetting event can affect annuab® flux between 2% and Brams, 1992), forest (Wu et al., 2010a), grassland (Hartley
50 % (Nobre et al., 2001; Barton et al., 2008; Goldberg et al.,and Schlesinger, 2000), savanna (Martin et al., 2003), and
2010a). desert (McCalley and Sparks, 2008). Laboratory incubations
Increased soil BO flux following thawing has been With grassland soil (Yao et al., 2010), grazing pasture soil
observed in Crop|and (Rochette et a|_, 2010), grass|andHUtChinson et al., 1993), forest soil (D|Ck et al., 2006), and
(Virkajarvi et al., 2010), forest (Maljanen et al., 2010), marsh desert soil (McCalley and Sparks, 2008) have reported sim-
(Yu et al., 2007), alpine meadow (Hu et al., 2010), and alpineilar results of increased NO flux after rewetting. Rewetting
tundra (Brooks et al., 1997). Laboratory incubation exper_studies have commonly reported a short-term increase in NO
iments showing similar results have been performed withfluxes (ca. 1-3d; Table 3, Fig. 3), and the rate of increase of
agricultural (Kurganova et al., 2004), grassland (Yao et al.,NO flux ranged from 40 % to more than 800 000 % (Table 3,
2010), forest (Goldberg et al., 2008), permafrost (ElberlingFig. 4). Increase of NO flux following rewetting in grassland

et al., 2010), and coastal Antarctica soils (Zhu et al., 2009) (47 800 %) is higher than those of cropland, forest and other
Episodic NO peak fluxes of up to 750 pgpkd-N m—2h~1 ecosystems (1000—4900 %; Table 2). Some studies indicate

(background levels of under 50 pg@®-Nm—2h-1) were that even a single rewetting event could substantially affect
measured after freeze-thaw in arable field(&h et al., the annual flux rates of NO (Davidson et al., 1991; Yienger
2004). Such increases usually occur when soil temperature8nd Levy, 1995; Kitzler et al., 2006), and rewetting events
are close to OC (Christensen and Tiedje, 1990; Chen et al., could be important for regional fluxes (Harris et al., 1996;

1995; Miller et al., 2003). Studies examining the thawing ef- Ghude et al., 2010).

fect on NoO flux have reported 6 to 35d response following ~ Increased soil NO fluxes following thawing have been ob-
served only in a field study (Laville et al., 2011) and in a

Biogeosciences, 9, 2459483 2012 www.biogeosciences.net/9/2459/2012/
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laboratory incubation study (Yao et al., 2010). In a FrenchYergeau and Kowalchuk, 2008). Microorganisms accumulate
crop field, NO fluxes following thawing increased up to high concentrations of solutes (osmolytes) to retain water in-
10ngNnT2s! and decreased to pre-event values within side the cell during drought conditions (Harris, 1981), which
24 h, while the flux average was 1.7 to 2.3ngN4s~1in  rapidly decompose on rewetting (Fierer and Schimel, 2003;
two years (Laville et al., 2011). Incubation with the soils of Schimel et al., 2007). Dry—wet and freeze-thaw could disrupt
steppe, mountain meadow, sand dune, and marshland in Innepil aggregates, exposing physically protected organic matter
Mongolia showed that NO fluxes were 0.5-8.0 pg Nerh—1 and increase the accessibility of substrate that can be rapidly
at—10°C and they increased to around 30 ug N4h—1 fol- mineralized (Groffman and Tiedje, 1988; Appel, 1998; Pe-

lowing thawing (at 5C) (Yao et al., 2010). saro et al., 2003; Grogan et al., 2004). Furthermore, root ex-
udates from reviving plants following rewetting could sig-
3.1.5 Ammonia nificantly affect soil surface flux (Crow and Wieder, 2005;

Curiel Yuste et al., 2007).

Soil NH3 is primarily produced when ammonium ions  Second, physical mechanisms that can influence gas flux
(NHI) dissociate into gaseous NHinder alkaline condi- include infiltration, reduced diffusivity, and gas displacement
tions, and NH flux is sensitive to soil conditions that influ- in the soil (Jensen et al., 1996; Huxman et al., 2004). For ex-
ence NH concentrations (Schlesinger and Peterjohn, 1991ample, the infiltration of rainwater may displace £®at
McCalley and Sparks, 2008). Our database contains only &ccumulates in soil pore spaces during dry periods (Hux-
studies that measured NHThis shows that Nglis the soil  man et al., 2004; Maf@®n-Jinénez et al., 2011). Changing
gas that has received the least attention for studying the efatmospheric pressure (e.g., under windy conditions) can also
fects of rewetting and thawing of soils. create Venturi and other pressure effects that suppress or en-

