
Evolutionary Ensembles: Combining Learning Agents using Genetic Algorithms

Jared Sylvester and Nitesh V. Chawla
Department of Computer Science and Engineering

University of Notre Dame
Notre Dame, IN 46556

{jsylvest, nchawla}@nd.edu

Abstract

Ensembles of classifiers are often used to achieve ac-
curacy greater than any single classifier. The predic-
tions of these classifiers are typically combined together
by uniform or weighted voting. In this paper, we ap-
proach the ensembles construction under a multi-agent
framework. Each individual agent is capable of learn-
ing from data, and the agents can either be homogenous
(same learning algorithm) or heterogeneous (different
learning algorithm). These learning agents are com-
bined by a meta-agent that utilizes evolutionary algo-
rithm, using the accuracy as fitness score, for discover-
ing the weights for each individual agent. The weights
are indicative the best searched combination (or collab-
oration) of the set of agents. Experimental results show
that this approach is a valid model for ensemble build-
ing when compared to the best individual agent and a
simple plurality vote of the agents.

Introduction
With the mushrooming of various domains requiring learn-
ing expertise, it is becoming relevant to understand the data
complexity and the best corresponding learning algorithm or
classifier in a reasonable time. A particular classifier might
be more suited for a particular domain or task (Wolpert &
Macready 1997). Typically, a benchmark study is conducted
over a validation set, and the best classifier is chosen. How-
ever, this can be limiting as it is very possible for more than
one algorithm to be optimal for that particular dataset, or
different algorithms being equally accurate but making dif-
ferent kinds of errors. It can then become pertinent to com-
bine the outputs of multiple classifier in an ensemble frame-
work (Freund & Schapire 1996; Breiman 1996; 1999; Diet-
terich 2000b; 2000a; Woods, Kegelmeyer, & Bowyer 1997;
Chawlaet al. 2004). The output predictions of the classi-
fiers in the ensembles are combined through voting, which
can be either uniform or weighted. In addition, ensembles
can be either heterogeneous or homogeneous (Tsoumakas,
Katakis, & Vlahavas 2004). Homogeneous ensembles com-
bine the multiple instances of classifiers generated with the
same algorithm, while heterogeneous ensembles are com-
posed of classifiers built from different algorithms.

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

In this paper, we categorize each classifier as a learning
agent. Bradshaw (Bradshaw 1997) has defined various char-
acteristics desirable of an agent. We present a discussion of
those in relation to the learning agents:
• Reactivity: Each agent is given a contribtion weight for

the final vote or prediction. This weight can essentially be
considered as the reaction weight from each agent for an
incoming test example. Moreover, in a distributed learn-
ing framework, each agent can potentially wait on trigger
factors such as data availability or decision making re-
quirement.

• Autonomy: Each agent acts completely independent of the
other and is proactive. The learning agents can be homo-
geneous or heterogeneous, but do not require any com-
munication or sharing of information during the training
stage. Each agent’s construction is completely indepen-
dent of the rest.

• Collaborative behavior: The meta-agent (genetic algo-
rithm) controls the collaboration of the agents by assign-
ing each one of them weights based on their combined
performance on the validation set. These weights are in-
dicative of the level of collaboration offered by each in-
dividual agent. Higher the weight, more the contribution
towards the final prediction. These weights are not indi-
vidually optimized, but are reflective of the optimal com-
bination or collaboration of the agents.

