\tilde{O}

marginalize over sparse distributions when training latent variable models

vlad niculae Itl uva

work with: gonçalo m. correia, wilker aziz, andré martins, mathieu blondel

🖸 github.com/deep-spin/sparse-marginalization-lvm 🛛 🏠 https://vene.ro

helpful discrete labels

input

x="red tape holds up bridge"

output

classifier: Pr(y|x)

helpful discrete labels

input

x="red tape holds up bridge"

what if we knew the newspaper category?

output

helpful structure

input

x="squad help dog bite victim"

syntactic analysis

or is it

output

 $\Pr(y|x, z).$

deep nets δ hope for the best

pipeline approach

this talk: latent variables

$$\Pr(y|x) = \sum_{z \in \mathcal{Z}} \Pr(z \mid x) \Pr(y \mid x, z).$$

bird's eye view

how to learn this

explicit marginalization

$$\Pr(\mathbf{y}|\mathbf{x}) = \sum_{z \in \mathcal{Z}} \Pr(z|\mathbf{x}) \Pr(\mathbf{y}|\mathbf{x}, z)$$

exact, but always slow

how to learn this

sampling

$$\Pr(\mathbf{y}|\mathbf{x}) = \sum_{z \in \mathcal{Z}} \Pr(z|\mathbf{x}) \Pr(\mathbf{y}|\mathbf{x}, z)$$

exact, but always slow

 $\Pr(\mathbf{y}|\mathbf{x}) = \mathbb{E}_{\mathbf{z}} \Pr(\mathbf{y}|\mathbf{x}, \mathbf{z})$

 $\approx \Pr(y|z^+, x)$

always fast, but inexact, noisy

how to learn this

explicit marginalization

$$\Pr(\mathbf{y}|\mathbf{x}) = \sum_{z \in \mathcal{Z}} \Pr(z|\mathbf{x}) \Pr(\mathbf{y}|\mathbf{x}, z)$$

exact, but always slow

this talk: sparse marginalization

exact and fast, adaptive acceleration!

 $\Pr(y|x) = \mathbb{E}_z \Pr(y|x, z)$ $\approx \Pr(y|z^+, x)$

always fast, but inexact, noisy

$$\Delta = \{ \boldsymbol{p} \in \mathbb{R}^{N} : \boldsymbol{p} \ge \boldsymbol{0}, \ \boldsymbol{1}^{\top} \boldsymbol{p} = 1 \}$$

$$\Delta = \{ \boldsymbol{p} \in \mathbb{R}^{N} : \boldsymbol{p} \ge \boldsymbol{0}, \ \boldsymbol{1}^{\top} \boldsymbol{p} = \boldsymbol{1} \}$$

$$\Delta = \{ \boldsymbol{p} \in \mathbb{R}^{N} : \boldsymbol{p} \ge \boldsymbol{0}, \ \boldsymbol{1}^{\top} \boldsymbol{p} = \boldsymbol{1} \}$$

$$\Delta = \{ \boldsymbol{p} \in \mathbb{R}^N : \boldsymbol{p} \ge \boldsymbol{0}, \ \boldsymbol{1}^\top \boldsymbol{p} = \boldsymbol{1} \}$$

$$\Delta = \{ \boldsymbol{p} \in \mathbb{R}^{N} : \boldsymbol{p} \ge \boldsymbol{0}, \ \boldsymbol{1}^{\top} \boldsymbol{p} = \boldsymbol{1} \}$$

