Nothing Special   »   [go: up one dir, main page]

Academia.eduAcademia.edu
International Journal of Engineering Science 48 (2010) 1519–1533 Contents lists available at ScienceDirect International Journal of Engineering Science journal homepage: www.elsevier.com/locate/ijengsci Long-time behaviour of multi-component fluid mixtures in porous media Salvatore Rionero University of Naples Federico II, Department of Mathematics and Applications ‘‘R. Caccioppoli”, Complesso Universitario Monte S. Angelo, Via Cinzia, 80126 Naples, Italy a r t i c l e i n f o Article history: Received 12 April 2010 Accepted 15 July 2010 Available online 23 August 2010 To K.R. Rajagopal with best wishes. Keywords: Multi-component fluid mixtures Porous media Absorbing sets Convection Stability a b s t r a c t The long-time behaviour of a triply convective–diffusive fluid mixture saturating a porous horizontal layer in the Darcy–Oberbeck–Boussinesq scheme, is investigated. It is shown that the L2- solutions are bounded, uniquely determined (by the initial and boundary data) and asymptotically converging toward an absorbing set of the phase-space. The stability analysis of the conduction solution is performed. The linear stability is reduced to the stability of ternary systems of O.D.Es and hence to algebraic inequalities. The existence of an instability area between stability areas of the thermal Rayleigh number (‘‘instability island”), is found analytically when the layer is heated and ‘‘salted” (at least by one ‘‘salt”) from below. The validity of the ‘‘linearization principle” and the global nonlinear asymptotic stability of the conduction solution when all three effects are either destabilizing or stabilizing, are obtained via a symmetrization. Ó 2010 Elsevier Ltd. All rights reserved. 1. Introduction The behaviour of convective–diffusive fluid mixtures in a porous layer can describe several phenomena. In particular there are numerous applications in geophysical situations like salt movement underground, contaminant transport and underground water flow, ice melting, etc. {cfr. [1–3] and the references therein}. Although the subject of double-diffusive convection of a fluid-saturated porous layer is still a very active research area {cfr. for instance, [1–20,29,30] and the references therein}, the same subject with more than two different chemical species dissolved in – although more difficult – has also attracted, in the past as nowadays, the attention of many authors {cfr. [21–25] and the references therein}. This is because the multi-component diffusive convection presents a picture of theoretical behaviours increasing together with the number of components and new behaviours, like the existence of ‘‘instability islands” between stability areas of the thermal Rayleigh number [23–25]. In [23] – via the energy method – the analysis of the linear and nonlinear stability of the conduction solution is performed and new behaviours are envisaged numerically. In particular, for certain values of the Rayleigh and Prandtl numbers, the existence of an ‘‘instability island” is envisaged numerically. In the present paper we reconsider the problem studied in [23] aimed to: (1) study the long-time behaviour of the L2-solutions; (2) reduce the (linear) stability of the conduction solution to the stability of the null solution of ternary linear systems of O.D.Es [28]; (3) formulate the stability conditions through algebraic inequalities, for any values of the Rayleigh and Prandtl numbers; (4) show analytically the existence of an ‘‘instability island ”, when the layer is heated and salted (at least by one salt) from below. E-mail address: rionero@unina.it 0020-7225/$ - see front matter Ó 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.ijengsci.2010.07.007 1520 S. Rionero / International Journal of Engineering Science 48 (2010) 1519–1533 The plan of the paper is as follows: Section 2 is devoted to preliminaries. Successively, in Section 3, the boundedness and uniqueness of the solutions is shown. Section 4 is devoted to the existence of absorbing sets. In the Section 5 the linear stability of the conduction solution is reduced to the stability of the null solution of systems of three O.D.Es. Then, applying the Routh–Hurwitz conditions, the stability conditions are obtained – in closed forms – via algebraic inequalities in terms of Rayleigh and Prandtl numbers. The existence of an ‘‘instability island ” when the layer is heated and salted (by at least one salt) from below, is obtained in Section 6. Successively (Section 7) it is shown that the most destabilizing case of a layer heated from below and salted from above, is symmetrizable and hence the coincidence between the conditions of global nonlinear stability and of linear stability is reached choosing the L2-norm of the perturbations as Liapunov function. The paper ends, (Section 8), with some final remarks. 