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Abstract—Due to the development of intelligent energy 
management system with automatic control, the large 
population of residential appliances have the opportunity to be 
effectively utilized by load serving entities (LSEs) to reduce their 
operating costs and increase total profit. In practice, LSEs are 
promoting various demand response (DR) programs to 
stimulate the flexibility of industrial and commercial demand. 
However, in the residential sector, due to customers’ versatile 
electricity consumption patterns, fully utilizing the responsive 
residential demand through DR programs such as incentive 
based demand response (I-DR) is difficult. Specifically, in I-DR, 
the most crucial issue for LSEs is how to estimate the residents’ 
potential responses to certain financial incentives. Therefore, 
this paper presents an approach which integrates three data sets 
(1. the residential energy consumption survey by the U.S. energy 
information administration; 2. the American time use survey by 
the U.S. Department of Labor; and 3. the survey of customers’ 
reactions to financial incentives in DR program by the center for 
ultra-wide-area resilient electric energy transmission networks) 
to assess responsive residential demand in a stochastic model. 
This proposed approach can be easily customized for any given 
times, locations, financial incentives, and residents’ portfolios. 
Also, it will help LSEs get the valuable insights on regulating the 
residential demand by adjusting the financial incentives to 
customers and improving the mechanism existing demand 
response programs. 

Index Terms—Incentive based demand response (I-DR), load 
serving entity (LSE), stochastic modelling, residential demand, 
financial incentive, demand response, behavioral analysis. 

I. INTRODUCTION 
n recent years, the electrical power industry has undergone 
a modernization, moving from traditional power systems 

towards smart grids. Efficient, flexible, and controllable 
energy consumption becomes one of the fundamental goals in 
smart grid initiatives. According to the forecast from U.S. 
Census Bureau, the American population will swell to 336 
million by 2020, and 400 million by 2043. Due to the rapid 
growth of the population, residential energy consumption will 
increase. The data from the energy review by U.S. Energy 
Information Administration (EIA) [1], the residential 
electricity use in the U.S. in 2013 is 1,391,090 million kWh, 

which is the largest share (38%) of the total electricity 
consumption. Ref [2] shows that the development and 
investment on demand side management have been 
increasing, especially, for residential sector. Moreover, in the 
past few years, the availability of technologies, including 
advanced metering infrastructures (AMI), GPU computing 
[3-4], communication, renewables [5-6], energy storage [7-8], 
etc., creates the opportunities for academia and industry to 
explore the possibility of utilizing the flexibility of residential 
demand [9-11]. In practice, load serving entities (LSEs) have 
been deploying various demand response (DR) programs as 
potential resources to balance supply and demand, reduce 
peak-hour loads, and enhance the generation efficiency [12] 
for large industrial and commercial demand. Similarly, as for 
the residential demand, customers are expected to change their 
electricity usage patterns in response to the financial 
incentives offered by LSEs [13-14]. 

Incentive based DR (I-DR) attempts to induce the demand 
flexibility in retail customers (such as small/medium size 
commercial, industrial, and residential customers) to realize 
the accurate residential demand reduction on a voluntary basis 
[15]. However, in practice, methods such as peak time rebate 
(PTR) and critical peak pricing (CPP) are still prevalent ways 
to realize the demand side management. I-DR is different 
from them in terms of the mechanism. In PTR, the rebate 
rates during critical periods are pre-determined and fixed 
whereas the incentive rates vary in I-DR. In CPP, mandatory 
high prices are utilized to motivate residents to adjust their 
electricity consumption whereas the residents are voluntary to 
participate in I-DR. Despite the advantages of I-DR, the 
application of I-DR is still difficult for LSEs, due to 
customers’ versatile electricity consumption patterns. In order 
to assess the responsive residential demand to financial 
incentives, a stochastic model has been proposed in this paper. 
With the proposed approach, LSEs will be able to know the 
characteristics of residential responsive demand under I-DR 
program based on the residents’ portfolio and to generate the 
probability distribution of the possible residential demand 
reduction for any given time, location, and amount of 
incentive. 
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The rest of this paper is organized as follows: Section II 
illustrates the structure of electricity market and procedure for 
LSEs to perform I-DR. Section III presents the details of 
residential responsive demand model formulation. Section IV 
discusses the simulation results and numerical analyses to 
clearly justify the validity of proposed approach. Finally, 
Section V summaries and concludes this paper. 

