Nothing Special   »   [go: up one dir, main page]

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Armstrong's axioms

From Wikipedia, the free encyclopedia

Armstrong's axioms are a set of references (or, more precisely, inference rules) used to infer all the functional dependencies on a relational database. They were developed by William W. Armstrong in his 1974 paper.[1] The axioms are sound in generating only functional dependencies in the closure of a set of functional dependencies (denoted as ) when applied to that set (denoted as ). They are also complete in that repeated application of these rules will generate all functional dependencies in the closure .

More formally, let denote a relational scheme over the set of attributes with a set of functional dependencies . We say that a functional dependency is logically implied by , and denote it with if and only if for every instance of that satisfies the functional dependencies in , also satisfies . We denote by the set of all functional dependencies that are logically implied by .

Furthermore, with respect to a set of inference rules , we say that a functional dependency is derivable from the functional dependencies in by the set of inference rules , and we denote it by if and only if is obtainable by means of repeatedly applying the inference rules in to functional dependencies in . We denote by the set of all functional dependencies that are derivable from by inference rules in .

Then, a set of inference rules is sound if and only if the following holds:

that is to say, we cannot derive by means of functional dependencies that are not logically implied by . The set of inference rules is said to be complete if the following holds:

more simply put, we are able to derive by all the functional dependencies that are logically implied by .

YouTube Encyclopedic

  • 1/5
    Views:
    22 113
    37 355
    5 619
    28 413
    801
  • Armstrong's Axioms
  • UHCL 19a Graduate Database Course - DBMS Theory - Armstrongs Axioms - Inference Rules
  • ARMSTRONG'S AXIOM AND INFERENCE RULES
  • Inference Rules of Functional Dependency | Database Management System
  • 17 Closure Properties of Functional Dependencies | Armstrongs Axioms | Inference rules

Transcription

Axioms (primary rules)

Let be a relation scheme over the set of attributes . Henceforth we will denote by letters , , any subset of and, for short, the union of two sets of attributes and by instead of the usual ; this notation is rather standard in database theory when dealing with sets of attributes.

Axiom of reflexivity

If is a set of attributes and is a subset of , then holds . Hereby, holds [] means that functionally determines .

If then .

Axiom of augmentation

If holds and is a set of attributes, then holds . It means that attribute in dependencies does not change the basic dependencies.

If , then for any .

Axiom of transitivity

If holds and holds , then holds .

If and , then .

Additional rules (Secondary Rules)

These rules can be derived from the above axioms.

Decomposition

If then and .

Proof

1. (Given)
2. (Reflexivity)
3. (Transitivity of 1 & 2)

Composition

If and then .

Proof

1. (Given)
2. (Given)
3. (Augmentation of 1 & A)
4. (Decomposition of 3)
5. (Augmentation of 2 & X)
6. (Decomposition of 5)
7. (Union 4 & 6)

Union

If and then .

Proof

1. (Given)
2. (Given)
3. (Augmentation of 2 & X)
4. (Augmentation of 1 & Z)
5. (Transitivity of 3 and 4)

Pseudo transitivity

If and then .

Proof

1. (Given)
2. (Given)
3. (Augmentation of 1 & Z)
4. (Transitivity of 3 and 2)

Self determination

for any . This follows directly from the axiom of reflexivity.

Extensivity

The following property is a special case of augmentation when .

If , then .

Extensivity can replace augmentation as axiom in the sense that augmentation can be proved from extensivity together with the other axioms.

Proof

1. (Reflexivity)
2. (Given)
3. (Transitivity of 1 & 2)
4. (Extensivity of 3)
5. (Reflexivity)
6. (Transitivity of 4 & 5)

Armstrong relation

Given a set of functional dependencies , an Armstrong relation is a relation which satisfies all the functional dependencies in the closure and only those dependencies. Unfortunately, the minimum-size Armstrong relation for a given set of dependencies can have a size which is an exponential function of the number of attributes in the dependencies considered.[2]

References

  1. ^ William Ward Armstrong: Dependency Structures of Data Base Relationships, page 580-583. IFIP Congress, 1974.
  2. ^ Beeri, C.; Dowd, M.; Fagin, R.; Statman, R. (1984). "On the Structure of Armstrong Relations for Functional Dependencies" (PDF). Journal of the ACM. 31: 30–46. CiteSeerX 10.1.1.68.9320. doi:10.1145/2422.322414. Archived from the original (PDF) on 2018-07-23.

External links

This page was last edited on 10 May 2024, at 09:23
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.