Increases in soil NEl flux following rewetting have hance soil-to-air gas fluxes (Xu et al., 2006). In the following
been observed mainly in deserts (Schlesinger and Petesections, we discuss the characteristic mechanisms responsi-
john, 1991; McCalley and Sparks, 2008). In the Chihuahuarble for changes in fluxes for each soil gas.
Desert, USA, simulated rainfall increased pfuxes from
15pgNn2d—1 to 95ugNnT2d=1 within 24h and the 3.2.2 Carbon dioxide
fluxes declined as the soils dried during the next 7 days
(Schlesinger and Peterjohn, 1991). Similarly, increased NH The mechanisms responsible for increased @ax follow-
fluxes following a natural rainfall were 5-10 times higher ing rewetting and thawing have been commonly hypothe-
than pre-rain fluxes in the Mojave Desert, USA (McCalley sized as belonging to two categories: (1) enhanced micro-
and Sparks, 2008). Studies examining how rewetting affectdbial metabolism, and (2) the physical mechanisms described
NH3 flux have commonly reported 7d response following above (Sect. 3.2.1). Importantly, the relative contribution of
rewetting (Table 3), with the rate of NHlux increase rang-  autotrophic or heterotrophic activity to changes inGloxes
ing from 200 % to> 1000 % (Table 3, Fig. 4). To our knowl- following rewetting and thawing is still poorly understood.
edge, no study has looked at changes in soigMkix fol- In a Mediterranean dehesa, autotrophic activity was dom-
lowing thawing. inant during drought periods but heterotrophic activity be-

came dominant for C®fluxes following rewetting events

3.2 Mechanisms for soil gas flux response to rewetting  (Casals et al., 2011).

and thawing Possible explanations for the reduced soil(fDx rates
during or after rainfall are: (1) increased accumulation of rain
3.2.1 Common mechanisms among soil gas fluxes water in the soil pore space that reduces soib@@fusivity

rates (Rochette et al., 1993imunek and Suarez, 1993), and

Two broad mechanisms responsible for changed soil gas flu¢2) restriction of the soil macro-porosity by rainfall that re-
following rewetting and thawing have been commonly hy- duces soil air-filled pore space, enhances anaerobiosis and
pothesized: (1) enhanced microbial metabolism by substrateeduces aerobic respiration (Linn and Doran, 1984; Ball et
supply, and (2) physical mechanisms. al., 1999; Davidson et al., 2000).

First, microbial metabolism can be enhanced by the avail-
ability of accumulated substrates during soil drying and3.2.3 Methane
frozen periods that become available as solutes in water af-
ter rewetting or thawing of soils. A large proportion of mi- In general, CH production rates are controlled by the avail-
croorganisms, fine roots and mycorrhiza die during droughtability of suitable substrates, alternative electron acceptors
and frozen conditions (Clein and Schimel, 1994; Teepe et al.for competing redox reactions (i.e., sulfate reduction), the nu-
2001; Wolf et al., 2010, Supplementary information); thesetritional status of the ecosystem (i.e., bog versus fen), water
dead cells tend to have low C:N ratios and could rapidly table position or soil moisture content, temperature, and soil
decompose during rewetting (Kieft et al., 1987; Van Ges-salinity (Thauer, 1998; Hanson and Hanson, 1996; Dutaur
tel et al., 1993) and thawing (Priénand Christensen, 2001; and Verchot, 2007).

Biogeosciences, 9, 2459483 2012 www.biogeosciences.net/9/2459/2012/
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The mechanisms underlying changes in,Gldx follow- soil active layer becomes thicker, soil ¢Huxes is driven
ing rewetting and thawing are complex because they in-by soil aeration and redox controls on methanotrophy and
volve the response of both methanogenesis and methanotrornethanogenesis, as described above for rewetting. In par-
phy to changes in availability of substrates, soil environ-ticular, due to poor drainage of melting snow and seasonal
ment, particularly soil moisture, and availability of elec- ice, thawing can create saturated surface soils in the active
tron donors and acceptors that determine the redox statusyer, which can favour CiHproduction (Thauer, 1998) and
of soil. Additionally, changes to the physical soil environ- suppress methanotrophy. In contrast, Ding and Cai (2007)
ment can indirectly influence CHflux by affecting vege- found that low temperatures reduced microbial activity of
tation composition and abundance as well as the tendencgome aerobic microbes, and the resulting presence of more
for soils to store bubbles. Rewetting can increase the availO; in soil increased methanotrophy and reduced methano-
ability of water-soluble C substrates (Zsolnay andrliz, genesis. Overall, to our knowledge the mechanisms respon-
1994; Stark and Firestone, 1995; Sect. 3.2.1) that are besible for the various response of glkb rewetting and thaw-
ing used by soil methanotrophs (Whittenbury et al., 1970).ing have not been clearly explored and further research is
In unfrozen soils, there was no correlation between soil tem-needed to identify the mechanisms controlling the response
perature and Cliconsumption, suggesting strong substrate after rewetting and thawing across ecosystems.
limitation on methanotrophs (Borken et al., 2006). Borken
et al. (2006) also found that methanotrophs were stressed-2.4 Nitrous oxide
when water contents were below 0.15 gchfin the A hori- ) ) )
zon), thus rewetting could alleviate osmotic stress and pro- "€ Mechanisms responsible for increase®ONlux fol-
mote the growth and activity of soil methanotrophs (Schnell!oWing rewetting have been commonly hypothesized as
and King, 1994; West and Schmidt, 1998). While severalP€longing to two categories: (1) enhanced microbial
studies have shown that experimental drought increased cHMetabolism, and (2) the physical mechanisms described
consumption rates (cf. Borken et al., 2006; Davidson et al"above (Sect. 3.2.1). Similarly, the enhanced substrate supply

