Nothing Special   »   [go: up one dir, main page]

Academia.eduAcademia.edu
electronic reprint Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 4-(2-Methoxyphenyl)piperazin-1-ium 6-chloro-5-isopropyl-2,4-dioxopyrimidin-1-ide Fatmah A. M. Al-Omary, Hazem A. Ghabbour, Ali A. El-Emam, C. S. Chidan Kumar and Hoong-Kun Fun Acta Cryst. (2014). E70, o245–o246 This open-access article is distributed under the terms of the Creative Commons Attribution Licence http://creativecommons.org/licenses/by/2.0/uk/legalcode, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited. Acta Crystallographica Section E: Structure Reports Online is the IUCr’s highly popular open-access structural journal. It provides a simple and easily accessible publication mechanism for the growing number of inorganic, metal-organic and organic crystal structure determinations. The electronic submission, validation, refereeing and publication facilities of the journal ensure very rapid and high-quality publication, whilst key indicators and validation reports provide measures of structural reliability. The average publication time is less than one month. Articles are published in a short-format style with enhanced supplementary materials. Each publication consists of a complete package – the published article, HTML and PDF supplements, CIF, structure factors, graphics, and any other submitted supplementary files. Crystallography Journals Online is available from journals.iucr.org Acta Cryst. (2014). E70, o245–o246 Al-Omary et al. · C11 H17 N2 O+ ·C7 H8 ClN2 O2 − organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 4-(2-Methoxyphenyl)piperazin-1-ium 6-chloro-5-isopropyl-2,4-dioxopyrimidin-1-ide Fatmah A. M. Al-Omary,a Hazem A. Ghabbour,a Ali A. El-Emam,a‡ C. S. Chidan Kumarb§ and Hoong-Kun Funa*} a Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riaydh 11451, Saudi Arabia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hfun.c@ksu.edu.sa Received 28 January 2014; accepted 30 January 2014 In the cation of the title salt, C11H17N2O+C7H8ClN2O2 , the piperazine ring adopts a distorted chair conformation and contains a positively charged N atom with quaternary character. Its mean plane makes a dihedral angle of 42.36 (8) with the phenyl ring of its 2-methoxyphenyl substituent. The 2,4-dioxopyrimidin-1-ide anion is generated by deprotonation of the N atom at the 1-position of the pyrimidinedione ring. Intramolecular C—H  O hydrogen bonds generate S(6) ring motifs in both the cation and the anion. In the crystal, N—H  O, N—H  N and C—H  O hydrogen bonds are also observed, resulting in a twodimensional network parallel to the ab plane. The crystal stability