• Inferential capability: Each learning agent has an explicit
model of self after the learning process, but not of the
other learning agents. The meta-agent acts as the con-
troller and combiner of the individual inferential capabil-
ities.
The agents are then combined by a meta-agent (that

we’ll call EVEN) in an evolutionary learning framework.
The meta-agent looks for the best combination weights for
the individual agents based on a validation set. This pa-
per addresses both homogeneous and heterogeneous fu-
sion of agents. For the combination to be more accu-
rate than its members it is important for the members to
be diverse (Kuncheva & Whitaker 2003; Dietterich 2000b;
Kuncheva 2005). Two classifiers are diverse if they dis-
agree on their errors. Our goal is to construct a multi-agent
framework that utilizes the best combination of the available
agents. This combination should ideally be better than using



all the agents uniformly, and even the best individual agent.
We used genetic algorithm based procedure, EVEN (EVo-
lutionary ENsemble), to weight the votes of each agent in
an ensemble. EVEN begins with random weights assigned
to each available agent. After multiple generations, these
weights will be refined to reflect the relative worth of each
agent in the classification scheme. One can also implement
agents’ selection under this framework by setting a threshold
on weights.

Genetic algorithms have been used for feature selection
in a wrapper mode (Opitz 1999; Guerra-Salcedo & Whit-
ley 1999; Yang & Honavar 1997). They explore the space
of possible feature subsets, and identify the best perform-
ing of all (on a validation set). Kim et. al (Kim, Street, &
Menczer 2002) proposed meta-evolutionary ensembles that
simultaneously considered multiple ensembles and allowed
each component classifier to move in the final best-fit en-
semble. Thus, an ensemble essentially evolved from en-
sembles. However, they only used a single neural network
classifier. Menczer et al. (Menczer, Street, & Degeratu
2000) present a local selection methodology for evolving
heterogeneous neural agents. Local selection is defined as
a scheme that minimizes the interactions among members.
Del Castillo and Serrano (Castillo & Serrano 2004) propose
a multi-strategy method for text categorization using evolu-
tionary algorithms.

EVolutionary ENsembles: EVEN
We developed an evolutionary framework for combining
both heterogeneous and homogeneous learning agents. We
implemented this within anagentarchitecture, wherein each
individual classifier or learning algorithm is encoded as a
learning agent. The agents adhere to the characteristics de-
fined in the Introduction. The meta-agent, as a genetic al-
gorithm, searches the space of these individual agents and
identifies the best set of weights based on the performance
on a validation set. These weighted agents are then used for
predictions on a testing set, and the accuracies are recorded.
EVEN was implemented using the GAlib provided by (Wall
1998).

Genetic Algorithms
Genetic algorithms are computational models inspired by
evolution of biological populations. They provide a useful
approximation for multiple parameter optimizations (Forrest
1996). The initial model developed by Holland in 1975 has
been greatly extended and altered, but the basics of genetic
algorithms remain the same (Holland 1992). A “population”
of potential solutions is maintained. Each solution is en-
coded as a ”chromosome,” each of which can be evaluated
to determine the solution’s “fitness.” Each succeeding gen-
eration is populated by the most fit members of the previous
generation and their “offspring.” Offsprings are created with
crossover and mutation operators. Crossover combines the
genetic information of two solutions to create new children,
echoing reproduction in the natural world. Mutation alters
the genes of an individual to introduce more diversity into
the population, allowing more solution space to be searched.

Though the initial population is often seeded with randomly
generated solutions, and thus usually performs poorly, per-
formance improves greatly over subsequent generations.

EVEN

The first step in any ensemble system is to build the com-
ponent members. Weka, an open source software package
that implements numerous machine learning algorithms in
Java, was used for this task (Witten & Frank 2000). Learn-
ing agents were constructed on the training sets, and then
evaluated first on the validation data and then on the test-
ing data, as shown in Figure 1. Each agent generated its
corresponding prediction on a validation set for each dataset
considered in this paper. EVEN then customized the col-
laboration of each learning agent based on the performance
on the validation set. That is, all EVEN knows of the clas-
sifier is the predictions it made; EVEN does not store any
information about the decision making process of the under-
lying agents. Once the weights are learned for each indi-
vidual agent, their predictions on the unseen testing set can
be appropriately weighted. Finally, EVEN weights the test-
ing set prediction of each agent by its weight chosen from
the validation set. As we will see in the Results section, the
weights chosen for different types of agents change for dif-
ferent datasets. Thereby further attesting to the fact that the
there is no single optimal learning algorithm for different
domains or tasks.