2008), Fiedler et al. (2008) found no evidence of increasediescribed above (Sect. 3.2.1) and physical mechanisms have

methanotrophy in response to natural drought in forest soilsP€€n Nypothesized as responsible for increasgd fuxes

Methanotrophs responded quickly to water table manipulafo!lowing thawing. The hypothesized physical mechanisms
tions in peat soil (Blodau and Moore, 2003). Rewetting alsofor increased KO fluxes following thawing are: first, anaer-

can inhibit methanotrophic activity in more poorly drained OPIiC water-saturated topsoil conditions are created during
soils, for example, if oxygen diffusion becomes limiting thawing by reduced drainage of melting ice and snow in the

(Striegl, 1993). Because methanogenesis requires anaerobi0Zen subsoil, and these cpnditionsﬂ are known to increase
soil conditions, drought typically suppresses £ptoduc-  N20 fluxes (Li et al., 2000; de Bruijn et al., 2009). Sec-
tion, while rewetting increases it. Methanogenic populations®d: ice layers prevent20 exchange between topsoil and

require some time to re-establish after rewetting (Fetzer eftmosphere and during thawing periods, the diffusion barri-
al., 1993). ers disappear, and the trappegINs released into the atmo-

In addition to environmental controls, both methanotrophy SPhere within a few days (Goldberg et al., 2010b; Viekay
3t al., 2010). Increased @ fluxes following thawing may

and methanogenesis are sensitive to interactions and conf: .l )
petition with other microbial redox processes. Drying and P& caused by the combination of these two mechanisms (Ko
rewetting of soils can increase $@ools through remineral- Ponen etal., 2006; de Bruijn et al., 2009).

ization of organic sulfate and/or reoxidation of iron sulfides. Enhanced nutrient supply from soil freezing has been ac-

This can stimulate sulfate reduction and effectively suppres€€Pted as one of the mechanisms to explain abruptly in-
methanogenesis (cf. Blodau and Moore, 2003). In thick Or_creased MO fluxes. However, Hentschel et al. (2009) found

ganic soils, this is more likely to occur in surface layers thatthat moderate soil freezing did not affect solute losses of

experience fluctuating water tables than in more saturatedy: POC, and mineral ions from temperate forest soils, and
deeper peat layers (Goldhammer and Blodau, 2008). argued that their results did not support the hypothesis that

Freezing increases substrate availability (Sect. 3.2.1) ani2O peak fluxes are caused by the enhanced nutrient supply
limits diffusive transport of gases (includingCnto and out from soil freezing (Goldberg et aI:, 2010b). While it has been
of soil, which could promote methanogenesis and the storag@dued that MO peak flux at spring thaw was mostly pro-
of CH, in deeper soil layers (Yu et al., 2007). Also, SHpi- duced in the surface layer (Mler et al., 2002; Furon et al.,
cally accumulates subsurface in snow or ice covered ecosy<2008; Wagner-Riddle et al., 2008), Goldberg et al. (2010b)
tems. During thawing periods, the diffusion barriers disap-Tound that released 20 in soil thawing was due to a slow
pear and trapped GHs released to the atmosphere (Friborg '¢l€ase of subsoil $0 and a delayed activation of2® re-
et al., 1997; Yu et al., 2007). Methane emissions were indeductase in the topsoil after soil frost due to low soil tempera-
pendent of temperature 0°C (Friborg et al., 1997; Yu et tUres.
al., 2007), suggesting that biological activity is not the dom-
inant control on soil CHl flux during early soil thaw. As the

www.biogeosciences.net/9/2459/2012/ Biogeosciences, 9, 2v88-2012
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The relative contribution of specific microbial processesthe dry season (Schimel and Mikan, 2005; Goldberg et al.,
(e.g., nitrification, denitrification and nitrifier denitrification) 2008). Importantly, Fe@ndez et al. (2006) suggested that
to changes in RO fluxes following rewetting and thaw- substrate availability, rather than soil moisture, influenced
ing is still poorly understood, although several studies havethe duration of the C® pulse in response to rain events,
found denitrification to be a major contribution process in while Vargas et al. (2010b) noted that €@ux pulses may
N> O fluxes following rewetting (Groffman and Tiedje, 1988; be driven not only by labile substrate availability, but also by
Prieme and Christensen, 2001) and thawing (Mgrkved et al. plant photosynthesis rates following the rain event. It can be
2006; Sharma et al., 2006; Wagner-Riddle et al., 2008). difficult to separate the often-confounded factors controlling