2. Preliminaries Let Oxyz be a cartesian frame of reference with fundamental unit vectors i, j, k, with k pointed vertically upward. We assume that the fluid has dissolved in two different chemical components (or ‘‘salts”) Sa (a = 1, 2), having the concentration Ca (a = 1, 2), respectively and we assume that the equation of state is given by h    i q ¼ q0 1  aðT  T 0 Þ þ A1 C 1  Cb 1 þ A2 C 2  Cb 2 ; b a ða ¼ 1; 2Þ, are reference values of density, temperature and salt concentration respectively and the conwhere q0 ; T 0 ; C stants a, Aa denote respectively the thermal and solute Sa expansion coefficient respectively (a = 1, 2). Combining the Darcy’s Law rp ¼  l K v þ qg; together with the equations of conservation of temperature and solute, the equations governing the isochoric motions can be written as 8 h    i > rp ¼  Kl v  gq0 1  aðT  T 0 Þ þ A1 C 1  Cb 1 þ A2 C 2  Cb 2 ; > > > > > > < r  v ¼ 0; T t þ v  rT ¼ kDT; > > > > > C þ v  r C 1 ¼ k 1 DC 1 ; > > 1t : C 2t þ v  rC 2 ¼ k2 DC 2 ; ð1Þ where p = pressure field, l = dynamic viscosity, K = porosity, v = velocity, g = gravity, k = thermal diffusivity, Ka = diffusivity of the solute Sa, To (1) we append the boundary conditions 8 > < Tð0Þ ¼ T 1 ; TðdÞ ¼ T 2 ; C a ð0Þ ¼ C al ; C a ðdÞ ¼ C au > : v  k ¼ 0; at z ¼ 0; d; a ¼ 1; 2; ð2Þ with T 1 ; T 2 ; C al ; C au ða ¼ 1; 2Þ, positive constants. The boundary value problem (1) and (2) admits the conduction solution e a Þ given by Tracey [23] e; C ~; T ~; p ðv 8 2 v~ ¼ 0; Te ¼ T 1  bz; b ¼ T 1 T ; > d > > > > zðdC Þ e a ¼ C a  a ; C a  C a ¼ dC a ; > <C u l l d h i ðdC 1 Þ ðdC 2 Þ ab 2 ~ > p ¼ p þ q gz  þ A 1 2d þ A2 2d þ 0 > 0 2 > > h    i > > : q gz2 1  aðT  T Þ þ A C  C b 1 þ A2 C 2l  C b2 ; 1 0 1 1l 0 ð3Þ where p0 is a constant. Setting v ¼ v~ þ u; ~ þ p; p¼p and introducing the scalings T ¼ Te þ h; e a þ Ua ; Ca ¼ C ð4Þ 8 2 > t ¼ t  dk ; u ¼ u dk ; p ¼ p lKk ; x ¼ x d; h ¼ h T ] ; > > > >  1  1 > > lkjdTj 2 > a jdC a j 2 < Ua ¼ ðUa Þ ua ; T ] ¼ aq ; ua ¼ lAkP ; a q0 gKd 0 gKd 1 1     > 2 > a jdC a j 2 > R ¼ aq0 gKdjdTj ; Ra ¼ Aa q0 gKdP ; > > lk lk > > > : dT ¼ T  T ; H ¼ sgnðdTÞ; H ¼ sgnðdC Þ; P ¼ 1 2 a a a ð5Þ k ka ; S. Rionero / International Journal of Engineering Science 48 (2010) 1519–1533 1521 the dimensionless equations governing the perturbation {u*, p*, h*, (Ua)*}, omitting the stars, are 8 rp ¼ u þ ðRh  R1 U1  R2 U2 Þk; > > > > > > < r  u ¼ 0; ht þ u  rh ¼ HRu  k þ Dh; > > > P1 ðU1t þ u  rU1 Þ ¼ H1 R1 u  k þ DU1 ; > > > : P2 ðU2t þ u  rU2 Þ ¼ H2 R2 u  k þ DU2 ; ð6Þ ðu  iÞz ¼ ðu  jÞz ¼ u  k ¼ h ¼ U1 ¼ U2 ¼ 0 on z ¼ 0; 1: ð7Þ under the boundary conditions (free boundary conditions) In (5) and (6) R and Ra are the thermal and salt Rayleigh numbers while Pa are the salt Prandtl numbers. 3. Boundedness and uniqueness To (6) and (7) we append the initial conditions uðx; 0Þ ¼ u0 ðxÞ; hðx; 0Þ ¼ h0 ðxÞ; Ua ðx; 0Þ ¼ Ua0 ðxÞ; a ¼ 1; 2: ð8Þ The initial-boundary value problem (6)–(8) will be studied under the assumptions that the perturbations (u, h, U1, U2) are periodic with periods 2apx and 2apy in the x and y directions (ax > 0, ay > 0) and belong to L2(X)"t P 0,  X ¼ 0;    2p 2p  0;  ½0; 1; ax ay ð9Þ being the periodicity cell. Theorem 1. The solutions of the boundary value problem  @F  þ av  rF ¼ bDF; @t in X; r  v ¼ 0; v  k ¼ 0; ð10Þ z ¼ 0; 1; ½F z¼0 ¼ F 1 ; ½Fz¼l ¼ F 2 ; with a, b, Fi(i = 1, 2) positive constants, are bounded according to the point-wise estimate sup jFj < F 1 þ supðF 0  F 1 Þþ þ supðF 0  F 2 Þ ; XRþ X ð11Þ X with F0 = [F]t=0. Proof. We give the proof only in the case F1 i F2, since a completely analogous proof holds in the case F1 6 F2. Setting [26]: e F ¼ F  fðF  F 1 Þþ  ðF  F 2 Þ g; ð12Þ it follows that 8 > < F > F1 > F2 ) F2 < F < F1 ) > : F < F2 < F1 ) Therefore e F ¼ F  ðF  F 1 Þ ¼ F 1 ; e F ¼ F; e F ¼ F  ðF  F 2 Þ ¼ F 2 : ð13Þ e