II. ELECTRICITY MARKET AND I-DR 

A.  Electricity Market Structure 
Fig. 1 illustrates the multi-layer electricity market 

structure: generation companies provide their offers including 
the available generation quantities and prices to the 
corresponding independent system operator (ISO)/regional 
transmission organization (RTO), in the meantime, LSEs 
provide their demand bids to the ISO/RTO, and then the 
ISO/RTO clears the market with the objective of maximizing 
social welfare. In the U.S., most ISOs/RTOs implement the 
two-settlement system [16]: day-ahead (DA) market and real-
time (RT) market. The energy cleared in real-time market is 
around 2%-8% [17], which represents a considerable with 
respect to the possible demand response amount. Here, LSEs 
are able to adjust the demand bids and perform strategic 
bidding in electricity market to maximize their profit by 
offering proper financial incentives to the customers who 
have enrolled I-DR program. 

 
Fig. 1. Electricity market structure 

B.  Procedure of I- DR  
The flowchart of the procedure for LSE to perform I-DR 

is as shown in Fig. 2. First, the LSE obtains location marginal 
prices (LMPs) information from ISO/RTO’s DA market [18]. 
Then, the LSE broadcasts the incentive price for the hours 
when performing I-DR to stimulate customers reducing their 
demands can help increase their profit (i.e., the hours when 
locational marginal price exceeds the electricity flat retail 
rate). After gathering all the information of potential demand 
reduction, the LSE mimics ISO’s economic dispatch (ED) to 
identify the optimal demand reduction. Finally, the LSE 
performs strategic market bidding with this revised demand 
to achieve maximum profit. 

In the above procedure, the LSE has to broadcast and 
update the incentive prices multiple times through 
communicating with customers and iteratively obtain the 
optimal value of incentive price. While in practice, due to the 
huge data processing and communication with numerous 
customers, the times of information exchange between LSEs 
and customers are limited. In order to reduce the iterations 

between LSEs and customers and to speed up the updating 
process of incentive prices, LSEs should be able to determine 
a rough range of the incentive price before broadcasting it; 
hence, I-DR can serve as an online implementation for LSEs 
in the actual practice. 
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Fig. 2. Flowchart of the LSE’s strategic bidding 

To determine the initial optimal incentive price, the LSE 
should be able to assess the amount of residential responsive 
demand that can be reduced with different incentive prices, 
and then perform strategic bidding for each incentive price, 
and finally obtain an optimal amount. The details about the 
proposed stochastic model will be discussed in the next 
section. 

III. RESIDENTIAL RESPONSIVE DEMAND MODELLING 

A.  Model Overview 
As previously discussed, the uncertainty of customers’ 

demand reduction is typically modeled as follows in I-DR 
based strategic bidding: 1) the LSE offers an incentive price 
to customers; 2) the customers provide their ranges of 
corresponding demand reduction to the LSE; 3) the LSE 
calculates the expected net revenue through bidding this 
revised demand in electricity market; and 4) by repeating 
steps 1)-3) with different incentive prices, the optimal 
incentive value, which brings the LSE the maximum net 
revenue, can be found. However, there are two issues for this 
process: 1) it is rarely feasible to keep frequently updating 
customers’ demand reduction data; and 2) interaction with 
numerous customers makes it too time-consuming to serve as 
an online implementation. Therefore, a stochastic model of 
demand reduction is proposed in this paper. 
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Fig. 3. Schematic diagram of the proposed model 

Different from the traditional method, with the 
consideration about the characteristics of residential demand 
for a given time, location and customers’ portfolios, the 
proposed model is able to assess the probability distribution 
of residential demand response to certain incentive price. As 



the schematic shown in Fig. 3, instead of iteratively updating 
information between LSE and customers, the proposed model 
directly generates the results, and this avoids the time-
consuming procedure of communicating and makes the 
online implementation of I-DR feasible for LSEs. 

B.  Residential Responsive Demand Model Formulation 
The proposed model is established based on adequate data 

analysis of three data sets: 1) the Residential Energy 
Consumption Survey [19] (RECS) by the U.S. Energy 
Information Administration (EIA), 2) the American Time Use 
Survey [20] (ATUS) by the U.S. Department of Labor 
(USDL), and 3) the Survey of Customers’ Reactions to 
Financial Incentives (SCRFI) in DR by the Center for Ultra-
wide-area Resilient Electric Energy Transmission Networks 
(CURENT) [21].  