Figure 1: Generation of validation and testing set predic-
tions using Weka. The validation set predictions are used by
EVEN to generate weights for each member agent.

The fitness function used in EVEN is classification accu-
racy. Genetic algorithms optimize to their fitness functions,
so it would be possible to swap in a different fitness function
such as F-measure or ROC in place of accuracy. Each in-
dividual in EVEN’s population is encoded as a real-valued,



fixed-length array chromosome. Though Holland’s initial al-
gorithms used binary strings, real-valued chromosomes gen-
erally outperform bit-string encodings for problems which
are naturally real-valued (Reeves & Rowe 2003). The array
is equal in length to the number of classifiers being com-
bined. Each value in the array corresponds to the weight
of a classifier’s vote in determining the final classification,
and is normalized between zero and one. The population is
initially random. The predictions on the validation set are
generated for each member agent. EVEN through its gen-
erations evolves a set of weights that is the best-fit for the
performance on the validation set. Thus, each generation is
essentially a different combination in the agents’ space that
results in a better fitness score (accuracy). Figure 2 summa-
rizes the procedure.

Figure 2: EVEN Procedure.

EVEN uses a steady state algorithm (i.e. some individuals
are carried over to the next generation without modification,
causing overlap between generations). Point mutations oc-
cur on a Gaussian distribution, meaning that after EVEN has
decided a gene in a chromosome will be mutated its value is
added to a random value selected from a Gaussian distrib-
ution to get the new value. The uniform crossover operator
used for interbreeding, meaning that each gene of the child
takes its value by randomly selecting which parent to copy
from. That is, uniform crossover is similar to an n-point
crossover, where there are n+1 genes on the chromosome.

EVEN is able to combine agents learned on any set of
training examples, as long as the predictions are available for
all instances in the validation and testing sets. This means
that EVEN can combine both heterogeneous and homoge-
neous agents. This ability implies that EVEN can be easily
applied to distributed learning of extremely large datasets.
As we noted in the Introduction, each agent is completely
autonomous so the approach can be easily parallelized or
distributed, without requiring any communication or shar-

Dataset Classes Train Valid Test
Satimage 6 4826 805 804

DNA 3 2389 399 398
Phoneme 2 3782 811 811
Pendigit 10 7694 1649 1649

Waveform 3 37500 6250 6250

Table 1: Datasets and the size of the training, validation and
testing subsets.

ing of inference among the agents. This is a very desirable
property for scalability and reduced computational complex-
ity (Chawlaet al. 2004).

Experiments
We ran various experiments to test our approach:

• Heterogenous agents: The following learning algorithms,
as implemented in Weka, were utlized for this part
of the experiments: ID3 decision trees , J48 decision
trees (Weka implementation of C4.5), JRIP rule learner
(Weka implementation of Ripper rule learning algorithm),
NBTree (Naive Bayes tree), Nave Bayes, 1R classifier,
logistic model trees, logistic regression, decision stumps
and 1BK (k-nearest neighbor algorithm) (Witten & Frank
2000).

• Homogenous agents: The homogeneous agents were dif-
ferent instances of the same algorithm. These were con-
structed either by a) randomly perturbing the algorithm
during learning (randomized trees) or b) by dividing a
dataset into disjoint parts and learning a single agent on
each part. Both led to a different learned function of the
dataset, due to a random selection of data or decision tree
split point.

In the subsequent subsections, we compare the perfor-
mance of EVEN with the uniform voted ensemble and the
single best member of the ensemble.

Datasets
We downloaded five datasets from the UCI repository:
satimage, DNA, phoneme, waveform and pendigits (Blake
& Merz 1998). Each dataset was randomly split into dis-
joint training, validation and testing sets. The datasets are
summarized in Table 1. As evident, the datasets have vary-
ing characteristics.