is further consolidated by weak C—H   interactions. Experimental Crystal data C11H17N2O+C7H8ClN2O2 Mr = 380.87 Monoclinic, P21 =n a = 8.9416 (2) Å b = 10.5152 (3) Å c = 20.5626 (5) Å = 98.832 (1) V = 1910.43 (8) Å3 Z=4 Cu K radiation  = 1.99 mm 1 T = 296 K 0.81  0.13  0.05 mm Data collection Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) Tmin = 0.296, Tmax = 0.907 11481 measured reflections 3531 independent reflections 3204 reflections with I > 2(I) Rint = 0.033 Refinement R[F 2 > 2(F 2)] = 0.045 wR(F 2) = 0.118 S = 1.06 3531 reflections 251 parameters H atoms treated by a mixture of independent and constrained refinement max = 0.33 e Å 3 min = 0.32 e Å 3 Related literature For the chemotherapeutic activity of pyrimidine-2,4-dione derivatives, see: Ghoshal & Jacob (1997); Spacilova et al. (2007); Blokhina et al. (1972); Tanaka et al. (1995); El-Emam et al. (2004); Al-Turkistani et al. (2011). For the acidity of pyrimidine-2,4-dione derivatives, see: Kurinovich & Lee (2002); Jang et al. (2001); Nguyen et al. (1998). For the structures of other piperazinium salts, see: Craig et al. (2012); Dayananda et al. (2012); Fun et al. (2010). For reference bond lengths, see: Allen et al. (1987) and for hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations and ring puckering analysis, see: Cremer & Pople (1975). Table 1 Hydrogen-bond geometry (Å,  ). Cg2 is centroid of the C1—C6 benzene ring. D—H  A D—H H  A D  A D—H  A N2—H2N2  O2i N2—H1N2  N4ii N3—H1N3  O2iii C8—H8B  O1 C9—H9B  O3iv C17—H17C  O3 C10—H10B  Cg2i 0.892 (19) 0.92 (2) 0.87 (2) 0.97 0.97 0.96 0.97 1.881 (19) 1.987 (19) 2.02 (3) 2.37 2.38 2.38 2.65 2.7713 (18) 2.8923 (19) 2.8799 (18) 2.968 (2) 3.234 (2) 3.015 (3) 3.4041 (17) 176 (2) 166.2 (18) 177 (2) 119 146 123 134 Symmetry codes: (i) x þ 1; y þ 1; z. x þ 1; y þ 2; z; (ii) x; y þ 1; z; (iii) x; y þ 1; z; (iv) Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009). ‡ Additional correspondence author, e-mail: elemam5@hotmail.com. § Thomson Reuters ResearcherID: C-3194-2011. } Thomson Reuters ResearcherID: A-3561-2009. Acta Cryst. (2014). E70, o245–o246 doi:10.1107/S1600536814002256 electronic reprint Al-Omary et al. o245 organic compounds The financial support of the Deanship of Scientific Research and the Research Center for Female Scientific and Medical Colleges, King Saud University, is greatly appreciated. CSCK thanks Universiti Sains Malaysia for a postdoctoral research fellowship. Supporting information for this paper is available from the IUCr electronic archives (Reference: SJ5388). References Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. Al-Turkistani, A. A., Al-Deeb, O. A., El-Brollosy, N. R. & El- Emam, A. A. (2011). Molecules, 16, 4764–4774. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. Blokhina, N. G., Vozny, E. K. & Garin, A. M. (1972). Cancer, 30, 390–392. Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. o246 Al-Omary et al.  C11H17N2O+C7H8ClN2O2 Craig, G. E., Johnson, C. & Kennedy, A. R. (2012). Acta Cryst. E68, o787. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. Dayananda, A. S., Yathirajan, H. S. & Flörke, U. (2012). Acta Cryst. E68, o1180. El-Emam, A. A., Massoud, M. A., El-Bendary, E. R. & El-Sayed, M. A. (2004). Bull. Korean Chem. Soc, 25, 991–996. Fun, H.-K., Yeap, C. S., Chidan Kumar, C. S., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o361–o362. Ghoshal, K. & Jacob, S. T. (1997). Biochem. Pharmacol. 53, 1569–1575. Jang, Y. H., Sowers, L. C., Cagin, T. & Goddard, W. A. III (2001). J. Phys. Chem. 105, 274–280. Kurinovich, M. A. & Lee, J. K. (2002). J. Am. Soc. Mass Spectrom. 13, 985– 995. Nguyen, M. T., Chandra, A. K. & Zeegers-Huyskens, T. (1998). J. Chem. Soc. Faraday Trans. 94, 1277–1280. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Spacilova, L., Dzubak, P., Hajduch, M., Krupkova, S., Hradila, P. & Hlavac, J. (2007). Bioorg. Med. Chem. Lett. 17, 6647–6650. Spek, A. L. (2009). Acta Cryst. D65, 148–155. Tanaka, H., Takashima, H., Ubasawa, M., Sekiya, K., Inouye, N., Baba, M., Shigeta, S., Walker, R. T., De Clercq, E. & Miyasaka, T. (1995). J. Med. Chem. 38, 2860–2865. electronic reprint Acta Cryst. (2014). E70, o245–o246 supplementary materials supplementary materials Acta Cryst. (2014). E70, o245–o246 [doi:10.1107/S1600536814002256] 4-(2-Methoxyphenyl)piperazin-1-ium 6-chloro-5-isopropyl-2,4dioxopyrimidin-1-ide Fatmah A. M. Al-Omary, Hazem A. Ghabbour, Ali A. El-Emam, C. S. Chidan Kumar and HoongKun Fun 1. Comment Pyrimidine-2,4-diones (uracils) and their derivatives have been known from much earlier times for their diverse chemotherapeutic properties including anticancer (Ghoshal & Jacob, 1997; Spacilova et al., 2007; Blokhina et al., 1972), anti-HIV (Tanaka et al., 1995; El-Emam et al., 2004) and antibacterial activities (Al-Turkistani et al., 2011). The title piperazinium salt (I) was isolated as a minor by-product during the reaction of 6-chloro-5-isopropyluracil with 1-(2-methoxyphenyl)piperazine. The asymmetric unit of (I) consists of a 4-(2-methoxyphenyl)piperazin-1-ium 6-chloro-5-isopropylpyrimidin-1-ide-2,4dione cation-anion pair (Fig. 1). The 2,4-dioxopyrimidin-1-ide anion is generated by deprotonation of the N4 atom at the 1 position of the pyrimidine-dione ring (Kurinovich & Lee 2002; Jang et al., 2001; Nguyen et al., 1998). The sixmembered