 $\Delta = \{ \boldsymbol{p} \in \mathbb{R}^N : \boldsymbol{p} \ge \boldsymbol{0}, \ \boldsymbol{1}^\top \boldsymbol{p} = \boldsymbol{1} \}$

$$\Delta = \{ \boldsymbol{p} \in \mathbb{R}^{N} : \boldsymbol{p} \ge \boldsymbol{0}, \ \boldsymbol{1}^{\top} \boldsymbol{p} = \boldsymbol{1} \}$$

$$\Delta = \{ \boldsymbol{p} \in \mathbb{R}^{N} : \boldsymbol{p} \ge \boldsymbol{0}, \ \boldsymbol{1}^{\top} \boldsymbol{p} = \boldsymbol{1} \}$$

$$\Delta = \{ \boldsymbol{p} \in \mathbb{R}^{N} : \boldsymbol{p} \ge \boldsymbol{0}, \ \boldsymbol{1}^{\top} \boldsymbol{p} = \boldsymbol{1} \}$$

second-guessing softmax

the "standard" way to map scores to probabilities (softmax / gibbs / boltzmann / ... distribution)

$$\Pr(h|x) = \frac{\exp s_i}{\sum_j \exp s_j} > 0$$

second-guessing softmax

the "standard" way to map scores to probabilities (softmax / gibbs / boltzmann / ... distribution)

$$\Pr(h|x) = \frac{\exp s_i}{\sum_j \exp s_j} > 0$$

is secretly entropy regularization:

$$\underset{\boldsymbol{p} \in \Delta}{\arg\max \boldsymbol{s}^{\mathsf{T}} \boldsymbol{p}} - \underbrace{\sum_{j} p_{j} \log p_{j}}_{\boldsymbol{H}(\boldsymbol{p})}$$

softmax

second-guessing softmax

the "standard" way to map scores to probabilities (softmax / gibbs / boltzmann / ... distribution)

$$\Pr(h|x) = \frac{\exp s_i}{\sum_j \exp s_j} > 0$$

is secretly entropy regularization:

$$\underset{\boldsymbol{p} \in \Delta}{\arg\max \boldsymbol{s}^{\mathsf{T}}\boldsymbol{p}} = \underbrace{\sum_{j} p_{j} \log p_{j}}_{\boldsymbol{H}(\boldsymbol{p})}$$

why not try the euclidean norm?

we have $\sim \sim \sim$ sparsity! algorithms! cool name!

sparsemax (Martins and Astudillo, 2016)

sparsemax(
$$\boldsymbol{s}$$
) = arg max $\boldsymbol{p}^{\top}\boldsymbol{s} - \frac{1}{2} \|\boldsymbol{p}\|_{2}^{2}$
 $\boldsymbol{p} \in \Delta$
= arg min $\|\boldsymbol{p} - \boldsymbol{s}\|_{2}^{2}$
 $\boldsymbol{p} \in \Delta$

sparsemax(
$$\boldsymbol{s}$$
) = arg max $\boldsymbol{p}^{\top}\boldsymbol{s}$ - 1/2 $\|\boldsymbol{p}\|_{2}^{2}$
 $\boldsymbol{p} \in \Delta$
= arg min $\|\boldsymbol{p} - \boldsymbol{s}\|_{2}^{2}$

computation:

 $\boldsymbol{p}^{\star} = [\boldsymbol{s} - \tau \boldsymbol{1}]_{+}$ $s_{i} > s_{j} \Rightarrow p_{i} \ge p_{j}$ expected O(d) via selection

(Held et al., 1974; Brucker, 1984; Condat, 2016)

sparsemax(
$$\mathbf{s}$$
) = arg max $\mathbf{p}^{\top}\mathbf{s} - \frac{1}{2} \|\mathbf{p}\|_{2}^{2}$
= arg min $\|\mathbf{p} - \mathbf{s}\|_{2}^{2}$
mputation:
 $\mathbf{p} \in \Delta$
backward pass:
 $\mathbf{f} = [\mathbf{s} - \tau \mathbf{1}]_{+}$
 $\mathbf{s}_{s} \Rightarrow \mathbf{p}_{i} > \mathbf{p}_{i}$
where $S = \{i : \mathbf{p}^{*} > 0\}$

$$p^{\star} = [s - \tau \mathbf{1}]_+$$

 $s_i > s_j \Rightarrow p_i \ge p_j$
expected $O(d)$ via selection

со

(Held et al., 1974; Brucker, 1984; Condat, 2016)

$$\begin{aligned} \mathbf{J}_{\text{sparsemax}} &= \text{diag}(\mathbf{s}) - \frac{1}{|\mathcal{S}|} \mathbf{s} \mathbf{s}^{\top} \\ \text{where } \mathcal{S} &= \{j : p_{j}^{\star} > 0\}, \\ s_{j} &= [\![j \in \mathcal{S}]\!] \end{aligned}$$

