
This is a repository copy of A Prime Number Approach to Matching an XML Twig Pattern
including Parent-Child Edges.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/117467/

Version: Accepted Version

Proceedings Paper:
Alsubai, S. and North, S.D. orcid.org/0000-0002-8478-8960 (2017) A Prime Number
Approach to Matching an XML Twig Pattern including Parent-Child Edges. In: Proceedings
of the 13th International Conference on Web Information Systems and Technologies. 13th
International Conference on Web Information Systems and Technologies, 25-27 Apr 2017,
Porto, Portugal. SCITEPRESS , pp. 204-211. ISBN 978-989-758-246-2

https://doi.org/10.5220/0006225602040211

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

A Prime Number Approach to Matching an XML Twig Pattern including
Parent-Child Edges

Shtwai Alsubai1 and Siobhán North1

1Department of Computer Science, the University of Sheffield, Sheffield, UK.

{safalsubai1, s.north}@sheffield.ac.uk

Keywords: XML, Holistic Algorithm, Twig Pattern Query.

Abstract: Twig pattern matching is a core operation in XML query processing because it is how all the occurrences

of a twig pattern in an XML document are found. In the past decade, many algorithms have been proposed

to perform twig pattern matching. They rely on labelling schemes to determine relationships between el-

ements corresponding to query nodes in constant time. In this paper, a new algorithm TwigStackPrime is

proposed, which is an improvement to TwigStack (Bruno et al., 2002). To reduce the memory consumption

and computation overhead of twig pattern matching algorithms when Parent-Child (P-C) edges are involved,

TwigStackPrime efficiently filters out a tremendous number of irrelevant elements by introducing a new la-

belling scheme, called Child Prime Label (CPL). Extensive performance studies on various real-world and

artificial datasets were conducted to demonstrate the significant improvement of CPL over the previous index-

ing and querying techniques. The experimental results show that the new technique has a superior performance

to the previous approaches.

1 Introduction

The extensible markup language XML has emerged

as a standard format for information representation

and communication over the internet. Due to the def-

inition of relationships in XML as nested tags, data in

XML documents are self-describing and flexibly or-

ganized (Li and Wang, 2008). The basic XML data

model is a labelled and ordered tree. A query in

the context of XML is defined as a complex selec-

tion on elements of an XML document specified by

structural information of the selected elements (Wu

et al., 2012). In most XML query languages, such as

XPath and XQuery, a twig (small tree) pattern can be

represented as a node-labelled tree whose edges spec-

ify the relationship constraints among its nodes and

they are either Parent-Child or Ancestor-Descendant.

Generally, the purpose of XML indexing is to im-

prove the efficiency and the scalability of query pro-

cessing by reducing the search space. Without an in-

dex, XML retrieval algorithms have to scan all the

data. In XML, the types of structural index can be di-

vided into two main groups; node and graph indexing.

A well-known example of node indexing is range-

based (Zhang et al., 2001). In a range-based labelling

scheme, every node in an XML document is assigned

an unique label to record its position within the origi-

nal XML tree. The labelling scheme must enable de-

termination of all structural relationships by compu-

tation. In order to detect the twig patterns, previous

algorithms need to access only the labels correspond-

ing to the query nodes without traversing the original

XML tree by utilizing a clustering mechanism called

tag streaming where all elements with the same tag

are grouped together (Chen et al., 2005). The alter-

native usually summarizes all paths in an XML docu-

ment starting from the root. Early work on processing

twig pattern matching decomposed twigs into a set of

binary structures, then performed structural joins to

obtain individual binary matchings. The final solution

of the twig query is computed by stitching together

the binary matches.

In (Bruno et al., 2002), the authors introduced the

first holistic twig join algorithm for matching an

XML twig pattern, called TwigStack. It works in

two phases. Firstly, twig patterns are decomposed

into a set of root-to-leaf paths queries and the so-

lutions to these individual paths are computed from

the data tree. Then, the intermediate paths are merge

joined to form the final result. The authors of (Bruno

et al., 2002) proposed a novel prefix filtering tech-

nique to reduce the number of irrelevant elements

in the intermediate paths. TwigStack is optimal for

twig patterns when all the structural relationships are

Ancestor-Descendant, and it guarantees all the inter-

mediate path solutions contribute to the final result,

but it generates useless intermediate path results when

the twig pattern query contains Parent-Child axes.