Results
A number of different experiments were run with EVEN.
The first set of experiments was to verify that EVEN was a
legitimate framework for generating accurate combinations.
Nine different algorithms implemented in Weka were used
to generate the independent heterogeneous agents for these
experiments. The second set of experiments had EVEN
learn ensembles composed of randomized trees; that is each
agent was a random instantiation of a decision tree algo-
rithm. Another round of experiments was done with homo-
geneous classifiers which were trained on small subsets of



Satimage DNA Phoneme Pendigits
Best 88.57 94.97 90.99 99.33

Average 76.52 85.93 81.34 80.48
Uniform Vote 88.54 94.72 85.33 98.48

EVEN 89.94 94.97 89.77 99.21

Table 2: Accuracy of the best agent in the ensemble and the
average of all agent, with the accuracies of a plurality vote
and evolutionary ensemble.

the available data. Finally, a set of experiments was done to
see if the weights assigned to agents in heterogeneous en-
sembles were correlated with their accuracy.

For all of the experiments, EVEN’s accuracy is compared
to the most accurate classifier in the ensemble, the average of
all the models, and a simple, un-weighted vote of all models.
EVEN was run for 1000 generations with a population size
of 128. Each generation evaluated the combination of differ-
ent learning agents and generated a set of weights. The set
of weights that resulted in the best fitness score on the vali-
dation set was retained. These set of weights were then used
for weighted predictions on the testing set. In some lim-
ited cases, a greater number of generations resulted in very
slight increases validation accuracy, and at most negligible
increases in accuracy on the test set. Larger populations did
not have an affect on performance.

Heterogeneous Agents
We only used satimage, DNA, phoneme and pendigits
datasets for these experiments. We did not use Waveform
dataset as various individual agents invariably achieved al-
most 100% accuracy; so there was very little expected gain
from the ensemble. Table 2 summarizes these results. For all
datasets, EVEN outperformed the voted ensemble. As ex-
pected, both EVEN and uniformly voted ensemble achieve
significantly higher performances than the average member
of the ensemble. It is encouraging that EVEN is very com-
parable to the best agent’s performance on the testing set1.
However, it seems, at first, that EVEN should be able to learn
to defer to the best classifier, and in doing so be able to at
least equal its performance. Further experimentation would
be necessary to confirm this, but it is likely that this does not
occur because the best performing classifier on the testing
set was not necessarily the best on the validation set which
EVEN was exposed to. On the four datasets evaluated here,
EVEN outperformed the best classifier once, tied once and
was beaten twice, albeit by very narrow margins. We plan to
add more datasets and agents in our framework to conduct a
more complete analysis with statistical tests of significance.

Randomized Trees as Homogeneous Agents
The second method used to generate diverse agents was ran-
domized trees (Dietterich 2000a). We hypothesized that
each agent could be a different random instantiation of a

1Note that the reported best accuracy is potentially a biased es-
timate, as the best agent is chosen directly on the testing set.

Random Trees
Best 74.18

Average 68.84
Vote 83.89

EVEN 85.33

Table 3: Accuracy of the best agent (randomized decision
tree) in the ensemble and the average of all agents, with
the accuracies of a plurality vote and evolutionary ensem-
ble. Agents were learned on the entire training portion of
the waveform set.

learning algorithm such as decision trees; each learning
agent randomly selecting differnet splitting points for deci-
sion tree construction. To further weaken each individual de-
cision tree, we implemented a stopping criteria that resulted
in a bushier and weaker tree as it preempted the growth of
the tree. The results appear in Table 3. As can be seen,
EVEN outperformed both the simple vote and the most ac-
curate of the trees. EVEN showed an improvement of 16.5%
over the average accuracy of its constituent learning agents,
and an improvement of around 11% over the best classifier.
EVEN overcomes the individual weaknesses of the agents,
and identifies their best collaborative aspects.

Homogeneous Agents on Disjoint Sets of Data

The third method divided the training data into disjoint sub-
sests, and trained agents on each of those subsets. These
agents were homogeneous because they used the same un-
derlying learning algorithm. The purpose of this experiment
was to mimic a distributed learning setting, such that the
agents could be resident on different sites and develop a lo-
cal model of the data. Note that the autonomy of the agents
is completely maintained. Both OneR and J48 models were
trained on each subset. The OneR classifiers provided an
opportunity to investigate the effects of a EVEN on “weak
learners”, while the J48 classifiers provide a less hindered
estimate of the system’s capability. Waveform was used
again for training the classifiers, although it was randomly
divided into 25 partitions, with each model being trained on
one partition. Waveform, being the largest dataset, allowed
us to construct multiple disjoint partitions.

Again, EVEN outperformed both voting and the best clas-
sifier when learned on either OneR or J48 algorithm, as indi-
cated in Table 4. Improvements over the average of the mod-
els were 18.6% for the OneR experiment and 12.6% for the
C4.5 experiment; improvements over the best of the mod-
els were around 16.5% for the OneR experiment and 12%
for the C4.5 experiment. Moreover, EVEN provided an im-
provement over the uniformly voted ensemble as well for
both the experiments. EVEN has not been implemented as a
distributed system, but it is easy to imagine such an architec-
ture, where in each agent is responsible for a particular set or
site of data. This would be especially good for large datasets
which do not easily fit in the memory of a single computer
or for datasets that are naturally distributed at different sites.
In addition, no inter-processor communication would be re-



quired while training the agents. Each agent reports its final
predictions to a meta-agent.

One-R C4.5
Best 57.88 81.46

Average 55.65 79.91
Vote 65.86 91.81

EVEN 74.27 92.54

Table 4: Accuracy of the best agent in the ensemble and the
average of all agents, with the accuracies of a plurality vote
and evolutionary ensemble. Agents were learned on disjoint
subsets of the waveform dataset.

Individual Agents’ Accuracy and Assigned Weights
To establish the weights and accuracy trend among the
agents, we ran 32 iterations of EVEN using the heterogenous
mix of learning agents. Tables 5 to 8 report those results.
We used the same datasets — satimage, dna, phoneme and
pendigits — as in the original run. For each run of EVEN,
the weight assigned to each of the agents was recorded.
The average weights given to each agent, along with that
agent’s validation and testing accuracy, are in the Tables.
Stronger agents were favored with higher weights, on av-
erage, but not in every execution. The rank-ordering of dif-
ferent agents based on their individual performances is not
consistent across different datasets. In addition, there is a
high variance in performance among the different learning
agents for a dataset. As we mentioned, high performing
agents didn’t always get a high weight due to their lack of
collaboration with the other agents.

This makes a very compelling case for EVEN, as it was
able to identify a collaborative set of autonomous agents for
each dataset, irrespective of their different inferential capa-
bilities. Each agent has a different reactivity to each dataset,
and to each other. Analysis into what properties of the learn-
ing algorithms might have influenced their weights is an area
for future research. In addition, altering the genetic opera-
tors used may have an affect on accuracy and weight correla-
tion. We would like to come up with the diversity measures
of the best classifiers and best combined classifiers (chosen
by EVEN) to shed more light on these results.

Classifier Valid. Acc Test. Acc Avg.Wgt.
C4.5 86.70 84.97 0.2467

Ripper 85.57 86.33 0.2794
NBTree 80.72 83.11 0.0987

NB 78.11 79.75 0.0404
OneR 60.32 60.75 0.3475
LMT 86.82 88.20 0.3629

Log Reg 84.4500 85.4700 0.2321
Dec Stump 42.79 43.23 0.1530

1Bk 90.30 88.57 0.9457

Table 5: A Individual accuracy and average, maximum and
minimum weights for Satimage dataset.