CO, flux pulses, requiring measurement of microbial com-
3.2.5 Nitric oxide munities, isotopic composition, and/or precise flux timing.

) ) ) For example, Unger et al. (2012) us&tfC to separate out
The mechanisms responsible for increased NO fluxes followhe effects of soil moisture versus substrate availability in an

ing rewetting have been commonly hypothesized as belonggak woodland. In addition, management practice (mowing or
ing to the two categories: (1) enhanced mlcrobl_al metaboll_smi||age) (Steenwerth et al., 2010), vegetation type (Shi et al.,
by substrate supply, and (2) physical mechanisms describegdy11) and high soil temperatures (Jager and Bruins, 1975;

above (Sect. 3.2.1). Several studies found that nitrificationggrken et al., 1999) could influence the magnitude of the re-
is the dominant source of increased NO flux following wet- sponse of soil C@flux following rewetting of dry soils.

ting of dry soils (Davidson, 1992a; Davidson et al., 1993; The magnitude of increased G@ux following thawing
Hutchinson et al., 1993). is controlled by characteristics of thawing events. For ex-
ample, frozen soils in colder temperatures show greater in-
crease of C@flux following thawing, possibly as a result of
higher amounts of substrate accumulated in colder tempera-
tures (Matzner and Borken, 2008; Goldberg et al., 2008). An-
other known factor is freeze-thaw cycle frequency, where the
largest CQ flux increase commonly occurs in the first thaw-
ing event (among repeated freezing—thawing cycles), with
the effects declining in following cycles (Pri@rand Chris-
tensen, 2001; Kurganova and Tipe, 2003; Goldberg et al.,
2008) due to limited pool of labile substrates that have built

3.2.6  Ammonia

The mechanisms responsible for the response of &H
rewetting have not been explored to our knowledge. We hy
pothesized that increase in Ijrl-taused by enhanced N min-
eralization following rewetting (Tomoaki Morishita, unpub-
lished data) and rewetting promotes reaction betweelj NH
and OH", without biota (James Raich, unpublished data) re-
sults in increased Niiflux.

3.3 Drivers for soil gas flux response to rewetting up over time (Prier@ and Christensen, 2001; Goldberg et al.,
and thawing 2008).
3.3.1 Carbon dioxide 3.3.2 Methane

The magnitude of C®flux increases following rewetting To our knowledge, the drivers responsible for the magnitude

may depend on: (1) the size of the soil organic pool; (2) theof change in soil CH flux following rewetting and thaw-

quality of organic matter, determined by its age, origin, anding have not been clearly explored. We recommend that fur-

the extent to which these substrates are protected from mither research is needed to identify the drivers controlling

crobial attack by adsorption to clay surfaces and inclusionthe response after rewetting and thawing across ecosystems.

in micro-aggregates; and (3) the properties of soil biota (VanThe lack of understanding about drivers from Lflixes

Gestel et al., 1993). Soil moisture conditions before rewet-is reflected in the low percentage of studies?%) in our

ting also influence the response (Orchard and Cook, 1983database.

Cable et al., 2008; Harms and Grimm, 2012), as can the

length and severity of drought periods (Unger et al., 2010),3.3.3 Nitrous oxide

and rain pulse size (Sponseller, 2007; Chen et al., 2009).

Based on our literature review, we identified the existence ofThe magnitude of increased,® flux caused by the wet-

a threshold in soil moisture at 12—-20 % gravimetric moistureting of dry soils varies, depending on the labile N soil pool

content, below which a substantial increase in soib@0x (Van Gestel et al., 1993; Schaeffer et al., 2003), soil texture

after rewetting is typically observed (Davidson et al., 1998; (Appel, 1998; Austin et al., 2004), soil water content (Ap-

