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Summary. This paper considers the problem of planning sensor observations for a
network of overhead sensors which will resolve ambiguities in the output of a hori-
zontal sensor network. Specifically, we address the problem of counting the number
of objects detected by the horizontal sensor network, using the overhead network
to aim at specific areas to improve the count. The main theme of our results is
that, even though observation planning is intractable for such a network, a simple,
greedy algorithm for controlling the overhead sensors guarantees performance with
bounded and reasonable suboptimality. Our results are general and make few as-
sumptions about the specific sensors used. The techniques described in this paper
can be used to plan sensor aims for a wide variety of sensor types and counting
problems.

1 Introduction

The problems of sensor placement and observation planning have become
increasingly relevant as sensor networks increase in both capability and com-
plexity. Often, however, sensor placement and planning problems lead to in-
stances of classical planning problems or partially observable Markov decision
processes, both of which are intractable in general. Although there exist al-
gorithms which give optimal solutions to these problems, their potentially
enormous computational makes them undesirable.

Consider a horizontal network of sensors with the goal of counting the
number of distinct objects it detects. Due to occlusion, the sensor network may
not be able to sense all the objects and thus it may not be able to determine
the exact count. This paper considers an observation planning problem where
the goal is to plan the aims of a set of overhead sensors to resolve these
ambiguities. The overhead sensors are used to resolve specific portions in
the region of interest where the count is ambiguous. An example of such
a network would be a set of horizontal, fixed position cameras, with pan-tilt
cameras mounted on unmanned aerial vehicles (UAVs) providing the overhead
sensors.
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Counting the number of objects within a region is a basic problem in
the field of surveillance. Once determined, the number of objects has many
potential uses, such as counting people moving across a border, identifying
vehicle movements, or providing an accurate count of the people attending an
outdoor gathering. Traditional (non computer-based) methods typically rely
on manual head counting and would not work in these situations. We consider
the problem of developing an accurate count with no human involvement.

Depending on the different kinds of sensors in the network, there are a wide
variety of ways to count the distinct objects. This paper will use a geometric
approach to counting, inspired by the previous work of Yang, et al. [10], which
used a visual hull to determine upper and lower bounds on the number of
people in a scene viewed by horizontal cameras. Though the visual hull is
typically associated with cameras, the concept generalizes to other sensor
types which can detect occupancy. We also note that the counting method
described by Yang, et al. is not specific to counting people and can be used
to count any objects detectable by the sensor network.

The work of Yang et al. assumes that objects move, which helps reduce
ambiguities as the patterns of occlusion change over time. Even if the objects
are in motion, however, the gap between these bounds may not converge to
zero or, depending upon the speed at which the objects are moving, may not
converge at an acceptable rate. We consider the use of overhead sensors to
supplement the horizontal network. Such sensors can provide a faster and more
accurate count when object motion alone is not sufficient. Overhead sensors,
like those found on aircraft, can be redirected in seconds, which makes it safe
to assume that in many cases, several iterations of aiming and retargeting of
the overhead sensors will be possible before the scene has changed significantly
from the perspective of the horizontal based sensors.

We propose using a simple, greedy algorithm to aim the overhead sensors.
Our analysis first bounds the suboptimality over a single set of aims, which
we refer to as a phase. Since most scenes will require multiple phases, the next
portion of our analysis extends these results to multiple phases, bounding the
number required relative to an optimal algorithm. We also show that com-
puting an optimal multiphase plan is intractable, and show that two closely
related problems are intractable: the subproblem of orienting the overhead
sensors to maximize the number of viewed potential objects, and computing
the smallest number of objects consistent with a set of observations by the
horizontal network.

2 Previous Work

One common approach to the counting problem involves tracking. Multi-
target tracking algorithms generally either assume a known, fixed number of
targets, or attempt to solve the counting problem while simultaneously track-
ing the targets. Many approaches to the latter problem attempt to model the
arrival and departure of new targets, generally when an unrecognized object
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is detected [9, 11]. Several appearance-based tracking algorithms have been
specifically applied to the problem of counting people [6, 7]. Accurately deter-
mining whether a target has been previously detected, however, is non-trivial
and error-prone. Counting is itself an interesting problem because it could be
used to initialize many multi-target tracking algorithms.

Observation planning approaches to tracking generally assume a known
number of targets; He and Chong [4], for example, formulate the tracking
problem as a POMDP and use an approximate solution based on sampling.
Guestrin, et al. [3] develop a greedy approach for the sensor placement problem
and bound its suboptimality.

One very different approach to counting uses a geometric construction
called a visual hull, which is defined as the intersection of all the silhouette
cones seen from each sensor. A silhouette cone is a projection of a sensor
detection into a conical region in front of the sensor. For example, in the case of
a camera that has detected a change in the scene that spans several pixels, the
corresponding silhouette cone would be a cone extending from the lens into the
world that covers all points in the world which project onto the effected pixels.
It is possible to reconstruct the geometry of one or more objects by considering
the geometry of the silhouette cones as seen from several sensors. Though
originally developed for this purpose, visual hulls have been shown to be useful
for counting the number of distinct objects detected by a sensor network [10].
The original concept was developed by Laurentini [5], who designed algorithms
for constructing the visual hull in both two and three dimensions. In this
paper, we compute a planar projection of the visual hull; this projection results
in a number of polygons lying in the plane. Yang, et al, [10] use these polygons
to give lower and upper bounds on the number of objects which create a visual
hull, and rely on the objects moving to reduce the gap in bounds. Even with
considerable movement, however, this gap can remain quite large.

3 Static Bound Calculation

We begin by formalizing the concept of a visual hull. We assume that the
horizontal sensors in the network are capable of detecting objects and creating
silhouette cones (see previous section) where these objects are detected. The
sensors are not, however, capable of differentiating distinct objects, so objects
lying in the same cone (i.e. those seen as either fully or partially occluded) do
not generate additional silhouette cones; rather, these additional detections
appear to be a single occupied region. See Figure 1 (top left) for an example.
Given a horizontal network of such sensors, each viewing the same scene from
different angles, the silhouette cones can be combined into a visual hull:

Definition 1. A planar projection of a visual hull is a set of polygons P lying
at the intersections of the silhouette cones from each sensor.

Assuming that the entire region of interest is covered by at least two
horizontal sensors, all objects in the scene must be located within polygons,
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c1 c2 c3 c4

Fig. 1. (top left) Example silhouette cones. c1 and c2 both contain exactly one
object, c3 contains two objects where the object farther from the sensor is viewed
partially occluded, and the rear object is fully occluded in c4. (top right) A visual
hull with two objects. The dashed lines are the silhouette cones, while the solid lines
represent the polygons in P . (bottom) Two identical visual hulls created by different
numbers of objects. By convention, we show only the sensors with detections. Empty
areas are presumed clear of objects because other sensors (not shown) that cover
area of interest did not detect anything.

although not all polygons necessarily contain objects, as shown in figure 1
(bottom). Note that much of the plane is not in P because at least one of
the sensors failed to detect an object in these locations and the location is
thus outside the intersection of the cones. We also assume that the region of
interest is bounded by walls which limit the sensor’s detection range.

The visual hull can be created by any sensor capable of creating silhouette
cones where objects are detected. For example, the cones could be created
by applying background subtraction techniques with a camera. The set of
polygons, along with the silhouette cones, can be used to develop bounds on
the number of objects seen by the network [10]. We first formalize a simple
lower bound.

Definition 2. The cone upper bound of a cone c, cub(c), is the number of
polygons contained in c.

Definition 3. A polygon, generated by intersecting set of cones C, is provably
occupied if ∃c ∈ C with cub(c) = 1

For example, in Figure 2 (a), there are two polygons provably occupied
(circled). The cone counts are also given. The middle polygon is not provably
occupied, since both the cones containing it have a cub of 2. Figure 2 (b) has
no provably occupied polygons, as all cones have a cone upper bound of two.

