Concyclic points
In geometry, a set of points are said to be concyclic (or cocyclic) if they lie on a common circle. All concyclic points are the same distance from the center of the circle. Three points in the plane that do not all fall on a straight line are concyclic, but four or more such points in the plane are not necessarily concyclic.
Bisectors
In general the centre O of a circle on which points P and Q lie must be such that OP and OQ are equal distances. Therefore O must lie on the perpendicular bisector of the line segment PQ. For n distinct points there are n(n − 1)/2 bisectors, and the concyclic condition is that they all meet in a single point, the centre O.
Cyclic polygons
Triangles
The vertices of every triangle fall on a circle. (Because of this, some authors define "concyclic" only in the context of four or more points on a circle.) The circle containing the vertices of a triangle is called the circumscribed circle of the triangle. Several other sets of points defined from a triangle are also concyclic, with different circles; see nine-point circle and Lester's theorem.