In this paper, we proposed a new indexing technique

to identify P-C relationships efficiently, called Child

Prime Labels. We extended the original holistic twig

pattern matching algorithm to process XML twig pat-

terns with P-C axes efficiently and reduce memory

consumption and CPU overheads. In addition, we

have conducted an extensive set of experiments to

compare the performance of the new algorithm to the

previous approaches.

The rest of this paper is organized as follows: the

novel indexing and twig algorithm are presented in

Section 2 and Section 3, respectively. In Section 4 the

experimental results are reported. The discussion of

related work in Section 5, then the paper is concluded

in the last section 6.

2 Node Labelling Scheme

Node indexing (also referred to as a labelling or num-

bering scheme) is commonly used to label an XML

document to accelerate XML query performance by

recording information on the path of an element to

capture structural relationships rapidly during query

processing with no need to access the XML document

physically (Lu et al., 2004). In this approach, every

node in an XML document is indexed and assigned an

unique label which records its positional information

within an XML tree. The information gained from la-

bels vary according to the chosen labelling scheme.

Most of the previous twig join algorithms rely on la-

belling schemes where nodes are considered as the

basic unit of a query which provides a great flexibil-

ity in performing any structural query matching effi-

ciently.

To determine the effects of the range-based labelling

scheme, (Zhang et al., 2001) proposed multi-predict

merge-join algorithm based on the positional infor-

mation of the XML tree. An alternative representa-

tion, a prefix scheme, of labels of an XML tree can

be seen in (Lu et al., 2011). In this sort of labelling

scheme, each node is associated with a sequence of

integers that represents the node-ID path from the root

to the node. This approach can be exemplified by

Dewey, the sequence of components in a Dewey la-

bel is separated by ”.” where the last component is

called the self label (i.e., the local order of the node)

and the rest of the components are called the parent

label. For instance, {1.2.3} is the parent of {1.2.3.1}.

Another approach, (Alireza Aghili et al., 2006) ad-

dressed the limitations of information encoded within

labels produced by existing labelling schemes. It fo-

cus on performing join operations earlier, at leaf lev-

els, where the selectivity of query nodes is at its peak

for data-centric XML documents. The significance of

the proposed approach stems from a comprehensive

labelling scheme that could infer additional structural

information, called Nearest Common Ancestor, NCA

for short rather than the basic relationships among el-

ements of XML documents. None of the previous ap-

proaches have taken the breadth of every node into

account. We propose a novel approach to overcome

the previous limitations. The key idea of our work is

to find an appropriate, refined labelling scheme such

that, for any given query node in the query, the set

of its child query nodes in the XML document which

forms the major bottleneck in determining structural

relationship because parent-child can be resolved ef-

ficiently. This novel approach results in considerably

fewer single paths stored than TwigStack algorithm.

It also increases the overall performance and reduces

the memory overhead, and the result is shown clearly

in our experiments. During depth-first scanning, a

node is assigned the next available prime number if its

tag has not been examined. After that, we check the

CPL parameter of its parent element to see whether it

is divisible by the assigned prime number or not. If it

is, we process the next element, otherwise the product

of parent element’s CPL is multiple by the new prime

number. For illustration, assume we have two nodes

u and v labelled by a triplet(start,end, level) where

start and end record the positional information of the

opening tag and the ending tag, respectively, while

level is the number of edge(s) to the root. A set of

structural relationships can be determined as follows:

Property 1. Ancestor-Descendant and Parent-Child

relationships, For two nodes u and v encoded using

the range-based labelling scheme can be described

as v=(startu , endu , levelu) and u=(startv , endv

, levelv). From that positional information, u is the

ancestor of v if and only if startu < startv < endu.

Property 2. Parent-Child relationship, From that

positional information, u is the parent of v if and only

if startu < startv < endu and levelu +1 = levelv.

Definition 1. (Child Prime Label) A child prime la-

bel is assigned to each element in an XML docu-

ment as an extra parameter into the range-based la-

bel. A child prime label indicates the multiplication

of distinct prime numbers for every internal elements

within the document. For example, node u is encoded

quadruple =(startu , endu , levelu , CPLu).