Xu and Qi, 2001; Rey et al., 2002; Yuste et al., 2003; Dilus- pel, 1998), the size of the rewetting pulse (Ruser et al., 2006;

tro et al., 2005; Cable et al., 2008; Chou et al., 2008; Kim etYanai et al., 2007), length of drought (van Haren et al., 2005),

al., 2010b; Misson et al., 2010). and soil compaction (Uchida et al., 2008; Beare et al., 2009).
The effects of rewetting may decline with successive dry-A significant relationship between the organic N extracted

ing and rewetting cycles, possibly as a result of a limited poolfrom dried soil samples and the magnitude giONflushes

of labile substrates that have built up over time or during following soil drying-rewetting has been observed (Appel,
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1998). Field and laboratory studies with arid and semiarid3.3.5 Ammonia

soils, fine-textured soils with higher water-holding capacity

and labile C and N pools compared with coarse-texturedl he magnitude of increased NHlux following rewetting
soils, showed a greater flush ob® flux following rewet-  Of dry soils may be influenced by land cover type and soil
ting (Austin et al., 2004). In an incubation experiment with temperature (Schlesinger and Peterjohn, 1991; McCalley and
soils from a potato field, the amount of increase wONlux ~ Sparks, 2008).

following rewetting was enhanced with the amount of water However, it is important to recognize the lack of studies
added (Ruser et al., 2006). Furthermore, in another experon soil NH; flux represented in our database 2 %).

iment with soils from a field compaction trial, the produc-

tlo_n of N20 during j[he flrs_t 24 h. following rewettlng of dry 4 Effects of rewetting and thawing on soil gas fluxes:

soil was nearly 20 times higher in compacted than in uncom- analysis of a database

pacted soil (Beare et al., 2009).

~ The magnitude of increased>® flux following thaw-  ere e present results from an analysis of the database
ing of frozen soils is influenced by soil texture (Christensen«x Giobal Database of Gas Fluxes from Soils after Rewet-
and Christensen, 1991; Lemke, 1998), crop species (Kais€fng or Thawing, Version 1.0)". We found that increases in
et al., 1998; Johnson et al., 2010), forest type (Teepe ango, N,0 and NO fluxes following rewetting were nega-
Ludwig, 2004), tillage history (Singurindy et al., 2009), yely correlated to pre-change flux (totak= 112; Fig. 5, Ta-

soil water content (Koponen and Martikainen, 2004; Wolf e 4): that is, soils producing lower gas fluxes in dry condi-

et al., 2010), the length of the freezing period (Papen andjong'showed greater flux increases following rewetting. This
Butterbach-Bahl, 1999; Wagner-Riddle et al., 2007; Dietzel|yq|y occurs because drier soil conditions cause lower soil
etal., 2011), and the degree of ice formation (Wagner-Riddl&y 55 fiuxes, but also greater accumulation of substrates, pro-
etal., 2010). Soils with clay-dominated aggregates are prong,qting |arge fluxes following rewetting (Orchard and Cook,
to high N;O flux during thawing periods (van Bochove etal., 19g3-yanai et al., 2007; Unger et al., 2010). This finding is
2000; Muller et al., 2003). However, there is little informa- ;o ngjstent with results from many previous studies (Orchard
tion on the subsequent effect of soil water content GON and Cook, 1983; Ruser et al., 2006; Yanai et al., 2007; Cable
fluxes (Rover et al., 1998; van Bochove et al., 2000). For 4 al., 2008).

example, Rver et al. (1998) measured large fluxes N We also found a positive relationship betweesONflux

after freezing in an agricultural soil at 80 % water-filled pore ,reases following thawing and mean annual temperature

space, while van Bochove et al. (2000) reported that @ N (MAT) (n=21; Fig. 6, Table 5), implying that soils in

f!uxes from a clay soil were significantly larger at a volumet- warmer climates exhibit greater,® flux increases fol-

ric water content of 39 % than at 28 %. lowing thawing than colder climate soils. This result con-
trasts with previous individual studies showing that colder

3.3.4 Nitric oxide and longer-frozen soils have greater flux increases following
thawing (Papen and Butterbach-Bahl, 1999; Wagner-Riddle
et al., 2007, 2010; Dietzel et al., 2011). A partial explana-

The magnitude of increased NO flux can be influenced by th;;y may be that warmer regions have higher labile substrate

duration and severity of antecedent dry periods (Butterbachl-nputs (i.e., fine roots, microbial biomass, soil organic mat-

Bahl et al., 2004; McCalley and Sparks, 2008), change ingrg) \which accumulate in soils during frozen periods and
soil moisture (Yienger and Levy, 1995) and temperatureq,ntribute to larger gas fluxes following thawing.

