Single-nucleotide polymorphism
A single nucleotide polymorphism or simple nucleotide polymorphism, often abbreviated to just SNP (pronounced snip; plural snips), is a variation in a single nucleotide which may occur at some specific position in the genome, where each variation is present to some appreciable degree within a population (e.g. >1%).
For example, at a specific base position in the human genome, it may be that in most individuals the base C appears there; but in a minority of individuals, the base A appears at that position instead. There is an SNP at this specific base position, and the two possible nucleotide variations - C or A - are said to be alleles for this base position. Although in this example and most SNPs so far discovered there are only two different alleles, there are also triallelic SNPs in which three different base variations may coexist within a population.
SNPs underlie differences in our susceptibility to disease; a wide range of human diseases, e.g. sickle-cell anemia, β-thalassemia and cystic fibrosis result from SNPs. The severity of illness and the way our body responds to treatments are also manifestations of genetic variations. For example, a single base mutation in the APOE (apolipoprotein E) gene is associated with a higher risk for Alzheimer's disease.