F 6 F1; ð14Þ and (12) implies jFj < F 1 þ ðF  F 1 Þþ þ ðF  F 2 Þ : ð15Þ 2 Denoting by h ,  i and k  k the scalar product and the norm in L (X) and setting X = X1(t) + X2(t) with ðF  F 1 Þþ  P 0 in X1 ;  0 in X2 ðF  F 1 Þ   0 in X1 P 0 in X2 it follows that rðF  F 1 Þþ  DðF  F 1 Þþ  0 in X2 ; rðF  F 1 Þ  DðF  F 1 Þ  0 in X1 : 1522 S. Rionero / International Journal of Engineering Science 48 (2010) 1519–1533 By virtue of (10) it follows that @ ðF  F 1 Þ þ av  rðF  F 1 Þ ¼ bDðF  F 1 Þ: @t ð16Þ On the other hand (via the Reynolds transport theorem) Z ðF  F 1 Þþ Z ðF  F 1 Þþ ðF  F 1 Þ dX1  0: X1 Z  @  ðF  F 1 Þþ ðF  F 1 Þ dX1  @t X1 Z d ¼ ðF  F 1 Þþ ðF  F 1 Þ dX1  0; dt X1 @ ðF  F 1 Þ dX1 ¼ @t Z X1 ðF  F 1 Þ @ ðF  F 1 Þþ dX1 @t since X1 Hence in view of the previous relations (  ðF  F 1 Þþ z¼0 ¼ 0; < v ; rðF  F 1 Þpþ >¼ 0; R p2 2 < ðF  F 1 Þp1 þ ; DðF  F 1 Þþ >¼ ðp  1Þ X ðF  F 1 Þþ jrðF  F 1 Þþ j dX; ð17Þ on multiplying (16) by (F  F1)p1 for p > 1 and integrating over X one easily obtains Z X 1p Z 1p ðF  F 1 Þpþ dX 6 ðF 0  F 1 Þpþ dX : ð18Þ X Letting p ? 1, for the dominate convergence theorem, it turns out that supðF  F 1 Þþ 6 supðF 0  F 1 Þþ ; X X 8t P 0: ð19Þ 8t P 0; ð20Þ Since, analogously, one easily obtains supðF  F 2 Þ 6 supðF 0  F 2 Þ ; X X Eq. (11) immediately follows. h Remark 1. In view of (6)1 one obtains kuk2 6 ðRkhk þ R1 kU1 k þ R2 kU2 kÞku  kk: ð21Þ But in view of Theorem 1 exists a constant m > 0 such that kuk2 6 mku  kk 6 mkuk; ð22Þ kuk 6 m: ð23Þ hence Theorem 2. System(6)–(8) can admit only one solution for any assigned initial data. e 1; U e 2; u e Þ be two solutions of (6)–(8). Setting ~; P h; U Proof. Let (h, U1, U2, u, P) and ð~ W ¼ ~h  h; it follows that e a  Ua ; Wa ¼ U ~  u; U¼u e  P; P ¼ P 8 U ¼ rP þ ðRW  R1 W1  R2 W2 Þk; > > > > > > > > r  U ¼ 0; > > < ~  rW þ U  rh ¼ HU  k þ DW; Wt þ u > > > > > ~  rW1 þ U  rU1 Þ ¼ H1 R1 U  k þ DW1 ; > P1 ðW1t þ u > > > > : ~  rW2 þ U  rU2 Þ ¼ H2 R2 U  k þ DW2 ; P2 ðW2t þ u a ¼ 1; 2; ð24Þ ð25Þ S. Rionero / International Journal of Engineering Science 48 (2010) 1519–1533 1523 with  W ¼ W1 ¼ W2 ¼ 0 for z ¼ 0; 1; ðU  iÞz ¼ ðU  jÞz ¼ ðU  kÞ ¼ 0; z ¼ 0; 1: ð26Þ Then one easily obtains 81 > > 2 > > <1 2 Wk2 6 jHj  kU  kk  kWkþ < U  rW; h > krWk2 ; d k dt P1 dtd kW1 k2 6 jH1 j  kU  kk  kW1 kþ < U  rW1 ; U1 > krW1 k2 ; > 1 > P2 d kW2 k2 6 jH2 j  kU  kk  kW2 kþ < U  rW2 ; U2 > krW2 k2 ; > > : 2 dt kUk 6 RkWk þ R1 kW1 k þ R2 kW2 k; ð27Þ In view of 8 kU  kk  kWk 6 kUk  kWk 6 RkWk2 þ ðR1 kW1 k þ R2 kW2 kÞkWk > > >   >   > > < 6 R þ 12 ðR1 þ R2 Þ kWk2 þ 12 R1 kW1 k2 þ R2 kW2 k2 ;   > kU  kk  kW1 k 6 kUkkW1 k 6 R1 þ 12 ðR þ R2 Þ kW1 k2 þ 12 ðRkWk2 þ R2 kW2 k2 Þ; > > >   > > : kU  kk  kW k 6 R þ 1 ðR þ R ÞkW k2 þ 1 RkWk2 þ R kW k2 ; 2 2 1 2 1 1 2 2 ð28Þ setting (   E ¼ 12 kWk2 þ P1 kW1 k2 þ P2 kW2 k2 ; m ¼ maxðjH1 j; jH2 j; jHjÞ; ð29Þ it follows that 2 dE 6 ð4R þ R1 þ R2 ÞkWk2 þ ðR þ 4R1 þ R2 ÞkW1 k2 þ ðR þ R1 þ 4R2 ÞkW2 k2 þ j < U  rW; h > j þ j m dt  2  < U  rW1 ; U1 > j þ j < U  rW2 ; U2 > j þ   krWk2 þ krW1 k2 þ krW2 k2 : m ð30Þ But in view of Theorem 1 exists a positive constant m1 such that sup ðjhj; jU1 j; jU2 jÞ 6 m1 ; ð31Þ XRþ hence one obtains  2  8 2 kUk 1 > > > j < U  rW; h > j 6 m1 < jUj; jrWj >6 2 m1 e þ ekrWk ; > <  2  2 ; þ e j < U  rW1 ; U1 > j 6 12 m1 kUk 1 krW1 k e 1 > >  2  > > 2 kUk 1 : j < U  rW2 ; U2 > j 6 2 m1 e2 þ e2 krW2 k : ð32Þ Choosing e ¼ e1 ¼ e2 ¼ 1 ; m ð33Þ in view of (23), it turns out that dE 6 qE () E 6 E0 eqt ; dt ð34Þ with q = positive constant. Hence E0 ¼ 0 ) EðtÞ ¼ 0; 8t 2 Rþ :  ð35Þ 4. Absorbing sets Lemma 1. Let (u, h, U1, U2) 2 L2(X)6 be a solution of (6) and (7). Then (a = 1, 2) h ¼ ~h þ h; ~a þ U  a; Ua ¼ U in X  Rþ ; ð36Þ with j~hj 6 1; ~ a j 6 1; jU ð37Þ 1524 S. Rionero / International Journal of Engineering Science 48 (2010) 1519–1533  a , decreasing functions of t such that and  h; U ( khð; tÞk 6 fkðh  1Þþ k þ kðh þ 1Þ kgt¼0 egt ;  a ð; tÞk 6 fkðU  a  1Þ k þ kðW  a þ 1Þ kg egt ; kU t¼0 þ  with  g ¼ p2 inf 1; 1 1 ; : P1 P2 Proof. See [25] pp. 136–137 ð38Þ ð39Þ h Lemma 2. Let (u, h, U1, U2) 2 L2(X)6 be a solution of (6) and (7). Then    d 2 khk þ P1 kU1 k2 þ P2 kU2 k2 6 2p2 khk2 þ P1 kU1 k2 þ P2 kU2 k2 þ 3RjH þ 1jkhk2 þ j3R1 jH1  1j  P1 j  kU1 k2 dt þ j3R2 jH2  1j  P2 jkU2 k2 : ð40Þ Proof. In view of (6) and (7), one obtains with 81 d > < 2 dt e ¼< Dh; h > þ < DU1 ; U1 > þ < DU2 ; U2 > þ < HRh þ H1 R1 U1 þ H2 R2 U2 ; x > kuk2 > : þ < Rh  R1 U1  R2 U2 ; x >¼ 0; 1 2 e ¼ ðkhk2 þ P1 kU1 k2 þ P2 kU2 k2 Þ; ð41Þ ð42Þ and hence   1 de ¼  krhk2 þ krU1 k þ krU2 k2  kuk2 þ < RðH þ 1Þh þ R1 ðH1  1ÞU1 þ R2 ðH2  1ÞU2 ; x > : 2 dt ð43Þ 1 de 6 p2 ðkhk2 þ kU1 k2 þ kU2 k2 Þ  kuk2 þ < RðH þ 1Þh þ R1 ðH1  1ÞU1 þ R2 ðH2  1ÞU2 ; x > : 2 dt ð44Þ 8 > < RðH þ 1Þh; x >6 32 RjH þ 1j  khk2 þ 13 kuk2 ; > < < R1 ðH1  1ÞU1 ; x >6 32 R1 jH1  1j  kU1 k2 þ 13 kuk2 ; > > : < R2 ðH2  1ÞU2 ; x >6 32 R2 jH2  1j  kU2 k2 þ 13 kuk2 ; ð45Þ By virtue of the Poincarè inequality one obtains But hence (40) immediately follows. h Lemma 3. Let (u, h, U1, U2) 2 L2(X)6 be a solution of (6)–(8). Then kuk 6 Rkhk þ R1 kU1 k þ R2 kU2 k: ð46Þ Proof. Since  < h; x >6 khk  kxk 6 khk  kuk; < Ua ; x >6 kUa k  kxk; a ¼ 1; 2; by virtue of (6)1 and (46) immediately follows. h Theorem 3. For any g > 0, the set n S ¼ ðu; h; U1 ; U2 Þ 2 ½L2 ðXÞ6 : kðh  1Þþ k þ kðh þ 1Þ k < g; kðU1  1Þþ k þ kðU1 þ 1Þ k < g; kðU2  1Þþ k o 1 þ ðU2 þ 1Þ k < g; kuk 6 ðR þ R1 þ R2 ÞðjXj2 þ gÞ ; where jXj denotes the measure of X, is an absorbing set of the solutions (u, h, U1, U2) 2 L2(X)6 of (6) and (7). S. Rionero / International Journal of Engineering Science 48 (2010) 1519–1533 1525 Proof. Let B a bounded set of the phase-space and let (a = 1, 2) 8 < sup½kðh  1Þþ k þ kðh þ 1Þ k < M; B : sup½kðUa  1Þþ k þ kðUa þ 1Þ k < M: B From M expðgtÞ < g; with g given by (39), it follows that for 1 t > t1 ¼ g ln M g ; all the solutions starting from B satisfy the inequality sup kðh  1Þþ k þ kðh þ 1Þ k; kðU1  1Þþ k þ kðU1 þ 1Þ k; kðU2  1Þþ k þ kðU2 þ 1Þ k < g: ð47Þ Further from (36)–(38) and (47) we deduce that ( 1 khk 6 k~hk þ khk 6 jXj2 þ g; e a k þ kUa k 6 jXj12 þ g; kUa k 6 k U a ¼ 1; 2 8t > t1 ; ð48Þ and hence, by means of (46)  1  kuk 6 ðR þ R1 þ R2 Þ jXj2 þ g : ð49Þ Therefore, all the solutions starting from B belong to S* at time t > t1. Further, since k hk and kUa kða ¼ 1; 2Þ, are decreasing functions of t, S* is invariant. h 5. Linear instability of the conduction solution via a new approach Our aim here is to reduce the linear stability of the conduction solution to the stability of the null solution of ternary systems of O.D.Es and hence to the application of the Routh–Hurwitz stability conditions. The set of functions fsinðnpzÞgn2N is a complete orthogonal set for L2[0, 1]. Then, for any function L 2 fx; h; U1 ; U2 g it follows that L¼ 1 X n¼1 e n ðx; y; tÞ sinðnpzÞ; L ð50Þ with (by virtue of the periodicity in the x and y directions) fn ¼ a2 L e n; D1 L D1 ¼ @2 @2 þ 2; 2 @x @y a2 ¼ a2x þ a2y : ð51Þ Setting f ¼ ðr  uÞ  k; ð52Þ by virtue of r  u = 0, u = (u, v, x), one obtains D1 u ¼  @ 2 x @f  ; @x@z @z D1 v ¼  @ 2 x @f þ : @y@z @x ð53Þ On the other hand, (6)1 implies f  0, hence D1 u ¼  @2x ; @x@z D1 v ¼  @2x : @y@z ð54Þ Therefore by virtue of the periodicity - one obtains 8 1 P > > ~ n ðx; y; tÞ dzd sinðnpzÞ; u >u ¼ > > n¼1 > > > 1 < P v ¼ v~ n ðx; y; tÞ dzd sinðnpzÞ; n¼1 > > > > ~ n ¼ a2 u ~ n ; D1 v~ n ¼ a2 v~ n ; > D 1u > > > ~n ~n :u @ x x 1 ~ n ¼ a2 @x ; v~ n ¼ a12 @@y : ð55Þ 1526 S. Rionero / International Journal of Engineering Science 48 (2010) 1519–1533 Then x, h, U1, U2 are the effective perturbation fields. These fields are not independent. In fact in view of (a = 1, 2) 8 ~ n ðx; y; tÞ sinðnpzÞ; xn ¼ x Dxn ¼ ða2 þ n2 p2 Þxn ; > > > < Dhn ¼ ða2 þ n2 p2 Þhn ; hn ¼ ~hn ðx; y; tÞ sinðnpzÞ; > > > : e an ðx; y; tÞ sinðnpzÞ; DUan ¼ ða2 þ n2 p2 ÞUan ; Uan ¼ U ð56Þ and (6) it turns out that 8 < xn ¼ gn ðRhn  R1 U1n  R2 U2n Þ; :u ¼ 1 n a2 @ 2 xn @x@z i þ a12 @ 2 xn @y@z j þ xn k; nn ¼ a2 þ n2 p2 ; gn ¼ ann2 ; ð57Þ verify (6)1 and (6)2, and xn ¼ hn ¼ Wan ¼ 0 on z ¼ 0; 1; ð58Þ Therefore, the independent fields- in view of (57)1 - are reduced to three only, precisely to h, U1, U2. Setting 8 > a1n ¼ HR2 gn  nn ; a2n ¼ HRR1 gn ; a3n ¼ HRR2 gn ; > > > > < H R2 g n 1 gn ; b2n ¼ 1 P11 n n ; b3n ¼ H1 RP11R2 gn ; b1n ¼ H1 RR P1 > > > > > : c ¼ H2 RR2 gn ; c ¼ H2 R1 R2 gn ; c ¼ H2 R22 gn nn ; 1n 2n 3n P2 P2 P2 ð59Þ 8 1 P > > ht ¼ ða1n hn þ a2n U1n þ a3n U2n Þ  u  rh; > > > n¼1 > > > > < 1 P U1t ¼ ðb1n hn þ b2n U1n þ b3n U2n Þ  u  rU1 ; > n¼1 > > > > > 1 > P > > ðc1n hn þ c2n U1n þ c3n U2n Þ  u  rU2 : : U2t ¼ ð60Þ by virtue of (6) one obtains n¼1 Disregarding the nonlinear terms and setting ( hn ðtÞ ¼ nn ðtÞFðx; yÞ sinðnpzÞ; Uin ¼ nin ðtÞFðx; yÞ sinðnpzÞ; ði ¼ 1; 2Þ; it follows that the