The number of provably occupied polygons is a lower bound on the number
of objects contained by the visual hull. This is a more rigorous definition of
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Fig. 2. (left images) Example Visual hulls with (a) two provably occupied polygons
(circled) and one ambiguous polygon and (b) no provably occupied polygons. (right
images) A planar graph before (c) and after (d) the reduction of LowerBound (The-
orem 1). The cones in this case have a very small angle, making them essentially
lines. Note that the polygons occur at the intersections.

the lower bound presented by Yang, et al. This definition of the lower bound
is weak in the sense that the minimum number of objects consistent with the
visual hull could be significantly larger, as in Figure 2 (b), where the number
of provably occupied polygons is 0, but the number of objects is at least 2.
Though weak, this lower bound is informative, in that all objects contributing
to the bound have a known location in the visual hull.

A simple upper bound can also be derived by assuming that all objects
are of size at least MINSIZE:

UB(P ) =

∑
p∈P

⌊
area(p)

MINSIZE

⌋

Additionally, if all objects must be larger than MINSIZE, then polygons
smaller than this size can be discarded from the visual hull. Thus every poly-
gon in the visual hull contributes at least one to the upper bound. This is the
same upper bound used by Yang et al. [10]. This bound is weak in the sense
that it assumes objects can fill the polygons completely, which could lead to
over-estimating the true number of objects inside a single polygon. It may be
possible to tighten this bound by making additional assumptions about the
geometry of the objects (e.g., circles of at least some radius).

3.1 Hardness Result for Lower Bound

The optimal lower bound is a true count of the smallest number of objects
that could produce a given visual hull. Based on the definition of the visual
hull, one could equivalently define this number as the size of the smallest set
of polygons such that each cone contains at least one polygon in the set. This
formulation leads to the following decision problem and hardness result.

Definition 4. Given a Visual Hull V , represented using rational numbers,
and integer k, LowerBound decides whether it is possible to produce V with k
or fewer objects.
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Theorem 1. LowerBound is NP-complete.

Proof. The reduction follows from Planar Vertex Cover. Given a planar graph
consisting of only straight edges1 and the vertices in general position, fill in
the empty regions of the graph with walls. Place a single sensor for each edge
in this manner: For the edge (u, v), select either u or v - we will use u for the
purposes of this proof. Position a sensor at the chosen vertex looking down
the edge towards v. These sensors should be thought of as having a very small
field of view. From each sensor, place a cone down the edge, terminating at the
wall beyond v. With proper placement of the cones, the only created polygons
will be located at the vertices of the graph. See Figure 2 (c, d).

The original graph has a size k vertex cover if and only if this visual hull
could have been created by k objects. Since edges in the graph became cones
in the visual hull, placing objects in polygons is the same as placing vertices in
the cover. Thus, LowerBound can solve Planar Vertex Cover and LowerBound
is NP-hard. Note that, given a set of polygons, it is easy to verify that all the
cones contain at least one; thus, LowerBound is also trivially in NP, and thus
is NP-complete. ut

This reduction creates a visual hull with many long, narrow passages and
intersections at the vertices. We expect that the proof can be generalized to
regions without interior walls by adding a polynomial number of additional
sensors (without detections) aimed at the additional intersections which occur
when the walls are removed. The details of this construction are somewhat
messy because it requires ensuring that the additional sensors have coordinates
which can be expressed compactly.

4 Aim Planning

The general aim planning problem involves aiming auxiliary sensors to query
the status of portions of the visual hull, reducing the gap between the upper
and lower bounds. Since it may not be possible to cover the entire visual hull
at once, multiple phases of sensor aiming could be required before all possible
information has been extracted from a scene, where a phase specifies a single
aim for each overhead sensor. The goal of this section is to give an algorithm
for planning the aims for the overhead sensors and bound the number of phases
required to reduce the gap in bounds, UB - LB, to zero (or the smallest number
possible).

Our analysis of the multi-phase aim planning problem is divided into parts.
First, we analyze a single sensor aim and the possible suboptimality resulting
from a simple aiming strategy. We then consider the subproblem of choosing
a set of sensor aims to maximize the number of potential objects viewed, and
1 Chrobak and Payne [1] give a linear-time algorithm for producing a drawing of a

planar graph consisting of only straight lines.
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the suboptimality resulting from a greedy strategy. Finally, we combine these
results to address the full, multi-phase aiming problem.