(Martins and Astudillo, 2016)

sparsemax(
$$s$$
) = arg max $p^{T}s - 1/2 ||p||_{2}^{2}$
= arg min $||p - s||_{2}^{2}$
computation: backward pass:
 $p^{\star} = [s - s_{i} > s_{j} \Rightarrow s_{j} \Rightarrow s_{i} > s_{j} \Rightarrow s_{i} > s_{i} > s_{j} \Rightarrow s_{i} > s_{i} > s_{j} \Rightarrow s_{i} > s_{i} > s_{i} > s_{j} \Rightarrow s_{i} = arg min differentiation (Colson et al., 2007; Gould et al., 2016)
see also (Amos and Kolter, 2017) $|is| \in S$$

(Held et al., 1974; Brucker, 1984; Condat, 2016)

(Martins and Astudillo, 2016)

some applications:

sparse attention

(Martins and Astudillo, 2016; Correia, Niculae, and Martins, 2019)

sparse losses (& seq2seq)

$$d \rightarrow r \rightarrow a \rightarrow w \xrightarrow{66.4\%} e \rightarrow d \rightarrow$$

$$32.2\%$$

$$32.2\%$$

$$n \rightarrow$$

$$1.4\%$$

$$$$

sparsemax enables fast marginalization!

saves us from computing Pr(y|x, z) for many $z \in \mathbb{Z}$!

emergent communication

$$\sum_{z \in \mathcal{Z}} \Pr(z|x) \Pr(x|z, \mathcal{V})$$

- game between two players.
- sender takes x from imagenet, and summarizes it in a message z (here: one symbol).
- receiver sees the symbol, and a group of images $\mathcal{V} \ni x$, and must pick the intended image.

emergent communication

- game between two players.
- sender takes x from imagenet, and summarizes it in a message z (here: one symbol).
- receiver sees the symbol, and a group of images $\mathcal{V} \ni x$, and must pick the intended image.

emergent communication

- game between two players.
- sender takes x from imagenet, and summarizes it in a message z (here: one symbol).
- receiver sees the symbol, and a group of images $\mathcal{V} \ni x$, and must pick the intended image.

(Lazaridou et al., 2017; Correia, Niculae, Aziz, et al., 2020) **emergent communication** . but make it harder: $|\mathcal{Z}| = 256$, $|\mathcal{V}| = 16$

Method	success (%)	Dec. calls
monte carlo		
sfe	33.05 ±2.84	1
sfe+	44.32 ± 2.72	2
nvil	37.04 ± 1.61	1
gumbel	23.51 ±16.19	1
st-gumbel	27.42 ± 13.36	1

marginalization

(Lazaridou et al., 2017; Correia, Niculae, Aziz, et al., 2020) emergent communication ... but make it harder: $|\mathcal{Z}| = 256$, $|\mathcal{V}| = 16$

Method	success (%)	Dec. calls
monte carlo		
sfe	33.05 ± 2.84	1
sfe+	44.32 ±2.72	2
nvil	37.04 ± 1.61	1
gumbel	23.51 ±16.19	1
st-gumbel	27.42 ± 13.36	1
marginalization		
softmax	93.37 ±0.42	256

(Lazaridou et al., 2017; Correia, Niculae, Aziz, et al., 2020) **emergent communication** ... but make it harder: $|\mathcal{Z}| = 256$, $|\mathcal{V}| = 16$

