Nothing Special   »   [go: up one dir, main page]

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Partial equivalence relation

From Wikipedia, the free encyclopedia

In mathematics, a partial equivalence relation (often abbreviated as PER, in older literature also called restricted equivalence relation[1]) is a homogeneous binary relation that is symmetric and transitive. If the relation is also reflexive, then the relation is an equivalence relation.

YouTube Encyclopedic

  • 1/5
    Views:
    69 286
    33 306
    3 132
    7 813
    14 662
  • [Discrete Math 1] Partial Orders
  • Equivalence relations (Screencast 7.2.2)
  • [Mathematical Linguistics] Equivalence Relations and Partitions
  • Equivalence relations made easy
  • 4.2.1 - Equivalence Relations

Transcription

Definition

Formally, a relation on a set is a PER if it holds for all that:

  1. if , then (symmetry)
  2. if and , then (transitivity)

Another more intuitive definition is that on a set is a PER if there is some subset of such that and is an equivalence relation on . The two definitions are seen to be equivalent by taking .[2]

Properties and applications

The following properties hold for a partial equivalence relation on a set :

  • is an equivalence relation on the subset .[note 1]
  • difunctional: the relation is the set for two partial functions and some indicator set
  • right and left Euclidean: For , and implies and similarly for left Euclideanness and imply
  • quasi-reflexive: If and , then and .[3][note 2]

None of these properties is sufficient to imply that the relation is a PER.[note 3]

In non-set-theory settings

In type theory, constructive mathematics and their applications to computer science, constructing analogues of subsets is often problematic[4]—in these contexts PERs are therefore more commonly used, particularly to define setoids, sometimes called partial setoids. Forming a partial setoid from a type and a PER is analogous to forming subsets and quotients in classical set-theoretic mathematics.

The algebraic notion of congruence can also be generalized to partial equivalences, yielding the notion of subcongruence, i.e. a homomorphic relation that is symmetric and transitive, but not necessarily reflexive.[5]

Examples

A simple example of a PER that is not an equivalence relation is the empty relation , if is not empty.

Kernels of partial functions

If is a partial function on a set , then the relation defined by

if is defined at , is defined at , and

is a partial equivalence relation, since it is clearly symmetric and transitive.

If is undefined on some elements, then is not an equivalence relation. It is not reflexive since if is not defined then — in fact, for such an there is no such that . It follows immediately that the largest subset of on which is an equivalence relation is precisely the subset on which is defined.

Functions respecting equivalence relations

Let X and Y be sets equipped with equivalence relations (or PERs) . For , define to mean:

then means that f induces a well-defined function of the quotients . Thus, the PER captures both the idea of definedness on the quotients and of two functions inducing the same function on the quotient.

Equality of IEEE floating point values

The IEEE 754:2008 standard for floating-point numbers defines an "EQ" relation for floating point values. This predicate is symmetric and transitive, but is not reflexive because of the presence of NaN values that are not EQ to themselves.[6]

Notes

  1. ^ By construction, is reflexive on and therefore an equivalence relation on .
  2. ^ This follows since if , then by symmetry, so and by transitivity. It is also a consequence of the Euclidean properties.
  3. ^ For the equivalence relation, consider the set and the relation . is an equivalence relation on but not a PER on since it is neither symmetric (, but not ) nor transitive ( and , but not ). For Euclideanness, xRy on natural numbers, defined by 0 ≤ xy+1 ≤ 2, is right Euclidean, but neither symmetric (since e.g. 2R1, but not 1R2) nor transitive (since e.g. 2R1 and 1R0, but not 2R0).

References

  1. ^ Scott, Dana (September 1976). "Data Types as Lattices". SIAM Journal on Computing. 5 (3): 560. doi:10.1137/0205037.
  2. ^ Mitchell, John C. (1996). Foundations for programming languages. Cambridge, Mass.: MIT Press. pp. 364–365. ISBN 0585037892.
  3. ^ Encyclopaedia Britannica (EB); although EB's notion of quasi-reflexivity is Wikipedia's notion of left quasi-reflexivity, they coincide for symmetric relations.
  4. ^ Salveson, A.; Smith, J.M. (1988). "The strength of the subset type in Martin-Lof's type theory". [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science. pp. 384–391. doi:10.1109/LICS.1988.5135. ISBN 0-8186-0853-6. S2CID 15822016.
  5. ^ J. Lambek (1996). "The Butterfly and the Serpent". In Aldo Ursini; Paulo Agliano (eds.). Logic and Algebra. CRC Press. pp. 161–180. ISBN 978-0-8247-9606-8.
  6. ^ Goldberg, David (1991). "What Every Computer Scientist Should Know About Floating-Point Arithmetic". ACM Computing Surveys. 23 (1): 5–48. doi:10.1145/103162.103163. See page 33.
This page was last edited on 5 July 2024, at 07:53
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.