Nothing Special   »   [go: up one dir, main page]

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Tennenbaum's theorem

From Wikipedia, the free encyclopedia

Tennenbaum's theorem, named for Stanley Tennenbaum who presented the theorem in 1959, is a result in mathematical logic that states that no countable nonstandard model of first-order Peano arithmetic (PA) can be recursive (Kaye 1991:153ff).

YouTube Encyclopedic

  • 1/3
    Views:
    1 074
    77 907
    11 331
  • 5/31/14 Development of Intelligence - Josh Tenenbaum: Bayesian Inference
  • Matrix methods for systems of differential equations
  • Bayesian Probabilities On Your Own - Intro to Machine Learning

Transcription

Recursive structures for PA

A structure in the language of PA is recursive if there are recursive functions and from to , a recursive two-place relation <M on , and distinguished constants such that

where indicates isomorphism and is the set of (standard) natural numbers. Because the isomorphism must be a bijection, every recursive model is countable. There are many nonisomorphic countable nonstandard models of PA.

Statement of the theorem

Tennenbaum's theorem states that no countable nonstandard model of PA is recursive. Moreover, neither the addition nor the multiplication of such a model can be recursive.

Proof sketch

This sketch follows the argument presented by Kaye (1991). The first step in the proof is to show that, if M is any countable nonstandard model of PA, then the standard system of M (defined below) contains at least one nonrecursive set S. The second step is to show that, if either the addition or multiplication operation on M were recursive, then this set S would be recursive, which is a contradiction.

Through the methods used to code ordered tuples, each element can be viewed as a code for a set of elements of M. In particular, if we let be the ith prime in M, then . Each set will be bounded in M, but if x is nonstandard then the set may contain infinitely many standard natural numbers. The standard system of the model is the collection . It can be shown that the standard system of any nonstandard model of PA contains a nonrecursive set, either by appealing to the incompleteness theorem or by directly considering a pair of recursively inseparable r.e. sets (Kaye 1991:154). These are disjoint r.e. sets so that there is no recursive set with and .

For the latter construction, begin with a pair of recursively inseparable r.e. sets A and B. For natural number x there is a y such that, for all i < x, if then and if then . By the overspill property, this means that there is some nonstandard x in M for which there is a (necessarily nonstandard) y in M so that, for every with , we have

Let be the corresponding set in the standard system of M. Because A and B are r.e., one can show that and . Hence S is a separating set for A and B, and by the choice of A and B this means S is nonrecursive.

Now, to prove Tennenbaum's theorem, begin with a nonstandard countable model M and an element a in M so that is nonrecursive. The proof method shows that, because of the way the standard system is defined, it is possible to compute the characteristic function of the set S using the addition function of M as an oracle. In particular, if is the element of M corresponding to 0, and is the element of M corresponding to 1, then for each we can compute (i times). To decide if a number n is in S, first compute p, the nth prime in . Then, search for an element y of M so that

for some . This search will halt because the Euclidean algorithm can be applied to any model of PA. Finally, we have if and only if the i found in the search was 0. Because S is not recursive, this means that the addition operation on M is nonrecursive.

A similar argument shows that it is possible to compute the characteristic function of S using the multiplication of M as an oracle, so the multiplication operation on M is also nonrecursive (Kaye 1991:154).

Turing degrees of models of PA

Jockush and Soare have shown there exists a model of PA with low degree.[1]

References

  • Boolos, George; Burgess, John P.; Jeffrey, Richard (2002). Computability and Logic (4th ed.). Cambridge University Press. ISBN 0-521-00758-5.
  • Kaye, Richard (1991). Models of Peano arithmetic. Oxford University Press. ISBN 0-19-853213-X.
  • Kaye, Richard (Sep 2011). "Tennenbaum's Theorem for Models of Arithmetic". In Juliette Kennedy and Roman Kossak (ed.). Set theory, arithmetic, and foundations of mathematics - theorems, philosophies (PDF). Lecture Notes in Logic. Vol. 36. ISBN 9781107008045.
  • Tennenbaum, Stanley (1959). "Non-Archimedean models for arithmetic". Notices of the American Mathematical Society. 6: 270.
  1. ^ V. Harizanov, "Chapter 1: Pure Computable Model Theory, in Handbook of Recursive Mathematics, edited by Yu. L. Ershov, S. S. Goncharov, A. Nerode, J. B. Remmel (1998, Elsevier). Chapter 1, p.13
This page was last edited on 3 February 2024, at 10:30
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.