Method	success (%)	Dec. calls
monte carlo		
sfe	33.05 ±2.84	1
sfe+	44.32 ±2.72	2
nvil	37.04 ±1.61	1
gumbel	23.51 ±16.19	1
st-gumbel	27.42 ±13.36	1
marginalization		
softmax	93.37 ±0.42	256
sparsemax	93.35 ±0.50	$3.13_{\pm 0.48}$

(Lazaridou et al., 2017; Correia, Niculae, Aziz, et al., 2020) **emergent communication** but make it harder: |Z| = 256, |V| = 16

Method	success (%)	Dec. calls
monte carlo		
sfe	33.05 ± 2.84	1
sfe+	44.32 ±2.72	2
nvil	37.04 ± 1.61	1
gumbel	23.51 ±16.19	1
st-gumbel	27.42 ± 13.36	1
marginalization		
softmax	93.37 ±0.42	256
sparsemax	93.35 ± 0.50	3.13 ± 0.48

$$\sum_{z\in\mathcal{Z}}\Pr\left(z|x\right)\ell(x,z)$$

- semi-supervised vae on mnist: *z* is one of 10 categories
- train with 10% labeled data

- semi-supervised vae on mnist: z is one of 10 categories
- train with 10% labeled data

- semi-supervised vae on mnist: z is one of 10 categories
- train with 10% labeled data

method	accuracy (%)	dec. calls
monte carlo sfe sfe+ nvil gumbel	$\begin{array}{c} 94.75 \scriptstyle \pm .002 \\ 96.53 \scriptstyle \pm .001 \\ 96.01 \scriptstyle \pm .002 \\ 95.46 \scriptstyle \pm .001 \end{array}$	1 2 1 1
marginalizatio softmax sparsemax	on 96.93±.001 96.87±.001	10 1.01±0.01

limitations

- mostly (and eventually) very sparse. worst case: fully dense
- \rightarrow sparsemax can't handle structured z

limitations

- mostly (and eventually) very sparse. worst case: fully dense
- \rightarrow sparsemax can't handle structured z

today's solution: top-k sparsemax k-sparsemax $(s) = \underset{p \in \Delta, ||p||_0 \le k}{\text{arg min}} ||p - s||_2^2$

limitations

- mostly (and eventually) very sparse. worst case: fully dense
- \rightarrow sparsemax can't handle structured z

today's solution: top-k sparsemax k-sparsemax $(s) = \underset{p \in \Delta, ||p||_0 \le k}{\text{arg min}} ||p - s||_2^2$

- non-convex but easy: sparsemax over the k highest scores (Kyrillidis et al., 2013)
- top-k oracle available for some structured problems.
- certificate: if at least one of the top-k z gets Pr(z|x) = 0, k-sparsemax = sparsemax! starts with bias, sheds the bias along the way

bit-vector variational autoencoder

 $\sum q(z|x) \ell(x,z)$ $z \in \{0,1\}^D$

bit-vector variational autoencoder

for elbo:
$$\ell(x, z) = -\log \frac{\Pr(x, z)}{q(z|x)}$$

$$\sum_{z \in \{0,1\}^D} q(z|x) \ell(x, \tilde{z})$$

posterior approx / inference network

• vae where z is a collection of D bits

bit-vector variational autoencoder for elbo: $l(x, z) = -\log \frac{\Pr(x, z)}{q(z|x)}$ exponentially large sum $\sum_{z \in \{0,1\}^D} q(z|x) \ell(x, \tilde{z})$ posterior approx / inference network

• vae where z is a collection of D bits

test nll (bits/dim), lower is better								
method	D = 32	D = 128						
monte carlo								
sfe	3.74	3.77						
sfe+	3.61	3.59						
nvil	3.65	3.60						
gumbel	3.57	3.49						
marginalization softmax/sparsemax		_						
top-k sparsemax	3.62	3.61						

D = 128

test nll (bits/dim), lower is better							
method	D = 32	D = 128					
monte carlo							
sfe	3.74	3.77					
sfe+	3.61	3.59					
nvil	3.65	3.60					
gumbel	3.57	3.49					
marginalization							
softmax/sparsemax							
top-k sparsemax	3.62	3.61					