conduction solution (3) is linearly stable iff 8n 2 N, the null solution of 8 dnn ¼ a1n nn þ a2n n1n þ a3n n2n ; > dt > > < dn1n ¼ b1n nn þ b2n n1n þ b3n n2n ; dt > > > : dn2n ¼ c1n nn þ c2n n1n þ c3n n2n ; dt ð61Þ is stable. Setting 8 I 1n ¼ a1n þ b2n þ c3n ; > > > > > > > a1n a1n a2n > > > I2n ¼ þ > > > < b b c 1n 2n 1n > > a1n > > > > > > > I3n ¼ b1n > > > > : c1n a2n a3n b2n b3n ; c2n c3n a3n c3n þ b2n b3n c2n c3n ; ð62Þ the Routh–Hurwitz conditions for all the eigenvalues of (61) have negative real part can be written {cfr. [27], pp. 112–114} I1n < 0; I2n > 0; I3n < 0; I1n I2n  I3n < 0: ð63Þ We remark that if and only if the algebraic inequalities (63) hold, 8ða2 ; nÞ 2 Rþ  N, the conduction solution is linearly stable. S. Rionero / International Journal of Engineering Science 48 (2010) 1519–1533 1527 Setting 8 2 > > e2 ¼ 1 þ A e 1; A e3 ¼ 1 þ A e1; e1 ¼ P 1 ; A >A > Pi P 1 P2 > > i¼1 > > > 2 > P > Hi R2i 2 e 2 n2n2 ; > > A < H1n ¼ HR  Pi a i¼1 2    > P > 2 1 1 e 3 n2n2 1  HR2 ; > H2n ¼ þ R þ A H > i i Pi P 1 P2 a > eA 1 > i¼1 > > > > 2 2 P > > > H3n ¼ HR2  Hi R2i  ann2 ; : ð64Þ i¼1 it easily follows that I1n ¼ gn H1n ; e 1 H2n ; I2n ¼ gn nn A I3n ¼ gn n2n H3n ; ð65Þ and hence (63) become H1n < 0; H2n > 0; H3n < 0; 2 e 1 H1n H2n < nn H3n ; A a2 8ða2 ; nÞ 2 Rþ  N: ð66Þ Remark 2. Eq. (66) shows the inequalities governing, in the most general case, the linear stability of the conduction solution. For the sake of simplicity and concreteness, we confine ourselves to the case of a layer heated from below and, precisely, assume H = 1. Theorem 4. Let H = 1. Then the conduction solution can be linearly stable only if R2 < Rc Rc > 0; ð67Þ with 8 Rc ¼ infðRc1 ; Rc2 ; Rc3 Þ; > > > > 2 P > Hi R2i > e 2; > Rc 1 ¼ þ 4p2 A > Pi > > i¼1 < 2    P 1 2 1 2e 1 > A ¼ þ R þ 4 p ; R H c 3 i > 2 i Pi P 1 P2 eA 1 > > i¼1 > > > 2 > P > 2 > : Rc3 ¼ Hi Ri þ 4p2 : ð68Þ i¼1 Proof. In view of inf ða2 ;nÞ2Rþ N n2n ¼ 4p2 ; a2 ð69Þ and (64)–(66) and (68) immediately follow. By virtue of with 8 e2  A e 2 Un ¼ Q  A e 2 Un ; > H1n ¼ R2  Rc1 þ 4p2 A > 1 > < e e e H2n ¼ Rc2  R2  4p2 A 3 þ A 3 U n ¼ Q 2 þ A 3 U n ; eA 1 eA 1 eA 1 > > > : H3n ¼ R2  Rc3 þ 4p2  U n ¼ Q 3  U n ; 8 2 > < U n ðaÞ ¼ ann2 ; e 2; Q 1 ¼ R2  Rc1 þ 4p2 A e 2 2 A > : Q 2 ¼ Rc2  R  4p2 e3 ; Q 3 ¼ R  Rc3 þ 4p2 ; A1 ð70Þ ð71Þ Eq. (66)4 becomes   e e 2 Un Q þ A 3 Un e1 Q  A A 1 2 e1 A !  U n ðQ 3  U n Þ < 0; ð72Þ and hence a U 2n þ 2bU n þ c > 0; U n P 4p 2 ð73Þ 1528 S. Rionero / International Journal of Engineering Science 48 (2010) 1519–1533 with e 3; e2 A a ¼ 1 þ A e2Q þ Q ; e3Q þ A e1 A 2b ¼  A 1 2 3 e 1Q Q : c ¼ A 1 2  ð74Þ Setting r1;2 ¼ b  qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 b  a c ; a 2 for b > a c; ð75Þ then immediately- in view of a* > 0 and (69) – the following theorem holds: Theorem 5. Let H = 1 and (67) hold. Then the conduction solution is stable iff either 2 b  a c < 0; ð76Þ or inf ðR1 ;R2 Þ2ðRþ Þ2 ðb; cÞ P 0: ð77Þ Either when (76) or (77) does not hold, the instability begin at Un = r2. An alternative way of satisfying (66)4 is to require that e1  A inf H2n ða2 ;nÞ2Rþ N n2n =a2 > sup ða2 ;nÞ2Rþ N jH3n j ; jH1n j   which allows to obtain the stability conditions directly in terms of R2 ; R21 ; R22 . In view of   8 e 2 n2n2  4p2 ; > jH1n j ¼ Rc1  R2 þ A > a > > > 2  < jH3n j ¼ Rc3  R2 þ ann2  4p2 ; > >  > e 2 > > : H2n ¼ Rc2  R2 þ A 3 ann2  4p2 ; eA 1 ð78Þ ð79Þ setting Zða; nÞ ¼ n2n  4p2 ; a2 ð80Þ one obtains inf ða2 ;nÞ2Rþ N sup ða2 ;nÞ2Rþ N 8 Rc R2 e > ðRc2  R2 Þ þ A 3 Z > < 42p2 eA 1 H2n ¼ ¼ inf > e 4p2 þ Z n2n =a2 Z2Rþ > : A3 eA 1 8 1 > < eA ðRc3  R2 Þ þ Z H3n 2 ¼ ¼ sup e2Z : > Rc3 R2 jH1n j Z2Rþ ðRc  R2 Þ þ A 1 2 Rc1 R if Rc2 R2 if Rc2 R2 4p2 4p2 eA 3 ; eA 1 e > A3 ; eA 1 6 e 2 ðRc  R2 Þ; if ðRc1  R2 Þ > A 3 e 2 ðRc  R2 Þ: if ðRc1  R2 Þ 6 A 3 ð81Þ ð82Þ As consequence of (78)–(82) the following theorems hold. Theorem 6. Let H = 1 and (67) hold either together with Rc2  R2 6 4p2 or together with Rc2  R2 6 4p2 e3 A ; e1 A e 2 ðRc  R2 Þ; Rc1  R2 6 A 3 ð83Þ e3 A ; e1 A e 2 ðRc  R2 Þ: Rc1  R2 > A 3 ð84Þ Then in the case (83), setting p¼ i 1h 2 e 4p  A 1 ðRc1 þ Rc2 Þ ; 2 e 1 Rc Rc  4p2 Rc ; q¼A 1 2 3 r1;2 ¼  qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 e 1q ; p  p2  A 2 ð85Þ S. Rionero / International Journal of Engineering Science 48 (2010) 1519–1533 1529 it turns out that 8 2 e > > < either p  A 1 q 6 0 or infðp; qÞ >(0 ) stability; n o stability for R2 R ½r1 ; r 2 ; 2 e > > : p  A 1 q > 0; infðp; qÞ < 0 ) instability for R2 2r1 ; r 2 ½ ð86Þ while in the case (84) the stability is guaranteed only if R2 þ 4p2 < Rc 2 : e1 A e2 A ð87Þ Proof. In the case (83), in view of (78)–(82), the stability is implied by e 1 ðRc  R2 Þ Rc  R2 A 2 > 3 ; 4p2 Rc1  R2 ð88Þ and hence by e 1 R4 þ 2pR2 þ q > 0: A ð89Þ Then (85) immediately follows. In the case (84) one arrives to e 1 ðRc  R2 Þ A 1 2 > ; e2 4p2 A ð90Þ which is equivalent to (87). h Theorem 7. Let H = 1 and (67) hold either together with Rc2  R2 > 4p2 or together with Rc2  R2 > 4p2 e3 A ; e1 A e 2 ðRc  R2 Þ; Rc 1  R2 6 A 3 ð91Þ e3 A ; e1 A e 2 ðRc  R2 Þ: Rc 1  R2 > A 3 ð92Þ Then, in the case (91), the stability is guaranteed only if 2 e 3 > Rc 3  R ; A Rc1  R2 ð93Þ while in the case (92) further conditions are not required to R2. Proof. The proof follows very easily. h Remark 3. We remark that – for any values of H, Hi, Pi, (i = 1, 2)- in the plane R21 ; R22 the stability- instability area is bounded by the system Rci ¼ 0; infþ ða2 ;nÞ2R N n2n jH3n j ¼ sup ; a2 ða2 ;nÞ2Rþ N jH1n j i ¼ 1; 2; ð94Þ constituted by algebraic equations of first degree in R2i ; ði ¼ 1; 2Þ. 6. Instability islands The subsequent Section is devoted to the stability of the conduction solution when the layer is heated from below and salted from above by both the salts. Since in that case the ‘‘instability islands” are not allowed, we concentrated here on the remaining two cases. Theorem 8. Let H = H1 = H2 = 1 together with Rc2  4p2 e3 A e 2; – Rc1  4p2 A e1 A R2 < Rc : ð95Þ 1530 S. Rionero / International Journal of Engineering Science 48 (2010) 1519–1533 Then an ‘‘instability island” exists and it is given by or by e 2 < R2 < inf Rc1  4p2 A Rc2  4p2 Rc2  4p2 ! e3 A ; Rc ; e1 A e3 A e 2 ; Rc Þ: < R2 < infðRc1  4p2 A e1 A ð96Þ ð97Þ Proof. Eq. (96) imply (Q1 > 0, Q2 > 0) and hence c = aQ1Q2 < 0. In view of b2  ac > 0, Theorem 5 guarantees that (96) is an instability zone. h  e Since R2 < Rc3 ) Q 3 > 0 and R2 < Rc1  4p2 < Rc2  4p2 A 3 ) fQ 1 < 0; Q 2 > 0g it follows that c > 0, b > 0 and hence by eA 1 virtue of (77) R2 < Rc1  4p2 ; ð98Þ e is a stability zone. On the other hand, R ¼ Rc2  4p2 A 3 implies {Q2 = 0, c = 0, b > 0} i.e. stability. eA In the case (97) it follows that {Q1 < 0, Q2 < 0} hence1 c < 0 and (97) is an instability area. It is easily verified that the area e2 below (97) is stable. In fact in that area it is {Q1 < 0, Q2 > 0, Q3 > 0} and hence c > 0, b > 0. On the other hand, R2 ¼ Rc1  4p2 A implies {Q1 = 0, c = 0, b > 0} i.e. stability. The following theorem is immediately obtained: 2 Theorem 9. Let {H = H1 = 1, H2 = 1} hold together with (95) and e2; Rc1 > 4p2 A Rc2 > 4p2 e3 A : e1 A ð99Þ Then (96) or (97) is an instability island. Remark 4. We remark that: (i) The existence of ‘‘instability islands” is also envisaged by (85). In fact for r1 > 0, R22]r1, r2[]0, Rc[ denotes an ‘‘instability island”; (ii) in the case (H = 1, H1 = H2 = 1) neither (96) nor (97) hold. In fact in that case either (96) or (97) require R2 < 0. 7. Global nonlinear stability when all three effects are destabilizing In view of (66), one immediately obtains that all the three effects are destabilizing when the layers is heated from below and salted from above with both salt fields i.e. H > 0; Hi < 0; i ¼ 1; 2: ð100Þ Analogously all the three effects are stabilizing when the layer is heated from above and salted from below with both the salt fields, i.e. {H < 0, H1 > 0, H2 > 0}. In both these cases can be shown that the problem is symmetrizable. For the sake of concreteness and simplicity, we refer to (100) since with the same procedure, as expected, in the case {H < 0, H1 > 0, H2 > 0} the conduction solution is easily found to be nonlinearly globally asymptotically stable for any value of the Rayleigh and Prandtl numbers. Introducing the scalings l2 and l3 and setting 8 < hn ¼ X n ; U1n ¼ l2 Y n ; U2n ¼ l3 Z n ; 1 P X n ; Y ¼ l1 U1 ; Z ¼ l1 U2 ; :X ¼ 2 3 ð101Þ n¼1 Eq. (60) becomes 8 1   P > > Xt ¼ a1n Y n þ a2n l2 Y n þ a3n l3 Z n  u  rX; > > > n¼1 > > > >  < 1  P l3 b1n X þ b Y þ b Z Yt ¼  u  rY; n 2n n 3n n l2 l2 > n¼1 > > > >  > 1  > P c2n l2 > c1n > : Zt ¼ l3 X n þ l3 Y n þ c3n Z n  u  rZ: n¼1 ð102Þ S. Rionero / International Journal of Engineering Science 48 (2010) 1519–1533 1531 Choosing 1 1 H1 2 ; HP 