Nothing Special   »   [go: up one dir, main page]

@sdo

A Robust Model for Paper Reviewer Assignment

, , and . Proceedings of the 8th ACM Conference on Recommender Systems, page 25--32. New York, NY, USA, ACM, (2014)
DOI: 10.1145/2645710.2645749

Abstract

Automatic expert assignment is a common problem encountered in both industry and academia. For example, for conference program chairs and journal editors, in order to collect "good" judgments for a paper, it is necessary for them to assign the paper to the most appropriate reviewers. Choosing appropriate reviewers of course includes a number of considerations such as expertise and authority, but also diversity and avoiding conflicts. In this paper, we explore the expert retrieval problem and implement an automatic paper-reviewer recommendation system that considers aspects of expertise, authority, and diversity. In particular, a graph is first constructed on the possible reviewers and the query paper, incorporating expertise and authority information. Then a Random Walk with Restart (RWR) 1 model is employed on the graph with a sparsity constraint, incorporating diversity information. Extensive experiments on two reviewer recommendation benchmark datasets show that the proposed method obtains performance gains over state-of-the-art reviewer recommendation systems in terms of expertise, authority, diversity, and, most importantly, relevance as judged by human experts.

Description

A robust model for paper reviewer assignment

Links and resources

Tags

community

  • @dblp
  • @sdo
@sdo's tags highlighted