Rate (nats)

test nll (bits/dim), lower is better							
method	D = 32	D = 128					
monte carlo							
sfe	3.74	3.77					
sfe+	3.61	3.59					
nvil	3.65	3.60					
gumbel	3.57	3.49					
marginalization							
softmax/sparsemax							
top-k sparsemax	3.62	3.61					

D = 32

test nll (bits/dim),	better	
method	D = 32	D = 128
monte carlo		
sfe	3.74	3.77
sfe+	3.61	3.59
nvil	3.65	3.60
gumbel	3.57	3.49
marginalization		
softmax/sparsemax		
top-k sparsemax	3.62	3.61

D = 128

marginalize over sparse distributions when training latent variable models

🜍 github.com/deep-spin/sparse-marginalization-lvm 🏤 vene.ro

marginalize over sparse distributions when training latent variable models

discrete and structured

0.2 0.6 0.1 0.4 0.4 0.5 0.5 0.3

🜍 github.com/deep-spin/sparse-marginalization-lvm 🏻 🆀 vene.ro

marginalize over sparse distributions when training latent variable models

🜍 github.com/deep-spin/sparse-marginalization-lvm 🏻 🆀 vene.ro

marginalize over sparse distributions when training latent variable models

🜍 github.com/deep-spin/sparse-marginalization-lvm 🛛 🗥 vene.ro

Extra slides

Acknowledgements

This work was supported by the European Research Council (ERC StG DeepSPIN 758969) and by the Fundação para a Ciência e Tecnologia through contract UID/EEA/50008/2013.

Some icons by Dave Gandy and Freepik via flaticon.com.

finally

is essentially a (very high-dimensional) argmax

is essentially a (very high-dimensional) argmax

is essentially a (very high-dimensional) argmax

on wheels dog \star

∗→dog	1	0	0		.1	I
on→dog	0	1	1		.2	I
wheels→dog	0	0	0		1	
*→on	0	1	1		.3	
A = dog→on	1	0	0	 η =	.8	
wheels→on	0	0	0		.1	
★→wheels	0	0	0		3	
dog→wheels	0	1	0		.2	
on→wheels	1	0	1		1	

	dog-hond	[1	0	0		.1
	dog—op	0	1	1		.2
	dog—wielen	0	0	0		1
	on-hond	0	0	0		.3
A =	on—op	1	 0	0	η =	.8
	on-wielen	0	1	1		.1
wł	eels-hond	0	1	0		3
wł	neels—op	0	0	0		.2
wł	neels-wielen	1	0	1		1

$$\mathcal{M} := \operatorname{conv} \left\{ \boldsymbol{a}_h : h \in \mathcal{H} \right\}$$
$$= \left\{ \boldsymbol{A} \boldsymbol{p} : \boldsymbol{p} \in \Delta \right\}$$

$$\mathcal{M} := \operatorname{conv} \left\{ \boldsymbol{a}_{h} : h \in \mathcal{H} \right\}$$
$$= \left\{ \boldsymbol{A}\boldsymbol{p} : \boldsymbol{p} \in \Delta \right\}$$
$$= \left\{ \mathbb{E}_{H \sim \boldsymbol{p}} \boldsymbol{a}_{H} : \boldsymbol{p} \in \Delta \right\}$$

e.g. dependency parsing → Chu-Liu/Edmonds matching → Kuhn-Munkres

• **argmax** arg max $p^T s$ $p \in \Delta$

• softmax $\arg \max p^{\top} s + H(p)$ $p \in \Delta$

- **argmax** $\arg \max p^T s$ $p \in \Delta$
- softmax $\arg \max p^{\top}s + H(p)$ $p \in \Delta$

- **argmax** arg max $p^{\top}s$ $p \in \Delta$
- softmax $\arg \max p^{\top}s + H(p)$ $p \in \Delta$