Property 3. In any XML labelling scheme that

is augmented with Child Prime Label, for any

(a) (b)

Figure 1: An example of an XML tree labelled using the original range-based labelling scheme in Figure 1a and the new child
prime label parameter assigned to each element along with the tag index in the top right of Figure 1b.

nodes x,y and z in an XML document, x has

at least one or more child nodes of tag(y)

and tag(z) if CPLx mod keytag(y) × keytag(z) =
0 where keytag(y) and keytag(y) are unique prime numbers.

Figure 1a and 1b are a sample of an XML tree la-

belled with the original range-based and child prime

label augmentation, respectively. To demonstrate the

effect of child prime label, consider the XML tree

in Figure 1b and the tag indexing table on the top

right, queries in XML are expressed as twigs since

data is represented as tree. The answer to an XML

query is all occurrences of it in an XML document

under investigation. So, if we issue the simple twig

query Q = a[x]/y, only two elements will be con-

sidered for further processing, namely a2 and a4.

This is because of CPLa2
mod keytag(x) × keytag(y) =

77 mod 7×11 equals 0.

3 Twig Join Algorithm

There is abstract data type called a stream, which is

a set of elements with the same node label, where

the elements are sorted in ascending document order.

Each query node q in a twig pattern is associated with

an element stream, named Tq which has a cursor Cq

which initially points to the first element in Tq at the

beginning of a query processing. We define the fol-

lowing operations on streams and query nodes to fa-

cilitate the processing. children(q) returns all child

nodes of q. subtree(q) returns all child nodes which

are in the subtree rooted at q. childrenAD(q) returns

all child nodes which have ancestor-descendant rela-

tionship with q. childrenPC(q) returns all child nodes

which have parent-child relationship with q. isRoot(q)

tests if q is the root or not. parent(q) returns the par-

ent query node of q. isLeaf(q) tests if q is a leaf node

or not. getStart(Cq) returns the start attribute of q.

getEnd(Cq) returns the end attribute of q. getLevel(Cq)

returns the level attribute of q. advance(Cq) forward

the cursor of q to the next element. eo f (Tq) to judge

whether Cq points to the end of stream of Tq. The

structure of the main algorithm, TwigStackPrime pre-

sented in Algorithm 2 is not much different from

the original holistic twig join algorithm TwigStack

(Bruno et al., 2002) which uses two phases to com-

pute an answer to a twig query. TwigStackPrime mod-

ifies TwigStack in order to use CPL. getNext is an

essential function which is called by the main algo-

rithm to decide the next query node to be processed.

It is fundamental to guarantee that the current label

associated with the returned node is part of the final

output since all the basic structural relationships are

thoroughly checked by getNext or its supporting sub-

routine getElement. The basic TwigStack algorithm

remains the same with the only difference being the

key supporting algorithm getNext. The main differ-

ence between two getNext algorithms in TwigStack

and TwigStackPrime can be summarized as follows.

In TwigStack, element en returned by getNext is con-

sidered likely to contribute to the result if and only if:

it has a descendant element eni
in each of the streams

corresponding to its child elements where eni
= chil-

dren(n) and each of its child elements satisfies recur-

sively the first property. While in TwigStackPrime, if

element en has parent-child edge(s), it has to satisfy

that in getElement procedure (Line 30-31). Finally,

all individual paths are merged to produce the final

results.

3.1 Analysis of TwigStackPrime

In this section, we show the correctness of our al-

gorithms. The correctness of TwigStackPrime algo-

rithm can be shown analogously to TwigStack due to

the fact that they both use the same stack mechanism.

In other words, the correctness of Algorithm 2 fol-

lows from the correctness of TwigStack (Bruno et al.,

2002). Since the getNext() with CPL increases the fil-

tering ability of the original, we prove its correctness

here, while the proof of the main algorithm is in the

original work of (Bruno et al., 2002).

Definition 2. (Child and Descendant Extension)

query node q has the child and descendant extension

if the following properties hold:

• ∀ ni ∈ childrenAD(q), there is an element ei which

is the head of Tni
and a descendant of eq which is

the head of Tq.

• ∀ ni ∈ childrenPC(q), there is an element eq

which is the head of Tq and its CPL parameter

is divisible by Keytag(ni)

• ∀ ni ∈ children(q), ni must have the child and de-

scendant extension.