1 H2 2 ; HP 2 ð103Þ 8 1 1 2 2 > 1 2 > a2n l2 ¼  HH RR1 gn ; a3n l3 ¼  HH RR2 gn ; > P P > 1 2 > > < 1 1 2 b1n HH1 2 b3n ll3 ¼ HP11 HP22 R1 R2 gn ; > l2 ¼  P1 RR1 gn ; 2 > > > 1 1 > 2 > : c1n ¼  HH2 2 RR2 g ; c2n ll2 ¼ HP11 HP22 R1 R2 gn ; n l P2 ð104Þ l2 ¼ l3 ¼ it follows that 3 3 and for any n 2 N the matrix of the coefficients is symmetric. In view of < sin npz; sin mpz >¼ 0; n – m; < u; rF 2 >¼ 0; F 2 ðX; Y; ZÞ; ð105Þ Eq. (102) implies 1 d 2 dt Z X ðX 2 þ Y 2 þ Z 2 ÞdX ¼ 1 Z X Q n dX; ð106Þ X n¼1 with 1 Qn ¼ c3n Z 2n b2n Y 2n þ þ a1n X 2n HH1 2 2 RR1 X n Y n gn þ; P1 sffiffiffiffiffiffiffiffiffiffiffiffi HH2 H1 H2 RR2 gn X n Z n þ 2 2 g Y n Zn : P2 P1 P2 n ð107Þ Therefore, the global asymptotic stability is guaranteed by 8 > > > c3n < 0; > > > > > > > < > > I3n ¼  > > > > > > > > :  R2 R2 c3n b2n  H1 H2 P11 P22 g2n > 0; a1n HH1 P1 HH2 P2 1 2 1 2  HH1 P1 RR1 gn RR2 gn 1 2 RR1 gn b2n H1 H2 P1 P2 1 2 R1 R2 gn  HH2 P2 H1 H2 P1 P2 1 2 1 2 RR2 gn R1 R2 gn 0: ð108Þ c3n But in view of (59) c3n < 0; 8n 2 N is equivalent to jH2 jR22 < 4p2 ; ð109Þ and      H1 R21 gn  nn H2 R22 gn  nn H1 R21 þ H2 R22 gn nn þ n2n R1 R2 2 H1 H2 R21 R22 g2n c3n b2n  pffiffiffiffiffiffiffiffiffiffi gn ¼  ¼ > 0; P1 P2 P1 P2 P1 P2 P1 P2 requires   n  H1 R21 þ H2 R22 < n ; gn 8n; and hence jH1 jR21 þ jH2 jR22 < 4p2 : ð110Þ Since I3n ¼ a1n b2n c3n þ HH1 H2 R2 R21 R22 3 R2 R1 R2 3 R2 R2 R2 R2 R2 R2 gn þ HH1 H2 gn þ HjH2 j 2 b2n g2n  H1 H2 1 2 a1n g2n  HjH1 j 1 c3n g2n < 0; P1 P2 P1 P2 P2 P1 P2 P1 i.e.    8 R2 R2 R2 1 > ðHR2 gn  nn Þ jH1 jR21 gn  nn jH2 jR22 gn  nn þ 2HH1 H2 P1 P1 2 2 g3n þ > P1 P2 > > <   R2 R2 H H R2 R2 HjH2 j P1 P22 g2n jH1 jR21 gn  nn  1 P12P2 2 g2n ðHR2 gn  nn Þ > >   > > :  HjH1 j R2 R2 g2 jH jR2 g  n < 0: 2 2 n n 1 n P1 P 2 1532 S. Rionero / International Journal of Engineering Science 48 (2010) 1519–1533 one easily obtains I3n < 0 () HR2 þ jH1 jR21 þ jH2 jR22 < nn gn ; 8ða; nÞ 2 Rþ  N; and hence one arrives to HR2 þ jH1 jR21 þ jH2 jR22 < 4p2 : ð111Þ In view of (109)–(111) it follows that (111) is necessary and sufficient for the stability. Further the stability is global and ‘‘instability islands” are not allowed. Eq. (111) in the case {H = 1, H1 = H2 = 1} has already been found – via the energy variational method- in [23]. 8. Concluding remarks This paper is concerned with: (1) The long-time behavior of a triply convective–diffusive fluid mixture saturating a porous horizontal layer; (2) the stability of the conduction solution We remark that: (i) It is shown that the L2-solutions are bounded and asymptotically converging toward an absorbing set of the phasespace. The procedure used for obtaining these results (and the symmetrization when all the effects are either destabilizing or stabilizing), can be used for a fluid mixture, with n components, 8n 2 N. (ii) The linear stability of the conduction solution is expressed in closed forms via algebraic inequalities involving the Rayleigh and the Prandtl numbers, and allow to bound the instability area of the space of the Rayleigh and Prandtl numbers. (iii) The existence of an ‘‘instability island” when the layer is heated and salted (at least by one salt) from below has been shown analytically. (iv) The linear stability of the conduction solution has been reduced to the stability of the null solution of ternary linear systems of O.D.Es. Acknowledgments This work has been performed under the auspices of the G.N.F.M. of I.N.D.A.M. This work was supported in part by a grant from the Leverhulm Trust, ‘‘Tipping points: mathematics, metafhors and meanings”. References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] B. Straugha, Stability and wave motion in porous media, Appl. Math. Sci. 165 (2008). D.A. Nield, A. Bejan, Convection in Porous Media, Springer-Verlag, Berlin, Heidelberg, New York, 1999. J.N. Flavin, S. Rionero, Qualitative Estimates for Partial Differential Equations: An Introduction, CRC Press, Boca Raton (FL), 1996. S. Lombardo, G. Mulone, S. Rionero, Global Stability of the Bénard problem for a mixture with superimposed plane parallel shear flows, Math. Methods Appl. Sci. 23 (2000) 1447. S. Lombardo, G. Mulone, S. Rionero, Global nonlinear exponential stability of the conduction–diffusion solution for Schmidt numbers greater than Prandtl numbers, J. Math. Anal. Appl. 262 (2001) 1229. G. Mulone, On the nonlinear stability of a fluid layer of a mixture heated and salted from below, Continuum. Mech. Thermodyn. 