4.1 Overhead Sensor Model

The overhead sensors are aimed by directing the sensor towards a particular
area in the plane. To abstract away from the specifics of the hardware, we
describe sensor aims by the corresponding area in the plane which is sensed,
rather the specific motions or joint angles required to position the sensor.

Definition 5. An aim is the area in the plane that is within the field of view
of an overhead sensor for some possible configuration of the sensor.

We generally assume that the area covered by an aim corresponds to a ball
in some metric space, e.g. the L∞ ball corresponding to the coverage area of
a solid state image sensor that is high overhead.

The overhead sensors behave in a manner similar to the horizontal sensors;
they detect occupancy in a conical region extending from the sensor and
into the scene. What makes the overhead sensors special is their cones are
orthogonal to the plane. Moreover, with the mild assumption that objects
are not stacked on top of each other, the overhead sensors are immune to
ambiguities from occlusions. Each detection by an overhead sensor introduces
a new polygon in the plane corresponding to the intersection of the sensor’s
detection cone with the plane. Figure 3 (left and center) give an example of
this sensor model, both before viewing and after.

function polyselect(S) ; S = list of sensors
if S is empty, stop
for i:1..size(S)

mx[i] = maxaim(S[i])
sstar = argmax(mx[i])
swap(S[0], S[sstar])
mark the view sstar as viewed
polyselect(S[1..size(S)])

1

Fig. 3. (left and center) Result of overhead aims. On the left, assume that 5 horizon-
tal cones have produced a polygon which is large enough to contain several objects,
in this case 2. The center shows the result of an overhead aim that contains the en-
tire original polygon. Two objects have been detected and polygons corresponding
to the intersection of the detection cones with the plane are added, while the rest
of the original polygon is removed. The new, square polygons would arise from the
detection cones of square image sensor pixels. (right) The Polyselect Algorithm.

4.2 Bound Tightening

This section proves that no reasonable algorithm can do too poorly at tight-
ening the gap between the bounds. We will use the informative lower bound
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(LB) and the simple upper bound (UB) defined in Section 3. Before stating
the major result of this section, we define a useful property of an aim:

Definition 6. Given an aim v which covers unviewed polygons p(v) in the
visual hull, C(v) is the number of potential objects seen by v:

C(v) =

∑
p∈p(v)

⌊
area(p ∩ v)

MINSIZE

⌋
C(v) also provides a lower bound on the greatest change in bounds caused by
a single aim.

Lemma 1. Assuming all objects are the same size, choosing aim v will reduce
the gap in bounds by at least C(v), regardless of the number of objects detected
in the aim.

Proof. Suppose the overhead sensor detects a total of k objects. Viewing k
objects creates k new polygons, each of size roughly equal to the size of the
objects, as in Figure 3. All other area inside the aim will be removed from the
visual hull. Since all objects are the same size, the UB decreases by C(v)− k
(the area removed from the visual hull) and the LB increases by k, giving a
net change of C(v). ut

This does not, however, provide an upper bound on the maximum change
in the gap between bounds. Consider viewing an empty polygon; after viewing,
this polygon will be removed from the visual hull, changing the cone upper
bounds (see Section 3) for all the cones that it occupied. It is possible that
the cone upper bound is reduced to 1 for each of these cones, creating several
new provably occupied polygons. We refer to this deduction as inference. For
example, in Figure 2 (b), viewing p1 warrants the inference that both the
polygons p2 and p3 are provably occupied.

To quantify the change in bounds as a result of inference, let cmax be the
maximum number of cones per polygon; cmax is at most the number of sensors
in the horizontal network, since each polygon can be composed of at most one
cone per sensor. Since the motivation for using overhead sensors will be that
the horizontal sensors are sparse enough to create ambiguities, it is reasonable
to assume that cmax will not be large in practical applications. This definition,
along with Lemma 1, leads to an approximation ratio for a general class of
algorithms.