The above definition is a key for establishing the

correctness of the following lemma:

Lemma 1. For any arbitrary query node q′ which is

returned by getNext(q), the following properties hold:

1. q′ has the child and descendant extension.

2. Either q == q′ or q′ violates the child and de-

scendant extension of the head element eq of its

parent(q′).

Proof. (Induction on the number of child and descen-

dants of q′). If q′ is a leaf query node, we return it

in line 2 because it verifies all the properties 1 and

2. Otherwise, we recursively have gi = getNext(ni)

for each child of q in line 4. If for some i, we get

gi 6= ni, and we know by inductive hypothesis that gi

verifies the properties 1 and 2b with respect to q, so

we return gi in line 6. Otherwise, we know by induc-

tive hypothesis that all q’s child nodes satisfy prop-

erties 1 and 2 with their corresponding sub-queries.

At getElement(q) (line 21-23), we advance from Tq

all segments that do not satisfy the divisibility by the

product of prime numbers in childrenPC(q) returned

from getQNChildExtension. After that, we advance

from Tq (line 9-10) all segments that are beyond the

maximum start value of ni. Then, if q satisfies prop-

erties 1 and 2, we return it at line 12. Otherwise, line

13 guarantees that ni with the smallest start value sat-

isfies properties 1 and 2b with respect to start value of

q’s head element.

Theorem 1. Given a twig pattern query Q and an

XML document D, Algorithm TwigStackPrime cor-

rectly returns answer to Q on D.

Proof(Sketch). We prove Theorem 1 by using

Lemma 1 and the proof of TwigStack to verify that the

chain of stacks represents paths containing the sim-

ilar chain of nodes as appear in XML document D

(Bruno et al., 2002). In Algorithm TwigStackPrime,

we repeatedly find getNext(root) to determine the next

node to be processed. Using lemma 1, we know that

all elements returned by qact = getNext(root) have the

child and descendant extension. If qact 6= root, line

4, we pop from Sparent(qact) all elements that are not

ancestors of Cqact . After that, we already know qact

has a child and descendant extension so that we check

whether Sparent(qact) is empty or not. If so, it indicates

that it does not have the ancestor extension, line 5,

and can be discarded safely to continue with the next

iteration. Otherwise, Cqact has both the ancestor and

child and descendant extensions which guarantee its

participation in at least one root-to-leaf path. Then,

we clean Sqact to maintain pointers from itself to the

root. Finally, if qact is a leaf node, we compute all

possible combinations of single paths with respect to

qact , line 8-9.

e

a1

x1 a2

x2 y1

f1

y2

a4

x4 y3

(a) an XML tree.

a

x y

f

(b) a twig query.

Figure 2: Sub-optimal evaluation of TwigStackPrime where
redundant paths might be generated.

It can be shown that TwigStackPrime algorithm is op-

timal when P-C axes exist only in the deepest level of

a twig query.

Example 1. Consider the XML tree and a twig query

in Figure 2, the head elements in their streams are

a → a1, x → x1, y → y1 and f → f1. The first call

of getNext(root) inside the main algorithm will return

a → a1 because it has A-D relationship with all head

elements and satisfies CPL with x and y, and its de-

scendant y → y1 also satisfies the child and descen-

dant extension with respect to f. However, TwigStack-

Prime produces the useless path (a1,x1)

4 Experimental Evaluation

In this section we present the performance compar-

ison of twig join algorithms, namely: TwigStack-

Prime the new algorithm based on Child Prime La-

bels, along with TwigStack (Bruno et al., 2002). The

original twig join algorithm that was reported to have

optimal worst-case processing with A-D relationship

in all edges, and TwigStackList is the first refined ver-

sion of TwigStack to handle P-C efficiently (Lu et al.,

2004). TwigStackList was chosen in this experiment

because it utilizes a simple buffering technique to

prune irrelevant elements from the stream. We evalu-

ated the performance of these algorithms against both

real-world and artificial data sets. The performance

comparison of these algorithms was based on the fol-

lowing metrics:

1. Number of intermediate solutions: the individual

root-to-leaf paths generated by each algorithm.

2. Processing time: the main-memory running time

without counting I/O costs. All twig pattern

queries were executed 103 times and the first three

runs were excluded for cold cache issues. We did

not count the I/O cost for tag indexing files for

TwigStackPrime algorithm because it s negligible,

and the cost to read the tag indexing is constant

over a series of twig pattern queries.