piperazine ring (N1/C8/C9/N2/C10/C11) in the cation fragement adopts a slightly distorted chair conformation with puckering parameters: Q = 0.5774 (17) Å, θ = 177.86 (17) °, and φ = 129 (4) ° (Cremer & Pople, 1975) and contains a positively charged N atom (N2) with quaternary character. For an ideal chair configuration, θ has a value of 0 or 180°. The dihedral angle between the mean plane of the piperazine ring of the cation and the adjacent phenyl ring is 42.36 (8)°. Bond lengths (Allen et al., 1987) and angles in the title compound are within normal ranges and are comparable with those reported earlier (Craig et al. 2012; Dayananda et al., (2012); Fun et al., 2010). Intramolecular C17–H17C···O3 and C8–H8B···O1 hydrogen bonds generate S(6) ring motifs in both the cation and anion (Fig 1), while a strong intermolecular N2–H1N2···N4pyrimidine hydrogen bond links the two moieties. In the crystal, adjacent anionic species are interconnected via N2–H2N2···O2 and N3–H1N3···O2 hydrogen bonds (Table 1) with one bifurcated O acceptor atom on the anion resulting in R22(9) and R22(8) ring motifs (Bernstein et al., 1995) respectively. The crystal structure features an intermolecular C9–H9B···O3 hydrogen bond (Fig. 2) which links the entities into a two-dimensional structure. The crystal packing is further stabilized by a weak intermolecular C10–H10B···Cg2i interaction (Table 1) involving the centroid of the C1—C6 benzene ring. 2. Experimental A mixture of 6-chloro-5-isopropyluracil (377 mg, 2.0 mmol), 1-(2-methoxyphenyl) piperazine (385 mg, 2.0 mmol) and anhydrous potassium carbonate (276 mg, 2.0 mmol), in ethanol (8 ml), was heated under reflux for 6 h. On cooling, the precipitate, thus formed was separated by filtration to yield 627 mg (91%) of 6-[4-(2-methoxyphenyl)-1-piperazinyl)]-5isopropyluracil. The filtrate was concentrated by vacuum distillation to 5 ml and allowed to stand at room temperature overnight to yield 46 mg (6%) of the title salt (C18H25ClN4O3) as colourless plate-shaped crystals. M·P.: 517–519 K. sup-1 Acta Cryst. (2014). E70, o245–o246 electronic reprint supplementary materials H NMR (DMSO-d6, 500.13 MHz): δ 1.13 (d, 6H, CH3, J = 7.2 Hz), 2.53–2.56 (m, 1H, CH), 3.22–3.24 (m, 4H, 1 Piperazine-H), 3.77 (s, 3H, OCH3), 3.42–3.45 (m, 4H, Piperazine-H), 6.78–7.02 (m, 4H, Ar—H), 8.02–8.14 (m, 2H, NH2), 10.88 (s, 1H, NH). 