Theorem 2. Let A and B be two algorithms for aiming the overhead sensors
that choose vA and vB (respectively), with C(vA) = C(vB). Let A be an op-
timal algorithm with respect to the bounds gap, whereas B is any algorithm
yielding C(vA) = C(vB). B is a cmax + 1 approximation to A.

Proof. Consider the change in bounds for algorithm B. In the worst case, the
bounds will change by C(vB), as demonstrated by Lemma 1; this corresponds



Planning Aims for a Network of Horizontal and Overhead Sensors 9

with the case where all the polygons are fully occupied. A can, however,
potentially change the bounds by as much as C(vA) + |p(vA)| · (cmax) by
seeing only empty polygons and, for each one, inferring that up to cmax other
polygons are occupied. This maximum change in bounds for A can be at most
C(vA) ·(cmax +1), since each polygon contributes at least one to C(vA). Thus,
B is a cmax + 1 approximation. ut

Since this theorem makes no assumptions about B, any algorithm for
choosing an aim with C(vA) potential objects would be a cmax + 1 approx-
imation algorithm. Of course, the number of potential objects viewed by an
optimal algorithm is not known a priori. If B maximizes the number of po-
tential objects viewed, however, then A cannot view more, and B must be a
cmax + 1 approximation.
4.3 Maximizing the Number of Potential Objects Viewed by
Multiple Sensors

This section considers the problem of choosing a set of aims to maximize
the number of viewed potential objects. The main result of this section is
that a simple, greedy approach yields a constant factor approximation for
the largest number of potential objects the overhead network can see. If the
overhead sensors have distinct sets of possible aims, then the greedy algorithm
is a 2-approximation. If the overhead sensors are interchangeable in the sense
that all aims are possible for all sensors, then the greedy algorithm is an e

e−1
approximation.

Figure 3 (right) presents the pseudocode for a greedy aiming algorithm
called Polyselect. Polyselect assumes the existence of a function called maxaim
that exhaustively considers all possible aims for a sensor and returns the
maximum number of new potential objects viewable given the set of aims
possible for the sensor. Clearly, there are many opportunities for caching and
incremental computation in the implementation of maxaim. Among all sensors
for which an aim is not already assigned, Polyselect chooses the sensor and
aim that maximizes the number of previously unviewed potential objects. The
area chosen by this aim is marked so that subsequent aims do not consider the
overlap and the procedure continues until aims are determined for all sensors.

Non-Interchangeable sensors

Theorem 3. Polyselect is a 2-approximation of the optimal aim selection pro-
cedure.

Proof. Polyselect is a 2-approximation because if it chooses a suboptimal aim,
then the potential objects contributing to this suboptimality were previously
viewed by Polyselect.

More formally, let G1, G2, . . . , Gm be the total number of previously un-
viewed potential objects seen by the aims chosen by Polyselect, given in de-
scending order, i.e., the ordering chosen by Polyselect. Now consider the out-
put of an optimal algorithm, O1, O2, . . . , Om, where Oj is the optimal aim for
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sensor j in the Polyselect ordering. Both quantities are only the new potential
objects seen by each sensor, meaning that Ok does not count any potential
objects counted by O1...k−1.

Define the loss to be the difference between the number of potential ob-
jects viewed by the greedy algorithm and the number viewed by an optimal
algorithm. Trivially:

loss =

∑
i

(Oi −Gi) ≤
∑

i

max{0, Oi −Gi}

Now consider some Oj > Gj , i.e. one of the sensors that contributes to the
final summation. For this sensor j, there is an aim viewing a larger number of
potential objects than what Polyselect chose, and there are at least Oj −Gj

more potential objects at this aim. Since the greedy algorithm chose the aim
giving Gj (instead of Oj), however, these additional potential objects must
have been covered by sensors Polyselect fixed earlier, and are accounted for
in G1, G2, . . . , Gj−1. Thus, the suboptimality must be bounded by the total
number of potential objects seen by Polyselect. More formally,

loss ≤
∑

i

max{0, Oi −Gi} ≤
∑

i

Gi

Substituting into the original expression for the loss:∑
i

Oi −
∑

i

Gi ≤
∑

i

Gi ⇒
∑

i

Gi ≥
1

2

∑
i

Oi

yielding a 2-approximation for the optimal set of aims. ut

This approximation ratio is also tight. Consider the scenario in Figure 4
(top). Polyselect will choose to aim the sensors at L2 and R2, yielding a total
of n+1 potential objects. An optimal algorithm, however, will aim the sensors
at L1 and R1, with a total of 2n potential objects.

