Forced induction
Forced induction is the process of delivering compressed air to the intake of an internal combustion engine. A forced induction engine uses a gas compressor to increase the pressure, temperature and density of the air. An engine without forced induction is considered a naturally aspirated engine.
Introduction
Forced induction is used in the automotive and aviation industry to increase engine power and efficiency. A forced induction engine is essentially two compressors in series. The compression stroke of the engine is the main compression that every engine has. An additional compressor feeding into the intake of the engine causes forced induction of air. A compressor feeding pressure into another greatly increases the total compression ratio of the entire system. This intake pressure is called boost. This particularly helps aviation engines, as they need to operate at higher altitudes with lower air densities.
Higher compression engines have the benefit of maximizing the amount of useful energy evolved per unit of fuel. Therefore, the thermal efficiency of the engine is increased in accordance with the vapour power cycle analysis of the second law of thermodynamics. The reason all engines are not higher compression is because for any given octane, the fuel will prematurely detonate with a higher than normal compression ratio. This is called preignition, detonation or knock and can cause severe engine damage. High compression on a naturally aspirated engine can reach the detonation threshold fairly easily. However, a forced induction engine can have a higher total compression without detonation because the air charge can be cooled after the first stage of compression, using an intercooler.