(Smart et al., 1999; McCalley and Sparks, 2008), vegetation Finally, we found that C@ flux responses were posi-
type (Barger et al., 2005; Mcpalley and Sparks, 2008), SOiItively related with MAT, while NO and NO flux responses
type (Martin et al., 2003), microbial demand for N (Stark ere negatively related to MAT (all marginally significant)
et al., 2002), frequency of wetting events (Davidson et al.,,, _ go. Fig. 6, Table 5). These relationships are not well ex-
1991; Hartley and Schlesinger, 2000), previous disturbancey|ained by our current understanding about mechanisms and
(Levine et al., 1988; Poth et al., 1995), and agricultural man-yrjyers of gas flux increase following rewetting, and further

agement (Hutchinson and Brams, 1992). Interestingly, thereyy,gies are needed to determine if these patterns can be gen-
are conflicting results on the magnitude of increased NO flux, 4jized to other sites and regions.

after rewetting, which were independent of both the size of
rewetting pulse (Davidson, 1992b; Martin et al., 1998) and
the periods of antecedent dry days (Martin et al., 1998). Also,
other reports have suggested that lower amounts of water ad-
dition result in higher NO pulses (Hutchinson et al., 1997;
Dick et al., 2001). These conflicting results emphasize the
uncertainty and limitations of predicting the magnitude of
NO flux responses to soil rewetting.
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Table 4. Summary statistics of relationship between mean pre-change flux and flux change (i.e. peak flux as a percentage of pre-event flux)
by gas and rewetting or thawing (Fig. 5).

Eventtype Gastype Intercept Slope Slope F-statistic ~ Slope p-value
Rewetting CQ 4527+£0.296 —0.902+0.125 52.35 < 0.0001
Rewetting NO 2478+£0.250 -—-0.421+0.130 10.53 0.003

Rewetting NO 578+0.175 -0.242+0.102 5.601 0.021

Table 5. Summary statistics of relationship between mean annual temperature and flux change (i.e. peak flux as a percentage of pre-even
flux) by gas and rewetting or thawing (Fig. 6).

Eventtype Gastype Intercept Slope Slope F-statistic ~ Slope p-value
Rewetting CQ 2.133+0.214 Q037£0.021 3.315 0.089
Rewetting NO 3800+0.347 —-0.033+0.017 3.871 0.058
Rewetting NO 4055+0.333 -0.036+0.017 3.619 0.072
Thawing NO 2540+0.280 0154+0.049 10 0.005
5 Knowledge gaps and future directions How soils underlying different vegetation types respond

to rewetting and thawing events (Teepe and Ludwig, 2004;
Matzner and Borken, 2008; Kim et al., 2010b; Shi et al.,
2011) is also a research frontier. This is important because
different vegetation types can have different phenologies and
photosynthesis rates (Vargas et al., 2010b), nutrient cycling
Overall, the scientific community lacks a good understand-rates in detritus (Mogt et al., 1986), and soils (Borken and
ing of both the responses and mechanisms of soil gases foBeese, 2005; Paret al., 2006). Plant-mediated effects on
lowing rewetting or thawing and their impact on annual bud- soil microclimate, such as soil temperature and soil moisture
gets. Many studies report the magnitude of peak flux or in-(Raich and Schlesinger, 1992; Aussenac, 2000), and plant
creased rate of flux following rewetting or thawing, but often mediated effects on root, rhizomorph (Vargas and Allen,
do not identify: (1) whether peak fluxes are significantly dif- 2008) and mycorrhizae (Heinemeyer et al., 2012) dynamics
ferent from fluxes of pre-drought or pre-frozen periods, (2) are also only beginning to be explored. Novel mechanisms
the change in soil moisture or soil temperature, (3) the timeand pathways by which plants emit gas have been explored
lag between rewetting or thawing events and peak fluxes, (4jecently (Smart and Bloom, 2001; Pihlatie et al., 2005; Kep-
peak flux durations, (5) cumulative emissions in peak fluxespler et al., 2006; Aubrey and Teskey, 2009; Gauci et al.,
and (6) their contributions to annual budgets. Efforts to col-2010), but how these pathways respond to rewetting or thaw-
lect such information will contribute to improving our un- ing events are not well understood. Furthermore, the relative
derstanding of the response of gas fluxes to rewetting anémportance of source processes responsible for the increased
thawing events. Compared to @@nd NO fluxes, our un-  fluxes of CQ (i.e., autotrophic or heterotrophic activity), NO
derstanding of the effect of rewetting and thawing onsCH and NO (i.e., nitrification, denitrification or nitrifier denitri-
NO and NHK; fluxes and mechanisms and drivers of the vari- fication) is poorly understood. Finally, the effect of rewetting
ation is limited, as shown in our database. We encourage thand thawing on dissolved soil gas has been only rarely stud-
scientific community to perform experiments and observa-ied (Matzner and Borken, 2008). To our knowledge, there
tions to better understand their magnitudes and mechanisms only one study showing indirect evidence of this effect,
Changes in the relative proportion of GQOCH,, N2O, which found that in spring rainfall after thawing increased
NO and NH(e.g., CQ/CHg; CO,/ N2O) emitted following  concentration of dissolved 20 in soil solutions in forest
rewetting and thawing compared with that of pre-disturbance(Xu et al., 2009). These results suggest that the increased
conditions are poorly understood. To report these ratios andN2O following rewetting can be dissolved in the soil solu-
the change, additional efforts are required to conduct multi-tion (Xu et al., 2009). This BO in the soil solution can drain
ple gases measurements. This is important since the diffetto surface or groundwater, and be a source of indire€@ N
ent mechanisms would be involved in changing the relativeflux (IPCC, 2006). It is therefore important to understand and
proportion of the emissions and a good understanding of thejuantify the effect of rewetting and thawing on dissolved soil
variation of the relative proportion could improve our under- gases.
standing of the impact of rewetting or thawing on annual gas
budgets.