6 (1994) 161. S. Lombardo, G. Mulone, B. Straughan, Nonlinear stability in the Bénard problem for a double-diffusive mixture in a porous medium, Math. Methods Appl. Sci. 24 (2001) 1229. G. Mulone, S. Rionero, Unconditional nonlinear exponential stability in the Bénard problem for a mixture: Necessary and sufficient conditions, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei 9 (1998) 221. F. Capone, S. Rionero, Nonlinear stability of a convective motion in a porous layer driven by horizontally periodic temperature gradient, Continuum. Mech. Thermodyn. 15 (2003) 529. S. Lombardo, G. Mulone, Nonlinear stability convection for laminar flows in a porous medium with Brinkman law, Math. Methods Appl. Sci. 26 (2003) 453. F. Capone, S. Rionero, On the instability of double diffusive convection in porous media under boundary data periodic in space, in: S. Rionero, G. Romano (Eds.), Trends and Applications of Mathematics to Mechanics, STAMM, 2002, Springer, 2004, pp. 1–8. F. Capone, M. Gentile, S. Rionero, Influence of linear concentration heat source and parabolic density on penetrative convection onset, in: R. Monaco, G. Mulone, S. Rionero, T. Ruggeri (Eds.), Proceedings ‘‘Wascom 2005” 13th Conference on Waves and Stability in Continuum Media, World Scientific, 2006, pp. 77–82. F. Capone, M. Gentile, S. Rionero, On penetrative convection in porous media driven by quadratic sources, in: R. Monaco, G. Mulone, S. Rionero, T. Ruggeri (Eds.), Proceedings ‘‘Wascom 2005” 13th Conference on Waves and Stability in Continuum Media, World Scientific, 2006, pp. 83–88. S. Lombardo, G. Mulone, Necessary and sufficient conditions of global nonlinear stability for rotating double-diffusive convection in a porous medium, Continuum Mech. Thermodyn. 14 (2002) 527–540. S. Rionero, A new approach to nonlinear L2 – Stability of double diffusive convection in porous media: Necessary and sufficient conditions for global stability via a linearization principle, J. Math. Anal. Appl. 333 (2007) 1036–1057. S. Rionero, L. Vergori, Long time behaviour of fluid motions in porous media in the presence of Brinkman law, Acta Mech., Springer Wien 210 (2–3) (2009) 21–240. A.A. Hill, S. Rionero, B. Straughan, Global stability for penetrative convection with throughflow in a porous material, IMA J. Appl. Math. 72 (v) (2007) 635–643. F. Capone, M. Gentile, A. Hill, Anisotropy and symmetry in porous media convection, Acta Mech. 208 (3–4) (2009) 205–214. S. Rionero / International Journal of Engineering Science 48 (2010) 1519–1533 1533 [19] B. Straughan, Oscillatory convection and the Cattaneo law of heat conduction, Ricerche Mat. 58 (2009) 157–162. [20] K.R. Rajagopal, G. Saccomandi, L. Vergori, Stability analysis of the Rayleigh–Bénard convection for a fluid with temperature and pressure dependent viscosity, Z. Angew. Math. Phys. 60 (4) (2009) 739–755. [21] A.J. Pearlstein, R.M. Harris, G. Terrones, The onset of convective instability in a triply diffusive fluid layer, J. Fluid Mech. 202 (1989) 443–465. [22] R.A. Noutly, D.G. Leaist, Quaternary diffusion in acqueous KCl–KH2PO4–H3PO4 mixtures, J. Phys. Chem. 91 (1987) 1655–1658. [23] J. Tracey, Multi-component convection–diffusion in a porous medium, Continuum Mech. Thermodyn. 83 (1996) 61–381. [24] B. Straughan, D.W. Walker, Multi-component convection–diffusion and penetrative convection, Fluid Dyn. Res. 19 (1997) 77–89. [25] B. Straughan, J. Tracey, Multi-component convection–diffusion with internal heating or cooling, Acta Mech. 133 (1999) 219–239. [26] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Series in Applied Sciences, vol. 68, Springer, New York, 1997. [27] D.R. Merkin, Introduction to the Theory of Stability, Text in Applied Mathematic, vol. 24, Springer, 1997. [28] S. Rionero, A rigorous reduction of the L2 – stability of the solutions to a nonlinear binary reaction-diffusion system of O.D.Es to the stability of the solutions to a linear binary system of O.D.Es, J. Math. Anal. Appl. 310 (2006) 372–392. [29] S.C. Subramanian, K.R. Rajagopal, A note on flow through porous solids at high pressures, Comput, Math. Appl. 53 (2007) 260–275. [30] K.R. Rajagopal, On a hierarchy of approximate models for flows of incompressible fluids through porous solids, Math. Models Methods Appl. Sci. 17 (2007) 215–252.