Abstract
We propose a general method for the description of arbitrary single spin-j
states transforming according to (j,0)+(0,j) carrier spaces of the Lorentz
algebra in terms of Lorentz-tensors for bosons, and tensor-spinors for
fermions, and by means of second order Lagrangians. The method allows to avoid
the cumbersome matrix calculus and higher \partial^2j order wave equations
inherent to the Weinberg-Joos approach. We start with reducible Lorentz-tensor
(tensor-spinor) representation spaces hosting one sole (j,0)+(0,j) irreducible
sector and design there a representation reduction algorithm based on one of
the Casimir invariants of the Lorentz algebra. This algorithm allows us to
separate neatly the pure spin-j sector of interest from the rest, while
preserving the separate Lorentz- and Dirac indexes. However, the Lorentz
invariants are momentum independent and do not provide wave equations. Genuine
wave equations are obtained by conditioning the Lorentz-tensors under
consideration to satisfy the Klein-Gordon equation. In so doing, one always
ends up with wave equations and associated Lagrangians that are second order in
the momenta. Specifically, a spin-3/2 particle transforming as (3/2,0)+ (0,3/2)
is comfortably described by a second order Lagrangian in the basis of the
totally antisymmetric Lorentz tensor-spinor of second rank, \Psi\_ \mu\nu.
Moreover, the particle is shown to propagate causally within an electromagnetic
background. In our study of (3/2,0)+(0,3/2) as part of \Psi\_\mu\nu we
reproduce the electromagnetic multipole moments known from the Weinberg-Joos
theory. We also find a Compton differential cross section that satisfies
unitarity in forward direction. The suggested tensor calculus presents itself
very computer friendly with respect to the symbolic software FeynCalc.
Users
Please
log in to take part in the discussion (add own reviews or comments).