 $\mathbf{MAP} \underset{\boldsymbol{\mu} \in \mathcal{M}}{\operatorname{arg\,max}} \boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{\eta} \qquad \bullet$ marginals $\operatorname{arg\,max} \boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{\eta} + \widetilde{\mathsf{H}}(\boldsymbol{\mu}) \qquad \bullet$ $\boldsymbol{\mu} \in \mathcal{M}$

e.g. sequence labeling \rightarrow forward-backward

(Rabiner, 1989)

As attention: (Kim et al., 2017)

• **argmax** arg max $p^T s$ $p \in \Delta$

softmax $\arg \max p^{\top}s + H(p)$ $p \in \Delta$

$$\mathbf{MAP} \operatorname{arg\,max} \boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{\eta} \qquad \bullet \\ \boldsymbol{\mu} \in \mathcal{M} \qquad \bullet \\ \mathbf{marginals} \operatorname{arg\,max} \boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{\eta} + \widetilde{\mathsf{H}}(\boldsymbol{\mu}) \qquad \bullet \\ \boldsymbol{\mu} \in \mathcal{M} \qquad \bullet \\ \mathbf{\mu} \in \mathcal{M} \qquad$$

e.g. dependency parsing \rightarrow the Matrix-Tree theorem

(Koo et al., 2007; D. A. Smith and N. A. Smith, 2007; McDonald and Satta, 2007)

As attention: (Liu and Lapata, 2018)

softmax $\arg \max p^{\top}s + H(p)$ $p \in \Delta$ $\mathbf{MAP} \operatorname{arg\,max}_{\boldsymbol{\mu} \in \mathcal{M}} \boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{\eta} \qquad \bullet$ marginals $\operatorname{arg\,max}_{\boldsymbol{\mu} \in \mathcal{M}} \boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{\eta} + \widetilde{\mathsf{H}}(\boldsymbol{\mu}) \qquad \bullet$

• softmax $\arg \max \mathbf{p}^{\mathsf{T}}\mathbf{s} + \mathsf{H}(\mathbf{p})$ $\mathbf{p} \in \Delta$

• sparsemax $\arg \max p^{\top} s - \frac{1}{2} ||p||^2$ $p \in \Delta$

$$\mathbf{MAP} \operatorname{arg\,max} \boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{\eta} \qquad \bullet \\ \boldsymbol{\mu} \in \mathcal{M} \qquad \bullet \\ \mathbf{marginals} \operatorname{arg\,max} \boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{\eta} + \widetilde{\mathsf{H}}(\boldsymbol{\mu}) \qquad \bullet \\ \boldsymbol{\mu} \in \mathcal{M} \qquad \bullet \\ \mathbf{\mu} \in \mathcal{M} \qquad$$

• **argmax** $\arg \max p^T s$ $p \in \Delta$

• softmax $\arg \max p^T s + H(p)$ $p \in \Delta$

• sparsemax $\arg \max p^{T}s - \frac{1}{2} \|p\|^{2}$ $p \in \Delta$ (Niculae, Martins, Blondel, and Cardie, 2018) **MAP** arg max $\mu^{T}\eta$ • $\mu \in \mathcal{M}$ **marginals** arg max $\mu^{T}\eta + \widetilde{H}(\mu)$ • $\mu \in \mathcal{M}$ **SparseMAP** arg max $\mu^{T}\eta - 1/2||\mu||^{2}$ • $\mu \in \mathcal{M}$

Algorithms for SparseMAP

$$\boldsymbol{\mu}^{\star} = \arg \max \boldsymbol{\mu}^{\top} \boldsymbol{\eta} - \frac{1}{2} \|\boldsymbol{\mu}\|^{2}$$
$$\boldsymbol{\mu} \in \mathcal{M}$$

Algorithms for SparseMAP

$$\mu^{\star} = \arg \max \mu^{\top} \eta - 1/2 \|\mu\|^{2}$$
Inter constraints
(alas, exponentially many!) (alas, exponentially many!) (blue) (blue) (classified of the second second

(Frank and Wolfe, 1956; Lacoste-Julien and Jaggi, 2015)

Algorithms for SparseMAP

$$\mu^{\star} = \arg \max \mu^{\top} \eta - 1/2 \|\mu\|^{2}$$
(alas, exponentially many!)

$$\mu \in \mathcal{M}$$
(alas, exponentially many!)