Classifier Valid. Acc Test. Acc Avg. Wgt.
C4.5 91.48 93.4700 0.3921

Ripper 92.73 93.22 0.5138
NBTree 92.23 92.72 0.1839

NB 93.99 92.71 0.4816
OneR 66.17 61.81 0.8212
LMT 95.24 94.97 0.5658

Log Reg 95.24 94.97 0.7019
Dec Stump 64.41 61.31 0.4497

1Bk 75.69 79.90 0.1190
ID3 91.73 93.22 0.7092

Table 6: A Individual accuracy and average, maximum and
minimum weights for DNA dataset.

Classifier Valid. Acc Test. Acc Avg.Wgt.
C4.5 86.56 84.96 0.5893

Ripper 85.94 82.86 0.2028
NBTree 87.05 83.48 0.6671

NB 76.20 76.82 0.0800
OneR 74.59 75.34 0.0685
LMT 86.31 86.07 0.1197

Log Reg 73.61 75.46 0.1054
Dec Stump 76.57 76.08 0.0744

1Bk 90.75 90.99 0.9678

Table 7: Individual accuracy and average, maximum and
minimum weights assigned for Phoneme dataset.

Conclusions and Future Work
An evolutionary approach was taken to building a combi-
nation of multi-agent framework. EVEN implemented an
agent architecture such that each individual learning was re-
active, autonomous, and independent. The meta-agent im-
plemented the collaboration among the individual agents by
evolving a set of weights for each agent based on the per-
formance on the validation set. This resulted in a weighted
prediction on the final testing set. The ensembles built by
the system proved to be superior to the uniform voting of
all the learning agents. The ensembles were about as accu-
rate as the best classifier when multiple methods were used
to generate the algorithms, and superior to the best classi-
fier in all tests using a single type of classifier. The system
was also shown to effectively combine classifiers trained on
small subsets of the training data. Data is also presented that
shows a correspondence between the weight assigned to an
agent and it’s accuracy. We believe it is important to look
at distributed learning framework as part of an agent archi-
tecture to give certain decision making and independence to
each learning algorithm.

There are many possible expansions to the system out-
lined above. One of the issues that would be worth address-
ing in future includes optimizing to other performance met-
rics, such as ROC. Also, it would be important to evaluate
EVEN with respect to bagging, boosting and various other
meta-learning schemes. Incorporating each agent’s proba-



Classifier Valid. Acc Test. Acc Avg.Wgt.
C4.5 96.24 96.06 0.3316

Ripper 95.88 96.30 0.4911
NBTree 94.48 93.94 0.3573

NB 86.11 86.69 0.1526
OneR 39.90 38.14 0.8390
LMT 98.06 98.18 0.5719

Log Reg 94.85 96.12 0.3385
Dec Stump 20.62 19.53 0.2198

1Bk 99.03 99.33 0.9117

Table 8: Individual accuracy and average, maximum and
minimum weights for Pendigits dataset.

bility distributions for predictions generated, as opposed to
the predictions alone, might increase performance. A more
detailed analysis would also be needed to determine which
of the genetic operators are best suited for EVEN. We would
also like to be able to measure the diversity among the se-
lected agents as an indicator of the improvement offered by
EVEN (Kim, Street, & Menczer 2002). As mentioned, a
distributed version of EVEN could be designed for building
ensembles of models trained on small bites of data and com-
pared to the performance of DIvote (Chawlaet al. 2004).
Finally, further analysis of the weights assigned to the en-
sembles of different classifier schemes could prove insight-
ful. Another avenue of research would be to allow the meta-
agents to adapt its rules to the changes in the domain, that is
be adaptive to the environment.

Acknowledgements
The models used by EVEN were built in the Waikato Envi-
ronment for Knowledge Analysis (Weka) developed at the
University of Waikato (Witten & Frank 2000). EVEN was
implemented with the GAlib library developed by Matthew
Wall at MIT (Wall 1998). Thanks to the anonymous review-
ers for their useful comments.