• RECS collected data from 12,083 households in 
housing units statistically selected to represent the 
113.6 million housing units that are occupied. 
Specially trained interviewers collect energy 
characteristics on the housing unit, usage patterns, and 
household demographics. This information is 
combined with data from energy suppliers to these 
homes to estimate energy costs and usage for heating, 
cooling, appliances and other end uses that are critical 
to energy demand and efficiency. 

• ATUS provides nationally representative estimates of 
how, where, and with whom Americans spend their 
time, and is the only federal survey providing data on 
the full range of nonmarket activities. Moreover, 
ATUS data files have been used by researchers to 
study a broad range of issues; the data files include 
information collected from over 148,000 interviews 
conducted from 2003 to 2013. 

• SCRFI collected self-reported data from 711 U.S. 
residents across 48 states in 2013. This study 
estimates the adopting rates of major DR behaviors as 
a function of the demanded financial incentives. 
Specifically, this survey was conducted by CURENT 
through Amazon’s Mechanical Turk (MTurk). MTurk 
has been received great popularity among social 
scientists as a useful research tool to collect data [23]. 
The SCRFI was published on MTurk as a “hit.” The 
respondents read the instructions and voluntarily 
completed the survey. It needs to be noted that another 
sample of 826 residents has just been collected, and 
that CURENT is continuously improving the question 
designs in SCRFI and aiming to gather more 
representative responses across the U.S. 

By creatively integrating RECS, ATUS and SCRFI, the 
proposed method can be formulated. The procedure of the 
model formulation is summarized as follows: 

Step 1) Based on the given location to be studied, the 
residents will be categorized into several groups (G1, 
G2 ……GN) based on the demographic information. 
For each group of residents, step 2) to 5) will be 
performed. 

Step 2) For group Gi, the types and ratings of the appliances 
customers owned can be obtained by analyzing 
RECS. Here, the proposed model considers the I-DR 
over appliances including electrical water heaters 
(EWH) and air conditioner (ACs), since EWH and 
ACs account for the dominating part (over 53%) of 
residential demand. Therefore, for residents of Gi, 
the average ratings their of ACs and EWHs can be 
obtained as Rac,i and REWH,i. 

Step 3) For group Gi, ATUS can provide information about 
the activities which the residents are doing at a given 
location and at a given time of a day. The proposed 
model considers only AC and EWH-related activities 
such as working (out/at home), taking shower, 
sleeping, etc. Therefore, at time t, the probability of 
the residents in Gi doing activities 

{ }m21j a,......,a,aa ∈  can be expressed as 
Pactivity,i(aj,t). 

Step 4) To study customers’ reactions to financial incentives, 
SCRFI helps estimate the distribution of group Gi in 
terms of the willingness to respond to a certain 
incentive price { }p21k r,......,r,rr ∈ in I-DR. Then, 
based on the residents’ responsiveness to different 
incentive prices, their spectrum of responsiveness can 
be modeled. The responsiveness for AC and EWH of 
the residents in Gi are expressed as PresAC,i(rk,aj,t) 
and PresEWH,i(rk,aj,t) respectively.  

Step 5) With the integration of the appliance and activity 
information, the possible amount of the residential 
demand reduction can be obtained. The potential 
reducible demand for group Gi at time t with given 
financial incentives rk, can be formulated as below. 

( ) ( )
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Step 6) By repeating step 2) to 5), the residents’ 
responsiveness distribution and the potential 
reducible demand of all the groups (G1 to GN) are 
known. Then, it is easy to obtain the probabilistic 
distribution of the residential responsive demand 
reduction. 
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Fig. 4. Schematic diagram of the information flow for the proposed model 

The schematic diagram of the information flow for the 
residential demand reduction model is as shown in Fig. 4, 
where the inputs of the model are the incentive prices, the I-
DR’s location and time length, and the output is the 
corresponding probabilistic distribution of residential demand 
reduction in I-DR with a given incentive price in a given 
location at a given time. 

In summary, the above proposed stochastic model 
evaluates the characteristics of residential demand reduction 
under I-DR programs based on the local residents’ portfolios 
and provides the probability distribution of demand reduction 
for given times, locations, and coupon prices. 