(Frank and Wolfe, 1956; Lacoste-Julien and Jaggi, 2015)

• select a new corner of \mathcal{M}

Algorithms for SparseMAP

$$\mu^{\star} = \arg \max \mu^{\top} \eta - 1/2 \|\mu\|^{2}$$
Inter constraints
(alas, exponentially many!) (under a constraints) (under a constraints)

(Frank and Wolfe, 1956; Lacoste-Julien and Jaggi, 2015)

• select a new corner of \mathcal{M}

$$\boldsymbol{a}_{\boldsymbol{y}^{\star}} = \arg \max_{\boldsymbol{\mu} \in \mathcal{M}} \boldsymbol{\mu}^{\top} \underbrace{(\boldsymbol{\eta} - \boldsymbol{\mu}^{(t-1)})}_{\widetilde{\boldsymbol{\eta}}}$$

Algorithms for SparseMAP

$$\mu^{\star} = \arg \max \mu^{\top} \eta - 1/2 \|\mu\|^{2}$$
Inter constraints
(alas, exponentially many!) (under a constraints) (under a constraints)

(Frank and Wolfe, 1956; Lacoste-Julien and Jaggi, 2015)

- select a new corner of ${\cal M}$
- update the (sparse) coefficients of **p**
 - Update rules: vanilla, away-step, pairwise

Algorithms for SparseMAP

$$\mu^{*} = \arg \max \mu^{\top} \eta - 1/2 \|\mu\|^{2}$$
Inter constraints
(alas, exponentially many!)
(alas, exponentially many!)
(black)

(Frank and Wolfe, 1956; Lacoste-Julien and Jaggi, 2015)

- select a new corner of ${\cal M}$
- update the (sparse) coefficients of **p**
 - Update rules: vanilla, away-step, pairwise
 - Quadratic objective: Active Set (Nocedal and Wright, 1999, Ch. 16.4 & 16.5) (Wolfe, 1976; Vinyes and Obozinski, 2017)

Algorithms for SparseMAP $\mu^{\star} = \arg \max \mu^{\top} \eta - 1/2 \|\mu\|^{2}$ Inter constraints (alas, exponentially many!) (alas, exponentially many!) (black)

Active Set achieves

Conditional Gradient

(Frank and Wolfe, 1956; Lacoste-Julien and Jaggi, 2015)

- select a new corne
- update the (sparse
 - Update rules: var pairwise **finite** & **linear** convergence!
 - Quadratic objecti

(Nocedal and Wright, 1999, Ch. 16.4 & 16.5) (Wolfe, 1976; Vinyes and Obozinski, 2017)

Algorithms for SparseMAP

$$\mu^{\star} = \arg \max \mu^{\top} \eta - 1/2 \|\mu\|^{2}$$
Inter constraints
(alas, exponentially many!) (ultrace) (ultra

(Frank and Wolfe, 1956; Lacoste-Julien and Jaggi, 2015)

- select a new corner of ${\cal M}$
- update the (sparse) coefficients of p
 - Update rules: vanilla, away-step, pairwise
 - Quadratic objective: Active Set (Nocedal and Wright, 1999, Ch. 16.4 & 16.5) (Wolfe, 1976; Vinyes and Obozinski, 2017)

Backward pass

Algorithms for SparseMAP

$$\mu^{*} = \arg \max \mu^{\top} \eta - \frac{1}{2} \|\mu\|^{2}$$
(alas, exponentially many!)