References
Blake, C., and Merz, C. 1998. UCI repository of machine
learning databases.

Bradshaw, J. 1997.Software Agents. Cambridge, MA: The
MIT Press.

Breiman, L. 1996. Bagging predictors.Machine Learning
24(2):123–140.

Breiman, L. 1999. Pasting bites together for prediction in
large data sets.Machine Learning36(1,2):85–103.

Castillo, M. D., and Serrano, J. 2004. A multistrategy
approach for digital text categorization from imbalanced
documents.ACM SIGKDD Explorations Newsletter6:70–
79.

Chawla, N. V.; Hall, L. O.; Bowyer, K. W.; and
Kegelmeyer, W. P. 2004. Learning Ensembles From Bites:
A Scalable and Accurate Approach.Journal of Machine
Learning Research5:421 – 451.

Dietterich, T. 2000a. An empirical comparison of three
methods for constructing ensembles of decision trees: bag-
ging, boosting and randomization.Machine Learning
40(2):139 – 157.
Dietterich, T. G. 2000b. Ensemble methods in machine
learning.Lecture Notes in Computer Science1857:1–15.
Forrest, S. 1996. Genetic algorithms.ACM Computing
Surveys28:77–80.
Freund, Y., and Schapire, R. 1996. Experiments with a new
boosting algorithm. InThirteenth International Conference
on Machine Learning.
Guerra-Salcedo, C., and Whitley, L. 1999. Genetic ap-
proach to feature selection for ensemble creation. InInter-
national Conference on Genetic and Evolutionary Compu-
tation, 236–243.
Holland, J. H. 1992.Adaptation in Natural and Artificial
Systems. Cambridge, MA: The MIT Press.
Kim, Y.; Street, N.; and Menczer, F. 2002. Meta-
evolutionary ensembles. InIEEE Intl. Joint Conf. on
Neural Networks, 2791–2796.
Kuncheva, L., and Whitaker, C. 2003. Measures of diver-
sity in classifier ensembles and their relationship with the
ensemble accuracy.Machine Learning51:181–207.
Kuncheva, L. 2005. Diversity in multiple classifier sys-
tems.Information Fusion6:2–3.
Menczer, F.; Street, W. N.; and Degeratu, M. 2000. Evolv-
ing heterogeneous neural agents by local selection. In
Honavar, V.; Patel, M.; and Balakrishnan, K., eds.,Ad-
vances in the Evolutionary Synthesis of Neural Systems.
Cambridge, MA: MIT Press.
Opitz, D. 1999. Feature selection for ensembles. In
AAAI/IAAI, 379–384.
Reeves, C., and Rowe, J. 2003.Genetic Algorithms -
Principles and Perspectives: A Guide to GA Theory. MA:
Kluwer.
Tsoumakas, G.; Katakis, I.; and Vlahavas, I. 2004. Effec-
tive voting of heterogeneous classifiers.Lecture Notes in
Computer Science3201:465–476.
Wall, M. 1998. Galib: A c++ library of genetic algorithm
components. (version 2.4, revision b).
Witten, I. H., and Frank, E. 2000.Data Mining: Practical
machine learning tools with Java implementations. San
Francisco, CA: Morgan Kaufmann.
Wolpert, D. H., and Macready, W. G. 1997. No free lunch
theorems for optimization.IEEE Transactions on Evolu-
tionary Computation1(1):67–82.
Woods, K.; Kegelmeyer, W. P.; and Bowyer, K. W. 1997.
Combination of multiple classifiers using local accuracy
estimates.IEEE Trans. Pattern Anal. Machine Intelligence
19:405–410.
Yang, J., and Honavar, V. 1997. Feature subset selection
using A genetic algorithm. InGenetic Programming 1997:
Proceedings of the Second Annual Conference, 380.