13C (DMSO-d6, 125.76 MHz): δ 19.50 (CH3), 26.90 (CH), 46.12, 49.86 (Piperazine-C), 56.80 (OCH3), 113.86, 119.12, 122.02, 122.98, 141.70, 148.28 (Ar—C), 123.90, 158.98, 162.82 (Pyrimidine-C), 3. Refinement The nitrogen-bound H-atoms were located in a difference Fourier map and were refined freely. Other H atoms were positioned geometrically (C=H 0.93–0.98 Å) and refined using a riding model with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. A rotating group model was used for the methyl group. Computing details Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009). Figure 1 The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids. Intramolecular hydrogen bonds are drawn as dashed lines. sup-2 Acta Cryst. (2014). E70, o245–o246 electronic reprint supplementary materials Figure 2 Crystal packing of the title compound, showing the hydrogen bonding interactions as dashed lines. H-atoms not involved in the hydrogen bonding are omited for clarity. 4-(2-Methoxyphenyl)piperazin-1-ium 6-chloro-5-isopropyl-2,4-dioxopyrimidin-1-ide Crystal data F(000) = 808 Dx = 1.324 Mg m−3 Cu Kα radiation, λ = 1.54178 Å Cell parameters from 3769 reflections θ = 4.2–69.6° µ = 1.99 mm−1 T = 296 K Plate, colourless 0.81 × 0.13 × 0.05 mm C11H17N2O+·C7H8ClN2O2− Mr = 380.87 Monoclinic, P21/n Hall symbol: -P 2yn a = 8.9416 (2) Å b = 10.5152 (3) Å c = 20.5626 (5) Å β = 98.832 (1)° V = 1910.43 (8) Å3 Z=4 Data collection Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2009) Tmin = 0.296, Tmax = 0.907 11481 measured reflections 3531 independent reflections 3204 reflections with I > 2σ(I) sup-3 Acta Cryst. (2014). E70, o245–o246 electronic reprint supplementary materials Rint = 0.033 θmax = 69.8°, θmin = 4.4° h = −10→10 k = −12→9 l = −24→24 Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.045 wR(F2) = 0.118 S = 1.06 3531 reflections 251 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement w = 1/[σ2(Fo2) + (0.0615P)2 + 0.5789P] where P = (Fo2 + 2Fc2)/3 (∆/σ)max = 0.001 ∆ρmax = 0.33 e Å−3 ∆ρmin = −0.32 e Å−3 Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.0081 (5) Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) Cl1 O2 N4 C14 N3 C15 O3 C12 C13 C16 H16A C17 H17A H17B H17C C18 H18A H18B H18C O1 N2 x y z Uiso*/Ueq 0.50958 (5) 0.20219 (13) 0.34035 (14) 0.20877 (17) 0.07667 (15) 0.0644 (2) −0.06114 (16) 0.33057 (18) 0.2058 (2) 0.2061 (2) 0.3083 0.0969 (3) 0.1235 0.1029 −0.0044 0.1753 (4) 0.2574 0.0829 0.1661 0.73479 (17) 0.57634 (15) 0.52933 (5) 0.51968 (11) 0.51859 (13) 0.51323 (14) 0.50064 (14) 0.49113 (17) 0.47528 (17) 0.51541 (15) 0.50286 (16) 0.49421 (19) 0.5163 0.5878 (2) 0.6729 0.5796 0.5697 0.3582 (2) 0.3045 0.3287 0.3556 0.92628 (13) 1.36876 (13) 0.21770 (2) 0.00176 (5) 0.10447 (7) 0.06313 (7) 0.08862 (7) 0.15482 (8) 0.17059 (7) 0.16938 (8) 0.19945 (8) 0.27315 (9) 0.2947 0.29765 (10) 0.2871 0.3445 0.2768 0.29280 (12) 0.2849 0.2672 0.3387 0.14090 (7) 0.05996 (7) 0.05543 (19) 0.0368 (3) 0.0340 (3) 0.0300 (3) 0.0347 (3) 0.0387 (4) 0.0623 (4) 0.0347 (3) 0.0370 (4) 0.0478 (4) 0.057* 0.0591 (5) 0.089* 0.089* 0.089* 0.0783 (8) 0.118* 0.118* 0.118* 0.0524 (3) 0.0347 (3) sup-4 Acta Cryst. (2014). E70, o245–o246 electronic reprint supplementary materials N1 C11 H11A H11B C5 H5A C10 H10A H10B C8 H8A H8B C3 H3A C1 C9 H9A H9B C4 H4A C6 C2 H2A C7 H7A H7B H7C H2N2 H1N2 H1N3 0.66629 (14) 0.59845 (18) 0.5429 0.6774 0.79466 (19) 0.7690 0.49247 (17) 0.4484 0.4109 0.75164 (18) 0.8336 0.7956 0.9169 (2) 0.9744 0.78835 (18) 0.65130 (19) 0.5750 0.7114 0.87617 (19) 0.9028 0.75084 (17) 0.8731 (2) 0.9005 0.7453 (3) 0.6991 0.8499 0.6942 0.646 (2) 0.511 (2) −0.006 (3) 1.10889 (13) 1.18107 (15) 1.1240 1.2216 0.97928 (16) 1.0388 1.28106 (16) 1.3291 1.2403 1.19407 (16) 1.2332 1.1449 0.78466 (17) 0.7141 0.90656 (16) 1.29640 (16) 1.2581 1.3539 0.87161 (18) 0.8588 0.99994 (15) 0.80127 (17) 0.7414 0.8242 (2) 0.8485 0.8039 0.7511 1.408 (2) 1.428 (2) 0.4964 (19) 0.04804 (6) −0.00956 (8) −0.0416 −0.0297 −0.02689 (9) −0.0602 0.01019 (9) −0.0283 0.0285 0.09704 (8) 0.0784 0.1351 0.00959 (10) 0.0018 0.08317 (9) 0.11833 (8) 0.1409 0.1487 −0.03948 (10) −0.0810 0.03383 (8) 0.07064 (10) 0.1036 0.18654 (11) 0.2238 0.2008 0.1658 0.0405 (10) 0.0733 (10) 0.0606 (11) 0.0343 (3) 0.0359 (3) 0.043* 0.043* 0.0393 (4) 0.047* 0.0384 (4) 0.046* 0.046* 0.0375 (4) 0.045* 0.045* 0.0485 (5) 0.058* 0.0395 (4) 0.0374 (4) 0.045* 0.045* 0.0457 (4) 0.055* 0.0344 (3) 0.0473 (4) 0.057* 0.0666 (6) 0.100* 0.100* 0.100* 0.040 (5)* 0.043 (5)* 0.042 (5)* Atomic displacement parameters (Å2) Cl1 O2 N4 C14 N3 C15 O3 C12 C13 C16 C17 C18 O1 N2 N1 C11 U11 U22 U33 U12 U13 U23 0.0362 (3) 0.0322 (5) 0.0269 (6) 0.0288 (7) 0.0263 (7) 0.0376 (8) 0.0402 (7) 0.0319 (8) 0.0396 (9) 0.0551 (11) 0.0753 (14) 0.130 (2) 0.0662 (8) 0.0304 (6) 0.0326 (6) 0.0347 (7) 0.0756 (4) 0.0468 (7) 0.0386 (7) 0.0278 (7) 0.0453 (8) 0.0440 (9) 0.1034 (12) 0.0338 (8) 0.0373 (8) 0.0542 (11) 0.0635 (13) 0.0601 (14) 0.0449 (7) 0.0304 (7) 0.0310 (7) 0.0346 (8) 0.0511 (3) 0.0329 (6) 0.0378 (7) 0.0351 (8) 0.0335 (7) 0.0371 (9) 0.0476 (8) 0.0379 (8) 0.0353 (8) 0.0350 (9) 0.0417 (10) 0.0516 (12) 0.0478 (7) 0.0467 (8) 0.0383 (7) 0.0379 (8) 0.0075 (2) −0.0035 (5) 0.0026 (5) 0.0002 (5) −0.0026 (5) −0.0034 (7) −0.0184 (7) 0.0042 (6) 0.0021 (6) 0.0060 (9) 0.0122 (11) 0.0141 (15) 0.0088 (6) 0.0003 (5) 0.0024 (5) 0.0010 (6) −0.00393 (18) 0.0101 (4) 0.0087 (5) 0.0105 (6) 0.0077 (6) 0.0142 (7) 0.0209 (6) 0.0038 (6) 0.0098 (7) 0.0101 (8) 0.0194 (9) 0.0340 (14) 0.0147 (6) 0.0164 (6) 0.0029 (5) 0.0037 (6) −0.0107 (2) 0.0021 (4) −0.0008 (5) 0.0000 (5) −0.0013 (5) −0.0024 (7) −0.0075 (7) −0.0034 (6) −0.0021 (6) −0.0027 (7) −0.0062 (9) 0.0112 (10) 0.0087 (6) 0.0005 (5) −0.0018 (5) −0.0005 (6) sup-5 Acta Cryst. (2014). E70, o245–o246 electronic reprint supplementary materials C5 C10 C8 C3 C1 C9 C4 C6 C2 C7 0.0348 (8) 0.0315 (8) 0.0348 (8) 0.0374 (8) 0.0364 (8) 0.0387 (8) 0.0378 (8) 0.0278 (7) 0.0440 (9) 0.0879 (16) 0.0388 (9) 0.0360 (8) 0.0355 (8) 0.0347 (9) 0.0345 (8) 0.0359 (8) 0.0449 (10) 0.0297 (8) 0.0333 (9) 0.0568 (13) 0.0442 (9) 0.0472 (9) 0.0410 (8) 0.0734 (13) 0.0464 (9) 0.0391 (8) 0.0558 (11) 0.0449 (9) 0.0627 (11) 0.0546 (12) −0.0001 (6) 0.0024 (6) 0.0023 (6) 0.0048 (7) −0.0008 (7) −0.0022 (7) 0.0000 (7) −0.0005 (6) 0.0052 (7) −0.0033 (12) 0.0054 (7) 0.0044 (7) 0.0019 (6) 0.0090 (8) 0.0025 (7) 0.0107 (7) 0.0112 (8) 0.0034 (6) 0.0020 (8) 0.0087 (11) −0.0022 (7) 0.0029 (7) −0.0025 (6) −0.0090 (8) −0.0001 (7) −0.0021 (6) −0.0123 (8) −0.0025 (6) 0.0044 (8) 0.0155 (10) Geometric parameters (Å, º) Cl1—C12 O2—C14 N4—C14 N4—C12 C14—N3 N3—C15 N3—H1N3 C15—O3 C15—C13 C12—C13 C13—C16 C16—C18 C16—C17 C16—H16A C17—H17A C17—H17B C17—H17C C18—H18A C18—H18B C18—H18C O1—C1 O1—C7 N2—C9 N2—C10 N2—H2N2 N2—H1N2 1.7557 (17) 1.2561 (19) 1.343 (2) 1.351 (2) 1.3702 (19) 1.386 (2) 0.86 (3) 1.226 (2) 1.449 (3) 1.362 (2) 1.518 (2) 1.523 (3) 1.526 (3) 0.9800 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 1.362 (2) 1.419 (2) 1.491 (2) 1.491 (2) 0.89 (2) 0.93 (2) N1—C6 N1—C11 N1—C8 C11—C10 C11—H11A C11—H11B C5—C6 C5—C4 C5—H5A C10—H10A C10—H10B C8—C9 C8—H8A C8—H8B C3—C4 C3—C2 C3—H3A C1—C2 C1—C6 C9—H9A C9—H9B C4—H4A C2—H2A C7—H7A C7—H7B C7—H7C 1.427 (2) 1.458 (2) 1.471 (2) 1.512 (2) 0.9700 0.9700 1.382 (2) 1.392 (2) 0.9300 0.9700 0.9700 1.508 (2) 0.9700 0.9700 1.369 (3) 1.383 (3) 0.9300 1.388 (2) 1.415 (2) 0.9700 0.9700 0.9300 0.9300 0.9600 0.9600 0.9600 C14—N4—C12 O2—C14—N4 O2—C14—N3 N4—C14—N3 C14—N3—C15 C14—N3—H1N3 C15—N3—H1N3 O3—C15—N3 O3—C15—C13 N3—C15—C13 116.17 (13) 122.35 (13) 118.64 (14) 119.00 (14) 125.85 (15) 116.7 (14) 117.5 (14) 118.90 (17) 126.11 (16) 114.99 (14) C10—C11—H11A N1—C11—H11B C10—C11—H11B H11A—C11—H11B C6—C5—C4 C6—C5—H5A C4—C5—H5A N2—C10—C11 N2—C10—H10A C11—C10—H10A 109.6 109.6 109.6 108.2 121.67 (17) 119.2 119.2 110.14 (13) 109.6 109.6 sup-6 Acta Cryst. (2014). E70, o245–o246 electronic reprint supplementary materials N4—C12—C13 N4—C12—Cl1 C13—C12—Cl1 C12—C13—C15 C12—C13—C16 C15—C13—C16 C13—C16—C18 C13—C16—C17 C18—C16—C17 C13—C16—H16A C18—C16—H16A C17—C16—H16A C16—C17—H17A C16—C17—H17B H17A—C17—H17B C16—C17—H17C H17A—C17—H17C H17B—C17—H17C C16—C18—H18A C16—C18—H18B H18A—C18—H18B C16—C18—H18C H18A—C18—H18C H18B—C18—H18C C1—O1—C7 C9—N2—C10 C9—N2—H2N2 C10—N2—H2N2 C9—N2—H1N2 C10—N2—H1N2 H2N2—N2—H1N2 C6—N1—C11 C6—N1—C8 C11—N1—C8 N1—C11—C10 N1—C11—H11A 129.23 (16) 111.43 (12) 119.34 (13) 114.63 (15) 125.66 (17) 119.64 (15) 110.40 (16) 112.83 (16) 111.53 (18) 107.3 107.3 107.3 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 117.67 (16) 110.69 (13) 109.9 (13) 106.8 (13) 109.4 (13) 110.2 (13) 109.8 (18) 114.77 (13) 113.17 (12) 110.29 (13) 110.09 (13) 109.6 N2—C10—H10B C11—C10—H10B H10A—C10—H10B N1—C8—C9 N1—C8—H8A C9—C8—H8A N1—C8—H8B C9—C8—H8B H8A—C8—H8B C4—C3—C2 C4—C3—H3A C2—C3—H3A O1—C1—C2 O1—C1—C6 C2—C1—C6 N2—C9—C8 N2—C9—H9A C8—C9—H9A N2—C9—H9B C8—C9—H9B H9A—C9—H9B C3—C4—C5 C3—C4—H4A C5—C4—H4A C5—C6—C1 C5—C6—N1 C1—C6—N1 C3—C2—C1 C3—C2—H2A C1—C2—H2A O1—C7—H7A O1—C7—H7B H7A—C7—H7B O1—C7—H7C H7A—C7—H7C H7B—C7—H7C 109.6 109.6 108.1 111.34 (13) 109.4 109.4 109.4 109.4 108.0 120.27 (16) 119.9 119.9 123.92 (16) 116.29 (15) 119.78 (16) 110.15 (13) 109.6 109.6 109.6 109.6 108.1 119.60 (17) 120.2 120.2 118.03 (15) 122.93 (15) 119.01 (15) 120.56 (18) 119.7 119.7 109.5 109.5 109.5 109.5 109.5 109.5 C12—N4—C14—O2 C12—N4—C14—N3 O2—C14—N3—C15 N4—C14—N3—C15 C14—N3—C15—O3 C14—N3—C15—C13 C14—N4—C12—C13 C14—N4—C12—Cl1 N4—C12—C13—C15 Cl1—C12—C13—C15 N4—C12—C13—C16 Cl1—C12—C13—C16 177.57 (14) −2.2 (2) 179.40 (15) −0.8 (2) −177.21 (17) 3.5 (2) 2.6 (2) −177.68 (11) 0.1 (3) −179.54 (12) 177.04 (17) −2.6 (2) N1—C11—C10—N2 C6—N1—C8—C9 C11—N1—C8—C9 C7—O1—C1—C2 C7—O1—C1—C6 C10—N2—C9—C8 N1—C8—C9—N2 C2—C3—C4—C5 C6—C5—C4—C3 C4—C5—C6—C1 C4—C5—C6—N1 O1—C1—C6—C5 58.83 (17) −171.18 (13) 58.72 (17) −10.5 (3) 168.37 (18) 55.06 (16) −56.08 (18) 2.2 (3) −1.3 (3) −1.4 (2) −179.53 (15) −175.88 (15) sup-7 Acta Cryst. (2014). E70, o245–o246 electronic reprint supplementary materials O3—C15—C13—C12 N3—C15—C13—C12 O3—C15—C13—C16 N3—C15—C13—C16 C12—C13—C16—C18 C15—C13—C16—C18 C12—C13—C16—C17 C15—C13—C16—C17 C6—N1—C11—C10 C8—N1—C11—C10 C9—N2—C10—C11 177.77 (18) −3.0 (2) 0.7 (3) 179.89 (15) −105.4 (2) 71.4 (2) 129.0 (2) −54.2 (2) 171.16 (13) −59.59 (16) −56.62 (16) C2—C1—C6—C5 O1—C1—C6—N1 C2—C1—C6—N1 C11—N1—C6—C5 C8—N1—C6—C5 C11—N1—C6—C1 C8—N1—C6—C1 C4—C3—C2—C1 O1—C1—C2—C3 C6—C1—C2—C3 3.0 (2) 2.4 (2) −178.73 (15) 14.0 (2) −113.80 (17) −164.14 (14) 68.06 (18) −0.5 (3) 176.69 (17) −2.1 (3) Hydrogen-bond geometry (Å, º) Cg2 is centroid of the C1—C6 benzene ring. D—H···A D—H H···A D···A D—H···A N2—H2N2···O2i N2—H1N2···N4ii N3—H1N3···O2iii C8—H8B···O1 C9—H9B···O3iv C17—H17C···O3 C10—H10B···Cg2i 0.892 (19) 0.92 (2) 0.87 (2) 0.97 0.97 0.96 0.97 1.881 (19) 1.987 (19) 2.02 (3) 2.37 2.38 2.38 2.65 2.7713 (18) 2.8923 (19) 2.8799 (18) 2.968 (2) 3.234 (2) 3.015 (3) 3.4041 (17) 176 (2) 166.2 (18) 177 (2) 119 146 123 134 Symmetry codes: (i) −x+1, −y+2, −z; (ii) x, y+1, z; (iii) −x, −y+1, −z; (iv) x+1, y+1, z. sup-8 Acta Cryst. (2014). E70, o245–o246 electronic reprint