(Frank and Wolfe, 1956; Lacoste-Julien and Jaggi, 2015)

- select a new corner of \mathcal{M}
- update the (sparse) coefficients of *p*
 - Update rules: vanilla, away-step, pairwise
 - Quadratic objective: Active Set (Nocedal and Wright, 1999, Ch. 16.4 & 16.5) (Wolfe, 1976; Vinyes and Obozinski, 2017)

Backward pass

$$\frac{\partial \boldsymbol{\mu}}{\partial \boldsymbol{\eta}} \text{ is sparse} \\ \text{computing } \left(\frac{\partial \boldsymbol{\mu}}{\partial \boldsymbol{\eta}}\right)^{\mathsf{T}} \boldsymbol{d} y \\ \text{cakes } O(\dim(\boldsymbol{\mu}) \operatorname{nnz}(\boldsymbol{p}^*)) \end{cases}$$

(Wolfe, 1976; Vinyes and Obozinski, 2017)

(Tai et al., 2015)

The bears eat the pretty ones

Latent Dependency TreeLSTM

(Niculae, Martins, and Cardie, 2018)

output

y

_X

input

Latent Dependency TreeLSTM

(Niculae, Martins, and Cardie, 2018)

$$p(y|x) = \sum_{h \in \mathcal{H}} p(y \mid h, x) p(h \mid x)$$

output y

input

X

$$p(y \mid x) = \sum_{h \in \mathcal{H}} p (y \mid h, x) p (h \mid x)$$

$$p(y \mid x) = \sum_{h \in \mathcal{H}} p_{\phi}(y \mid h, x) p_{\pi}(h \mid x)$$

e.g., a TreeLSTM defined by h $p(y \mid x) = \sum p'_{\phi}(y \mid h, x) p_{\pi}(h \mid x)$ h∈H

e.g., a TreeLSTM defined by h $p(y \mid x) = \sum_{h \in \mathcal{H}} p_{\phi}'(y \mid h, x) p_{\pi}(h \mid x)$ latent classifier

Exponentially large sum!

idea 1

idea 2

idea 3

idea 3

idea 3

SparseMAP

SparseMAP

$\bullet \bullet \bullet \bullet = .7 \qquad \bullet \bullet \bullet \bullet + .3 \qquad \bullet \bullet \bullet \bullet \bullet \bullet \bullet + ...$

SparseMAP

$f(y \mid x) = .7 \quad f(y \mid e^{-y}) + .3 \quad e^{-y} + 0 \quad e^{-y} + ...$ $p(y \mid x) = .7 \quad p_{\phi}(y \mid e^{-y}) + .3 \quad p_{\phi}(y \mid e^{-y})$

Sentiment classification (SST)

Sentence pair classification (P, H) $p(y \mid P, H) = \sum_{h_P \in \mathcal{H}(P)} \sum_{h_H \in \mathcal{H}(H)} p_{\phi}(y \mid h_P, h_H) p_{\pi}(h_P \mid P) p_{\pi}(h_H \mid H)$

Reverse dictionary lookup

given word description, predict word embedding (Hill et al., 2016) instead of p(y | x), we model $\mathbb{E}_{p_m} g(x) = \sum_{h \in \mathcal{H}} g(x; h) p_m(h | x)$

Sentiment classification (SST) Natural Language Inference (SNLI) 82% accuracy accuracy 81.8% -(binarv) (3-class) 81.6% -83% -81.4% -81.2% -82% -81% -80.8% -80.6% -80 % Flat CoreNLP Latent LTR Flat CoreNLP Latent **Reverse dictionary lookup** (definitions) (concepts) 38 % accuracy@10 accuracy@10 38% -32% -32% -30 % LTR Flat Latent Flat Latent

Sentiment classification (SST)

Natural Language Inference (SNLI)

Reverse dictionary lookup

(definitions)

(concepts)

Syntax vs. Composition Order

Syntax vs. Composition Order

p = 22.6%

CoreNLP parse, p = 21.4%

Syntax vs. Composition Order

*

*

p = 15.33%