Interchangeable Sensors

If the sensors are interchangeable, meaning that all aims are possible for all
sensors, the greedy algorithm achieves a better approximation ratio. This re-
sult draws upon earlier work on maximizing submodular functions. Nemhauser
et al. [8] established several equivalent criteria for a set function z, defined
over the subsets of the set A, to be a submodular non-decreasing function. We
use the following criterion:

z(S ∪ {i})− z(S) ≥ z(T ∪ {i})− z(T ) ≥ 0 , ∀S ⊂ T ⊂ A, ∀i ∈ A

Lemma 2. Let A be the set of available aims and zC : 2A → N be the number
of potential objects viewed by a subset of these aims. zC is a non-decreasing,
submodular function.
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Fig. 4. (top) An example demonstrating the tightness of the approximation ratio
in theorem 3. There are two aims available to each sensor; for L, the aims available
cover n or n + 1 potential objects. For R, the aims available cover n or 0 potential
objects. The potential objects seen by R1 are a subset of those seen by L2. The
optimal aims are clearly L1 and R1, but Polyselect picks L2 and R2. (bottom)
An example where Polyselect will give a 4/3-approximation with interchangeable
sensors. A sensor can choose to cover any two adjacent sets of potential objects.
The optimal aims are the two dashed rectangles, while Polyselect chooses the solid
rectangles. (The dashed rectangles are smaller for expository purposes only.)

Proof. Let S ⊂ T be subsets of A. Consider adding an additional aim i to
both sets. Since zC counts the number of distinct potential objects viewed
by a subset of the aims, the additional aim i cannot contribute fewer new
potential objects to S than it would to T . zC is also non-decreasing because
adding an aim cannot reduce the number of potential objects. ut
Note that interchangeability is necessary for submodularity. Without inter-
changeability, zC is not a set function, as there are some aims which are not
available to all the sensors.

Theorem 4. If the overhead sensors are interchangeable, Polyselect is an
e/(e− 1)-approximation of the optimal aim selection procedure.

Proof. Nemhauser et al. describe a greedy, e/(e−1) approximation algorithm
that starts with an empty set and iteratively builds a solution by adding
the item i which maximizes z(S ∪ {i}) − z(S). Polyselect follows the same
procedure and is therefore an instance of this algorithm with the objective
function zC . Since zC is submodular, the e/(e − 1) approximation follows as
an immediate consequence of the Nemhauser et al. results. ut

Figure 4 (top) shows a case where Polyselect with interchangeable sensors
yields a 4/3-approximation to the optimal solution. This is the worst case we
have devised, suggesting that the bound in Theorem 4 may not be tight.
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Hardness of Maximizing Number of Viewed Potential Objects

Could a polynomial time algorithm choose a maximizing set of aims? This
section shows that, in general, some form of approximation will be necessary
because the basic problem is intractable.

Definition 7. Given a collection S of overhead sensors (with |S| = c) and
a set P of polygons represented with rational coordinates, MaxObject decides
whether there exists a set of aims which allow the sensors in the network to
see at least k potential objects.

Theorem 5. MaxObject is NP-hard.

