Nothing Special   »   [go: up one dir, main page]

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Phenanthrene
Ball-and-stick model of the phenanthrene molecule
Phenanthrene
Names
Preferred IUPAC name
Phenanthrene
Identifiers
3D model (JSmol)
1905428
ChEBI
ChemSpider
ECHA InfoCard 100.001.437 Edit this at Wikidata
EC Number
  • 266-028-2
28699
KEGG
MeSH C031181
UNII
  • InChI=1S/C14H10/c1-3-7-13-11(5-1)9-10-12-6-2-4-8-14(12)13/h1-10H ☒N
    Key: YNPNZTXNASCQKK-UHFFFAOYSA-N ☒N
  • InChI=1/C14H10/c1-3-7-13-11(5-1)9-10-12-6-2-4-8-14(12)13/h1-10H
    Key: YNPNZTXNASCQKK-UHFFFAOYAC
  • C1=CC=C2C(=C1)C=CC3=CC=CC=C32
Properties
C14H10
Molar mass 178.234 g·mol−1
Appearance Colorless solid
Density 1.18 g/cm3[1]
Melting point 101 °C (214 °F; 374 K)[1]
Boiling point 332 °C (630 °F; 605 K)[1]
1.6 mg/L[1]
−127.9·10−6 cm3/mol
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
1
1
0
Flash point 171 °C (340 °F; 444 K)[1]
Structure
C2v[2]
0 D
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Phenanthrene is a polycyclic aromatic hydrocarbon (PAH) with formula C14H10, consisting of three fused benzene rings. It is a colorless, crystal-like solid, but can also appear yellow. Phenanthrene is used to make dyes, plastics, pesticides, explosives, and drugs. It has also been used to make bile acids, cholesterol and steroids.[3]

Phenanthrene occurs naturally and also is a man-made chemical. Commonly, humans are exposed to phenanthrene through inhalation of cigarette smoke, but there are many routes of exposure. Animal studies have shown that phenanthrene is a potential carcinogen.[3] However, according to IARC, it is not identified as a probable, possible or confirmed human carcinogen.[4]

Phenanthrene's three fused rings are angled as in the phenacenes, rather than straight as in the acenes. The compound with a phenanthrene skeleton and nitrogens at the 4 and 5 positions is known as phenanthroline.

YouTube Encyclopedic

  • 1/5
    Views:
    138 080
    6 870
    25 109
    1 496
    4 901
  • Polynuclear hydrocarbons | Anthracene | Phenanthrene | Synthesis, Reactions,Uses | P-2,Unit-4| POC-2
  • Phenanthrene/Polycyclic Aromatic Compound/Organic synthesis 1st Msc Final
  • Phenanthrene | Synthesis | Chemical Reactions | Uses | Pharmaceutical Organic Chemistry
  • Polynuclear hydrocarbons 9 || structure of phenanthrene ||
  • Lecture 06 : #Phenanthrene and it's preparation, Pschorr synthesis and Haworth synthesis.

Transcription

Physical Properties

Phenanthrene is nearly insoluble in water but is soluble in most low-polarity organic solvents such as toluene, carbon tetrachloride, ether, chloroform, acetic acid and benzene.

Phenanthrene is fluorescent under ultraviolet light, exhibiting a large Stoke shift.[5] It can be used in scintillators.

Chemistry

Reactions of phenanthrene typically occur at the 9 and 10 positions, including:

Canonical forms

Phenanthrene is more stable than its linear isomer anthracene. A classic and well established explanation is based on Clar's rule. A novel theory invokes so-called stabilizing hydrogen–hydrogen bonds between the C4 and C5 hydrogen atoms.[citation needed]

Synthesis

The Bardhan–Sengupta phenanthrene synthesis is a classic way to make phenanthrenes.[11]

Bardhan–Senguptam phenanthrene synthesis

This process involves electrophilic aromatic substitution using a tethered cyclohexanol group using diphosphorus pentoxide, which closes the central ring onto an existing aromatic ring. Dehydrogenation using selenium converts the other rings into aromatic ones as well. The aromatization of six-membered rings by selenium is not clearly understood, but it does produce H2Se.

Phenanthrene can also be obtained photochemically from certain diarylethenes (Mallory reaction):

Other synthesis routes include the Haworth reaction and the Wagner-Meerwein-type ring-expansion, as depicted below:

Natural occurrences

Ravatite is a natural mineral consisting of phenanthrene.[12] It is found in small amounts among a few coal burning sites. Ravatite represents a small group of organic minerals.

In plants

Phenanthrene derivatives occur in plants as phenanthrenoids. They have been reported from flowering plants, mainly in the family Orchidaceae, and a few in the families Dioscoreaceae, Combretaceae and Betulaceae, as well as in the lower plant class Marchantiophyta (liverworts).[13]

See also

References

  1. ^ a b c d e Record of CAS RN 85-01-8 in the GESTIS Substance Database of the Institute for Occupational Safety and Health
  2. ^ Peter Atkins, J. D. P., Atkins' Physical Chemistry. Oxford: 2010. P. 443.
  3. ^ a b "Phenanthrene Fact Sheet" (PDF). archive.epa.gov. U.S. Environmental Protection Agency. Retrieved 19 July 2019.
  4. ^ "Phenanthrene". Sigma-Alrdich.
  5. ^ "Spectrum [Phenanthrene] | AAT Bioquest". www.aatbio.com. Retrieved 2024-07-30.
  6. ^ Organic Syntheses, Coll. Vol. 4, p. 757 (1963); Vol. 34, p. 76 (1954).
  7. ^ Organic Syntheses, Coll. Vol. 4, p. 313 (1963); Vol. 34, p. 31 (1954).
  8. ^ Organic Syntheses, Coll. Vol. 3, p. 134 (1955); Vol. 28, p. 19 (1948).
  9. ^ Organic Syntheses, Coll. Vol. 2, p. 482 (1943); Vol. 16, p. 63 (1936).
  10. ^ Organic Syntheses, Coll. Vol. 5, p. 489 (1973); Vol. 41, p. 41 (1961).
  11. ^ "Bardhan Sengupta Synthesis". Comprehensive Organic Name Reactions and Reagents. Vol. 49. 2010. pp. 215–219. doi:10.1002/9780470638859.conrr049. ISBN 9780470638859.
  12. ^ Ravatite Mineral Data
  13. ^ Kovács, Adriána; Vasas, Andrea; Hohmann, Judit (2008). "Natural phenanthrenes and their biological activity". Phytochemistry. 69 (5): 1084–1110. Bibcode:2008PChem..69.1084K. doi:10.1016/j.phytochem.2007.12.005. PMID 18243254.
This page was last edited on 5 August 2024, at 17:03
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.