4.1 Experimental Settings

All the algorithms were implemented in Java JDK 1.8.

The experiments were performed on 2.9 GHz Intel

Core i5 with 8GB RAM running in Mac OS X El

Capitan. The benchmarked datasets used in the ex-

periments and their characteristics are shown in Ta-

bles 1 and 2. The selected datasets and benchmark are

the most frequent in the literature of XML query pro-

cessing (Bruno et al., 2002; Lu et al., 2004; Grimsmo

et al., 2010; Wu et al., 2012; Li and Wang, 2008; Qin

et al., 2007). We generated Random dataset similar

to that in (Lu et al., 2004) but we vary the two pa-

rameters: depth and fan-out. The depth of randomly

generated tree has maximum value sets to 13 and fan-

out has range from 0 to 6, respectively. This data set

was created to test the performance where the XML

combines the features of DBLP and TreeBank, being

structured and deeply-recursive at the same time.

Table 1: Benchmark real-world datasets used in the experi-
ments.

DBLP TreeBank

Rangae-based MB 65.3 43

CPL MB 70.3 47.9

△ size MB 5 4.9

Tag Indexing Size KB 0.48 3

Nodes (Millions) 3.73 2.43

Max/Avg depth 6/2.9 36/7.8

Distinct Tags 40 251

Largest Prime Numbers 151 1597

Table 2: Benchmark artificial datasets used in the experi-
ments.

XMark Random

Rangae-based MB 35.3 69.4

CPL MB 40.1 74.1

△ size MB 4.8 4.7

Tag Indexing Size KB 1 0.049

Nodes (Millions) 2.04 3.94

Max/Avg depth 12/5.5 13/7

Distinct Tags 83 6

Largest Prime Numbers 379 19

The XML structured queries for evaluation over these

dataset were chosen specifically because it is not

common for queries, which contain both ’//’ and

’/’, to have a significant difference in performance

for tightly-structured document such as DBLP and

XMark. TreeBank twig queries were obtained from

(Lu et al., 2004) and (Grimsmo et al., 2010). Twig

pattens over the random data set were also randomly

generated. Table 3 shows the XPath expressions for

the chosen twig patterns. The code indicates the data

set and its twig query, for instance, TQ2 refers to the

second query issued over TreeBank dataset.

Table 3: Benchmark twig pattern queries used in the exper-
iments.

Code Query

DQ1 dblp/inproceedings[//title]//author

DQ2 //www[editor]/url

DQ3 //article[//sup]//title//sub

DQ4 //article[/sup]//title/sub

XQ1 /site/closed auctions/closed auction

[annotation/description/text/keyword]/date

XQ2 /site/closed auctions/closed auction

[//keyword]/date

XQ3 /site/people/person[profile[gender][age]]

/name

XQ4 /site/people/person[profile[gender][age]]

/name

XQ5 //item[location][//mailbox//mail//emph]

/description/keyword

XQ6 //people/person[//address/zipcode]/profile

/education

T Q1 //S[//MD]//ADJ

T Q2 //S/VP/PP[/NP/VBN]/IN

T Q3 //VP[/DT]//PRP DOLLAR

T Q4 //S[/JJ]/NP

T Q5 //S/VP/PP[/IN]/NP/VBN

T Q6 //S[//VP/IN]//NP

T Q7 //S/VP/PP[//NP/VBN]/IN

T Q8 //EMPTY/S//NP[/SBAR/WHNP/PP//NN]

/ COMMA

T Q9 //SINV//NP[/PP//JJR][//S]//NN

RQ1 //b//e//a[//f][d]

RQ2 //a//b[//e][c]

RQ3 //e//a[/b][c]

RQ4 //a[//b/d]//c

RQ5 //b[d/f]/c[e]/a

RQ6 //c[//b][a]/f

RQ7 //a[c//e]/f[d]

RQ8 //d[a//e/f]/c[b]

RQ9 //a[d][c][b][e]//f

4.2 Experimental Result

We compared TwigStackPrime algorithm with

TwigStack and TwigStackList over the above men-

tioned twig pattern queries against the data sets

selected. The Kruskal-Wallis test is a non-parametric

statistical procedure was carried out on processing

time, the p-value turns out to be nearly zero (p-value

less than 2.2 to the power of -16), it strongly suggests

that there is a difference in processing time between

two algorithms at least as shown in Figure 3.