5.1 Challenges in understanding the responses and
mechanisms of soil gas fluxes
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lab incubations) versus flux change (i.e. peak flux as a percentage @nly statistically significant relationships (for GON,O and NO
pre-event flux), by gas and rewetting or thawing. Only statistically on |eft, and NO on right) are shown.

significant relationships (for C&£ No>O and NO on left) are shown.

to evaluate the impacts of these events across regions of
5.2 Temporal and spatial resolution the Earth. Although multi-spatial scale sampling is needed,

we recognize that there is frequently a cost trade-off be-
Considering the short response time and short effective petween temporal sampling and spatial sampling. However,
riod of the pulse in soil gas fluxes, many peak fluxes mightwith improving technologies and the growth of continental
have been missed in previous studies (see Fig. 2), as freand global networks (i.e., NEON, ICOS, FLUXNET), multi-
quently only a few manual measurements were used (Joogmporal and multi-scale experiments will become more
et al., 2010; Maljanen et al., 2010). The lack of temporal common in the near future.
sampling resolution may also influence the estimation of an-
nual fluxes. In contrast, substantial rewetting effects have5.3 Experimental designs
been frequently observed with automated chamber systems
(Borken et al., 1999: 4-5 observations per day), eddy covariTo test the effect of rewetting and thawing on soil gas flux,
ance methods (cf. Lee et al., 2004; Kim et al., 2010a), andcontrolled experiments have been frequently conducted both
automated measurements of soil £@ofiles (Vargas et al., in field and laboratory settings using, for example, rainfall
2010b). Such continuous flux measurements during and afteexclusions (Borken et al., 2006; Davidson et al., 2008), snow
pulse events will help calculate the temporaldynamics andemoval (Groffman et al., 2006; Maljanen et al., 2007), and
the total contribution to the cumulative flux and annual flux soil cores incubated in the lab (Panikov and Dedysh, 2000).
(Maljanen et al., 2010; Vargas et al., 2010a). When manuaHowever, these conditions may not accurately simulate nat-
chamber methods have to be used, more frequent measuraral conditions (Henry, 2007). Future experiments might:
ments (Smith and Dobbie, 2001; Parkin, 2008) or measure{1) simulate drying-rewetting and freezing-thawing based on
ments coinciding with rewetting or thawing events (Beare ethistorical or projected extreme events, the latter under mul-
al., 2009; Kim et al., 2010b) should be considered. tiple climate change scenarios (Jentsch et al., 2007); (2) col-

Most studies have explored the effects of rewetting andlect soil samples in the appropriate season and include rel-

thawing at small spatial scales (i.e., plot level). Thus, a crit-evant surface factors such as plant litter in the autumn or
ical issue is how to scale up to the ecosystem, landscapexcess water in the spring (Henry, 2007); and (3) develop
or continental scale. Rewetting and thawing pulses may benew methods for simulating field conditions more closely in
patchily distributed in space, and without measurements irthe laboratory (Hu et al., 2006). Future studies could benefit
various spatial and temporal scales (i.e., chambers, eddfrom these approaches in combination with high-temporal
covariance, upscaling through remote sensing) it is difficultfrequency resolution using automated flux measurements.

www.biogeosciences.net/9/2459/2012/ Biogeosciences, 9, 2v88-2012



2474 D.-G. Kim et al.: Effects of soil rewetting and thawing on soil gas fluxes

An area of significant promise involves combining mi- 6 Conclusions
crobial community analyses (Kim et al., 2008; Smith et al.,
2010; Sawicka et al., 2009) and/or stable isotope techniqueRewetting and thawing events are important short-term tran-
(Wagner-Riddle et al., 2008; Goldberg and Gebauer, 2009sitional and non-stationary phenomena in terms of hydrology
Gaudinski et al., 2009; Unger et al., 2012) with flux mea- and the thermodynamics of soil systems. Through this re-
surements. Whether performed in the lab or field, such exview and the compiled database, we identified that major soil
periments could improve our understanding of rewetting andgases such as GOCHs, N2O, NO and NH are influenced
thawing effect on soil gas fluxes, identifying source pro- substantially by these events. The responses of these gases to
cesses and mechanisms and quantifying their contributiongewetting and thawing events are critical for our understand-