IV. CASE STUDIES 
In this section, the proposed method has been tested to 

demonstrate the model features. However, since this work is 
early work in this area, there is no practical results public 
available for comparison. In order to verify the validity and 
effectiveness of the proposed model, various case studies in 
Northeast, Midwest, South and West regions of U.S. have 
been performed for comparison to check whether the results 
comply with common knowledge. The simulation has been 
performed in Matlab on a desktop with Intel Xeon 3.2GHz 
CPU, 8 GB RAM, and Window 8. 

A.  Fixed Time 
The model has been applied to simulating the probability 

distribution of reduced power ratio (RPR) in residential 
aspect with various incentive prices for the whole U.S. at 
12pm in a summer day. Fig.5 shows the probability 
distribution results, which indicate that the higher the 
financial incentive is, the more likely customers are willing to 
reduce their load. Meanwhile, due to customers’ different 
responses to financial incentives in DR, with the increasing of 
the financial incentive, the probabilistic distribution of 
demand reduction becomes broader. 

 
Fig. 5. Probability distribution of RPR under different incentive prices 

Fig. 6 is the customers’ responses towards different 
incentive prices in the Northeast, Midwest, South and West 
regions of U.S. respectively. The results show that the 
residential demand in the South at summer time responds 
more significantly to I-DR than that of the other three 
regions. This phenomena is reasonable, because 1) SCRFI 
shows that residents in the South are more sensitive to 
financial incentives and 2) RECS reflects that more space 
cooling appliances are operating in South region at summer 

time, which increases the total capacity of the potential 
reducible demand. 

 
Fig. 6. Probability distribution of RPR with different incentive prices in the 

Northeast, Midwest, South and West regions of U.S 

B.  Fixed Incentive Price 
The characteristics of residential demand of the whole 

U.S. with a given incentive price in a random summer day for 
24 hours is illustrated in Fig. 7. The result shows the 
residential demand is most probable to be reduced by I-DR 
from 7AM-7PM. The possible reasons are 1) the possible 
reducible demand is high when most of the residents are 
awake (by ATUS), and also 2) SCRFI shows that residents 
are more likely to turn off home appliances when they are not 
at home (i.e., are at work place). 

 
Fig. 7. Probability distribution of 24-hour RPR 

 



Fig. 8. Probability distribution of 24-hour RPR in different areas 

Furthermore, the residential responsive demand varies 
with different resident portfolios. For example, the 
probability distribution of RPR for 24 hours is significantly 
different in the Northeast, Midwest, South, and West regions 
of U.S., as shown in Fig. 8. The possible reason is, as 
aforementioned, more space cooling appliances are operating 
in summer in South region, which can be reduced by I-DR. 

Therefore, the simulation results of the preliminary study 
regarding residential demand modeling comply with common 
knowledge, and these facts help verify the validity and 
effectiveness of the proposed approach. 

V. CONCLUSTION 
This paper presents a stochastic model based on the 

residents’ portfolios to assess responsive residential demand 
in response to certain given times, locations, and financial 
incentives. By implementing the proposed model, LSEs will 
be able to solve the two aforementioned issues with typical 
procedures of performing I-DR: 1) it is rarely feasible to keep 
frequently updating customers’ demand reduction data; and 
2) interaction with numerous customers makes it too time-
consuming to serve as an online implementation. 

Instead of iteratively communicating and updating 
information between LSE and customers, the proposed 
approach creatively integrates three data sets (RECS from 
EIA, ATUS from USDL, SCRFI from CURENT) to directly 
generate the probability distribution of demand reduction for 
specific times, locations, and coupon prices. Therefore, it 
avoids the time-consuming procedure of communicating and 
makes the online implementation of I-DR feasible for LSEs. 
Moreover, various case studies of Northeast, Midwest, South 
and West regions of U.S. with fixed time or fixed incentive 
prices have been conducted to verify the validity and 
effectiveness of the proposed model. 

Also, if this approach can be widely used in the future, it 
will provide great potentials for LSEs including: 

1) LSEs will be able to quicky estimate the residents’ 
response to certain financial incentives and then 
perform accurate the residential demand control with 
optimized financial incentives. 

2) With the capability of accurately controlling 
residential demand by financial incentives, LSEs will 
be able to perform strategic bidding in the market in 
real-time to maximize their profit.  

3) This stochastic model allows LSEs to perform 
economic analysis before actual executing I-DR in 
certain areas. In this way, LSEs can have an 
assessment of whether it is worthy to invest on 
replacing devices in certain areas to make I-DR 
feasible in advance. 

4) Also, the proposed approach will help LSEs get 
insights on how to improve the existing demand 
response programs. 
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