Nothing Special   »   [go: up one dir, main page]

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

In organic chemistry, an active ester is an ester functional group that is highly susceptible toward nucleophilic attack. Activation can be imparted by modifications of the acyl or the alkoxy components of a normal ester, say ethyl acetate. Typical modifications call for electronegative substituents. Active esters are employed in both synthetic and biological chemistry.

Acetyl CoA is the prototypical active ester in biosynthesis.

Reactivity

Active esters are mainly used as acylating agents. They undergo the same reactions as their unactivated analogues but do so more rapidly. They are prone to hydrolysis, for example. Of great interest is the enhanced reactivity of active esters toward amines to give amides.[1][2]

Examples

Thioesters are prominent active esters, as illustrated by the esters of coenzyme A.[3]

In synthetic chemistry, active esters include derivatives of nitrophenols and pentafluorophenol. Active esters are often used in peptide synthesis, e.g., N-hydroxysuccinimide, hydroxybenzotriazole.[1] Active esters of acrylic acid are precursors to polymers with reactive side chains.[4]

The concept of active esters extends to esters of phosphoric and sulfuric acids. One such case is dimethylsulfate, a strong methylating agent.

References

  1. ^ a b Madeleine M. Joullié; Kenneth M. Lassen (2010). "Evolution of Amide Bond Formation". Arkivoc. viii: 189–250.
  2. ^ El-Faham, Ayman; Albericio, Fernando (2011). "Peptide Coupling Reagents, More than a Letter Soup". Chemical Reviews. 111 (11): 6557–6602. doi:10.1021/cr100048w. PMID 21866984.
  3. ^ Aimoto, Saburo (1999). "Polypeptide synthesis by the thioester method". Biopolymers. 51 (4): 247–265. doi:10.1002/(SICI)1097-0282(1999)51:4<247::AID-BIP2>3.0.CO;2-W. PMID 10618594.
  4. ^ Anindita Das; Patrick Theato (2016). "Activated Ester Containing Polymers: Opportunities and Challenges for the Design of Functional Macromolecules". Chem. Rev. 116 (3): 1434–1495. doi:10.1021/acs.chemrev.5b00291. PMID 26305991.
This page was last edited on 7 February 2024, at 01:21
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.