to overall responses. ing of C and N dynamics and land-atmosphere gas exchange.
The mechanisms that control these fluxes during rewetting
5.4 Model improvement and thawing events are not fully understood, but enhanced

microbial metabolism by substrate supply and changed soil

Models are promising tools for evaluating the importance physical properties influencing gas flux are accepted as the
of drying-rewetting and freeze-thaw events (Groffman et al.,main mechanisms responsible for changes in all the gases we
2009). Simple linear regressions and empirical models haveonsidered. An analysis of the compiled dataset showed that
been developed based on the relationships between envirofewer initial (pre-change) fluxes of GONO and NO tend
mental factors, including soil moisture and/or soil temper-to be associated with greater flux increases following rewet-
ature and soil gas fluxes (Roelandt et al., 2005; Flecharding. Additionally, increases in O flux following thawing
et al., 2007). Some rely on empirical observations but failwere greater in warmer climate soils than in colder soils. Fu-
under rewetting or thawing conditions (Borken et al., 2003; ture climatic change is likely to alter the frequency and inten-
Lawrence et al., 2009). We propose that further work in thissity of drying-rewetting events and thawing of frozen soils.
area will increasingly have to incorporate non-linearities in Thus, rewetting and thawing events could become more crit-
the flux response and the actual substrate and microbial dyical for land-atmosphere gas exchange and may be more im-
namics occurring (Davidson and Janssens, 2006; Vargas @ortant to incorporate in biogeochemical models. Advance-
al., 2011). ments in this research field are likely to come from high fre-

Process-based models have been developed with the olsjuency measurements of gas fluxes, soil microbial analyses,
jective of simulating terrestrial ecosystem C and N bio- isotope measurements, and stronger collaborations between
geochemistry including GHGs (e.g. DAYCENT, Parton et the process-based modelling community and the experimen-
al., 2001; DNDC, Li et al., 1992; ecosys, Grant and Pat-tal scientific community.
tey, 2003). Most existing process-based models require ad-
ditional work to improve simulating rewetting and thawing
effect on soil gas fluxes (Jarecki et al., 2009; Norman et al. Appendix A
2008; Kariyapperuma et al., 2011; Wolf et al., 2012). Groff-
man et al. (2009) suggested that modelling peak fluxes ass Blog for open discussion and web based open databases
ciated with drying and rewetting events requires: (1) accurate
simulation of moisture changes in different soil layers andWe have created a blog (web-based discussion) enti-
complex shifts in utilisation of fast- and slow-cycling soil or- tled “Rewetting, thawing and soil gas fluxeshtip://
ganic matter pools by microbes that take place during theseewettingandthawing.blogspot.conand we have uploaded
events (Miller et al., 2005), and (2) daily or sub-daily simula- a current version of this review paper section by sec-
tions of both physical and biological processes (Kiese et al.tion as an individual post in the Blog; comments can be
2005). They also suggested that the modelling of freeze-thaveft under the separate posts. An open-access database,
induced NO fluxes requires consideration of the increasewhich can be modified by the users, is linked to the
in easily degradable substrates following freezing, tight cou-Blog: “Rewetting, thawing and soil gas fluxes database”
pling of nitrification and denitrification in the water saturated (https://spreadsheets.google.com/spreadsheet/ccc?key=0Aj
topsoil, and the breakdown of® reductase activity at low  Wu6bR8SA9idHY4Tk5TdDZDMWgtMEJsUVhFOWhKL
temperature (Holtan-Hartwig et al., 2002). Another process-Wc&hl=en US). The database contains detailed informa-
based modelling study found that including decreases in hytion in the reported studies on soil gas peak flux follow-
draulic conductivity in frozen soil improved the simulation of ing rewetting and thawing. The database is hosted in web-
pulse NO emissions following thawing (Wolf et al., 2012). based spreadsheets and is easily accessible and modified.
Regardless of the specific process under consideration, it i¥he authors do not have any relationship with the compa-
critical to enhance the communication between field scien-ies currently being used to host the Blog and databases.
tists and the modelling community, as models can be used t&inally, version 1 of this database has been archived at the
generate hypotheses (de Bruijn et al., 2009) to be tested i®ak Ridge National Laboratory Distributed Active Archive
the field and laboratory. Center http://daac.ornl.gov/SOILS/guides/globasg flux_
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vl.html A Global Database of Gas Fluxes from Soils af- Blankinship, J. C. and Hart, S. C.. Consequences of manipu-
ter Rewetting or Thawing, Version 1.0) and is available for lated snow cover on soil gaseous emission and N retention
reproducing the results presented in this study. in the growing season: a meta-analysis, Ecosphere, 3, artl,
doi:10.1890/es11-00225.2012.
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