Proof. This problem is NP-hard so long as the number of overhead sensors is
considered part of the input. The reduction follows from the c-center problem:
Given a set of points P (with |P | = n) in <d, does there exist a set of c “balls”
of radius r which can completely cover all the points in P? 2

The c-center problem is NP-hard even for d = 2 so long as c is part of
the input, even when the metric is L∞ [2]. Note that “balls” of radius r in
L∞ are axis parallel squares of size 2r. An instance of the c-center problem
can be converted to an instance of MaxObject by creating very small (MIN-
SIZE) polygons for each point, and then creating c sensors which can each
view a square of size 2r. Clearly, an algorithm which can solve this instance of
MaxObject can also be used to solve the original instance of c-center. MaxOb-
ject is thus NP-hard. ut

This theorem demonstrates that finding the aims maximizing the number
of viewed potential objects is intractable if the number of overhead sensors
is part of the problem input. If the number of sensors is a constant c and
there are n discrete aims per sensor, then the maximizing set of aims can be
found in polynomial time via exhaustive search since there are O(nc) possible
choices. If the set of aims is continuous then finding the maximizing set of
aims will require techniques from computational geometry. In either case, the
runtime of these procedures can be quite high, even for moderate values of c,
making approximation algorithms more practical.

4.4 Multi-phase Bound Resolution

This section considers how Polyselect performs when applied over multiple
phases of sensor aims. A phase assigns an aim to each sensor and processes
the results of the aims, updating the visual hull. In each phase, the network
gathers more information about the count in the region. It is assumed that the
objects do not move between phases, a reasonable assumption if the objects
are either stationary or moving slowly relative to the speed of the sensor

2 This problem is generally known as the p-center problem.
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movements – a reasonable assumption if the overhead sensors are pan-tilt
cameras which can pan or tilt in a second or less.

The goal of this section is to determine how many greedy phases are re-
quired to minimize UB - LB, relative to an optimal algorithm. This problem
is particularly interesting because the optimal strategy could be conditional:
The selection of a certain aim could depend upon the outcome of earlier aims.
This section will use the word resolve to mean determining the status of a
potential object, either through inference or viewing.

The analysis in this section proceeds in two steps. The first step uses
the results from Sections 4.2 and 4.3 to bound the performance of the greedy
algorithm over the course of one round, where a round is the number of phases
an optimal algorithm takes to resolve all the potential objects. This bound
leads to a simple recurrence which can then be solved to give an upper bound
on the total number of greedy rounds required to minimize the gap between
the bounds. This section considers both interchangeable and general sensors.

Lemma 3. If an optimal algorithm requires k phases (one round) to resolve
n potential objects, then Polyselect will view at least n/(2(cmax +1)) potential
objects in one round with non-interchangeable sensors, and at least (n(e −
1))/(e(cmax + 1)) with interchangeable sensors.

Proof. By Theorem 2, an algorithm that exploits inference can resolve at most
a factor of cmax + 1 more potential objects than an algorithm that doesn’t
plan to exploit inference. To resolve n potential objects, the optimal algorithm
must view at least n/(cmax + 1) potential objects. If it is possible to view
n/(cmax + 1) potential objects, then by Theorem 3, Polyselect will view at
least n/2(cmax + 1) when the sensors are not interchangeable and at least
(n(e− 1))/(e(cmax + 1)) when they are interchangeable. ut

Theorem 6. Using a greedy d-approximation to plan the sensor aims in each
phase requires no more than d(cmax + 1) log2 n times as many rounds as an
optimal algorithm that plans to exploit inference.

Proof. Suppose that after some round i of the greedy algorithm, nleft poten-
tial objects remain. The same set of aims used by the optimal algorithm will
suffice to resolve these nleft potential objects. Therefore, by Lemma 3, the
greedy algorithm will be able to view at least nleft/d(cmax + 1) in the next
round. Each round, in the worst case, Polyselect cuts the number of remain-
ing potential objects by a constant factor. Letting a = d(cmax + 1) be this
constant fraction, this reasoning leads to a simple recurrence:

T (n) = T

((
1−

1

a

)
n

)
+ 1

Solving the recurrence yields:

T (n) = log a
a−1

n =
log2 n

log2 a− log2 (a− 1)



14 Erik Halvorson and Ronald Parr

The denominator, log2 a− log2 (a− 1), is a finite difference approximation of
the derivative of log2 at a. Since log is concave, this must be larger than the
true derivative of log2 at a, 1/a, implying:

T (n) =
log2 n

log2 a− log2 (a− 1)
≤

log2 n
1
a

= a log2 n

For a = d(cmax + 1), T (n) ≤ d(cmax + 1) log2 n. ut

Corollary 1. Polyselect requires at most 2(cmax + 1) log n more rounds than
an optimal algorithm when using general sensors.

Corollary 2. Polyselect requires at most e
e−1 (cmax+1) log n more rounds than

an optimal algorithm when using interchangeable sensors.

Hardness of Multi-phase Planning

In the previous sections, we demonstrated that applying an approximation
algorithm to aim a set of sensors at each phase has bounded suboptimality
relative to an optimal planning algorithm. One question remains, however:
Could a polynomial time algorithm compute this optimal plan? This section
shows that computing such an optimal plan is intractable, even when the
number of sensors is fixed.

Definition 8. Given a collection S of c overhead sensors and a set P of
polygons, NumPhases decides whether it is possible to view P with m phases.

Theorem 7. NumPhases is NP-hard, even when the number of sensors is
fixed a priori.

Proof. The reduction is from the rectilinear c-center problem, and follows a
similar line of reasoning as used in Theorem 5. Given a set of points P , create
a very small polygon for each point; these polygons should be small enough
that none overlap. Next, create a single overhead sensor with a square field of
view of radius r and position it such that it can aim at any location within
the region of interest.

An algorithm to decide this instance of NumPhases will also decide the
original instance of rectilinear c-center. Consider the set of aims chosen by
the algorithm deciding NumPhases. These k aims would correspond with k
squares (of size 2r) covering all the points in P , thus also deciding the original
decision problem. Therefore, NumPhases is NP-hard. ut

This result is much stronger than the result proved in Section 4.3 as the
problem remains NP-hard even when the number of sensors a constant.

5 Empirical Results

We evaluated our greedy approach using a simulated version of our counting
problem with nine horizontal sensors by running Polyselect to completion and
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Fig. 5. (top) Plot of the gap in bounds for TrueGreedy (left) and Polyselect (right)
vs Phase for two sensors and several different numbers of objects. (bottom) A plot of
the gap in bounds for TrueGreedy (let) and Polyselect (right) vs. Phase for 15 objects
and various numbers of overhead sensors. Data were averaged over 15 experiments
for the top plots and over 12 for the bottom plots. Note that in both cases, the plots
are essentially the same.

measuring the change in bounds over time. To implement maxaim, we devel-
oped a sweepline approach which finds local maxima in the number of viewed
potential objects as the overhead sensor’s aim is swept in the y-direction.
This sweepline algorithm was then run for a discrete set of x positions (each
separated by a constant amount), generating a set of local optima. This set
of detected local maxima is then used as a basis for choosing the aims for
Polyselect. We compared the performance of Polyselect to a procedure that
truly maximizes the area of viewed polygons (TrueGreedy) using a brute-force
search over all combinations of aims. Both algorithms chose from the same
set of aims. The optimal, non-myopic strategy is too expensive to compute
because the non-myopic strategy is conditional and could require computing
the change in bounds for all possible sequences of aims, as opposed to all
possible sequences of just the local maxima. All of the tested configurations
had interchangeable sensors.

With two overhead sensors TrueGreedy runs up to 40× slower than Poly-
Select, and TrueGreedy can be hundreds of times slower with three or more
sensors. Figure 5 (top) shows two plots of the bound gap (UB - LB), for True-
Greedy and Polyselect, with various numbers of objects. Figure 5 (bottom)
shows the gap in bounds for TrueGreedy and Polyselect for various numbers
of overhead sensors. Note that no more than ten phases were required for any
of the experiments. We have noticed empirically that Polyselect is often an
excellent approximation algorithm, in many cases choosing equivalent aims to
TrueGreedy. Consequently, the suboptimality for both sets of plots in Figure
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5 is less than a fraction of an object, even for many sensors. As the graphs
demonstrate, the suboptimality of using Polyselect is reasonable.

6 Conclusion

We described a simple, greedy method for planning the aims of a set of over-
head sensors to resolve an ambiguous count of the number of objects seen
by a network of horizontal sensors. We proved that the suboptimality of this
approach is both bounded and reasonable, and works well in practice. We also
demonstrated that solving the sensor aiming problem optimally is intractable.
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