4.2.1 DBLP and XMark Datasets

We tested twig queries over DBLP and XMark

datasets, they are both considered as data-oriented

and have a very strong structure. In these two datasets

both TwigStackPrime and TwigStackList are optimal,

but TwigStack still produces irrelevant paths. This can

be shown in Table 4. Since there is a difference in

performance, we ran pairwise comparison based on

Manny-Whitney test showed that in most tested twig

queries TwigStackPrime outperformed TwigStackList

and TwigStack. TwigStackPrime and TwigStackList

have same performance in XQ2 , XQ3 and XQ6 see

Figure 3a and 3b.

4.2.2 TreeBank Dataset

None of the algorithms compared are optimal in this

dataset because TreeBank has redundant paths and

many tags are deeply recursive. The number of indi-

vidual paths produced by each algorithm for the twig

pattern queries tested over Treebank is presented in

Table 3. TwigStackPrime showed a superior perfor-

mance in avoiding the storage of unnecessary paths

while processing time is improved. T Q6 is a very

expensive query, it touches a very large portion of

the document and the answer is quite large. Pair-

wise comparison based on Manny-Whitney test be-

tween TwigStackPrime and TwigStackList resulted in

p− value < .001 which suggests a significant differ-

ence and TwigStackPrime has the best performance

see Figure 3e. It can be seen in Figure 3d the only

twig queries where TwigStackPrime has slower per-

formance comparing to the others is T Q3 and T Q9

because they touch very little of the dataset.

4.2.3 Random Dataset

We have generated twig queries over this dataset to

test the performance of the algorithms by varying the

parent-child edges and increasing their numbers. RQ4

is optimal for TwigStackList because it does not have

P-C in branching axes, and TwigStackPrime does the

same (see Table 3). While in RQ9 where all branch-

ing edges are P-C, none of the algorithms compared

guarantee optimal evaluation except TwigStackPrime

in which RQ9 is its optimal class of query. When

evaluating RQ6, TwigStackPrime has the best perfor-

mance, it is roughly twice as fast than TwigStackList

and five time faster than TwigStack see Figure 3c and

3e.

(a) DBLP (b) XMark

(c) Random (d) TreeBank (e) Time consuming TPQs

Figure 3: Processing time for twig pattern queries against DBLP in 3a and XMark in 3b. 3c and 3d shows processing time
for twig queries on Random and TreeBank datasets, respectively. Figure 3e illustrates the processing time taken by each
algorithm to run the two most expensive queries in the experiments, normalizing query times to 1 for the fastest algorithm for
each query.

Table 4: Single paths produced by each algorithm.

Code TwigStack TwigStack

List

TwigStack

Prime

DQ1 147 139 139

DQ4 98 0 0

XQ1 9414 6701 6701

T Q2 2236 388 441

T Q3 10663 11 5

T Q4 70988 30 10

T Q6 702391 22565 22565

T Q8 58 27 26

T Q9 29 17 8

RQ1 2076 1843 1795

RQ2 29914 24235 23057

RQ3 20558 16102 15505

RQ4 67005 57753 57753

RQ5 3765 901 1093

RQ6 201835 98600 72084

RQ7 6880 2791 3219

RQ8 746 322 406

RQ9 179546 26114 8786

5 Related Work

The growing number of XML documents leads to the

need for appropriate XML querying algorithms. Over

the past decade, most research in structured XML

query processing has emphasized the use of node

indexing approaches (Bruno et al., 2002; Lu et al.,

2004; Grimsmo et al., 2010; Wu et al., 2012; Li and

Wang, 2008; Qin et al., 2007). One of the most im-

portant problems in XML query processing is tree

pattern matching. Generally, tree pattern matching is

defined as mapping function M between a given tree

pattern query Q and an XML data D, M : Q → D

that maps nodes of Q into nodes of D where struc-

tural relationships are preserved and the predicates

of Q are satisfied. Formally, tree pattern matching

must find all matches of a given tree pattern query Q

on an XML document D. The classical holistic twig

join algorithm TwigStack only considers the ancestor-

descendant relationship between query nodes to pro-

cess a twig query efficiently without storing irrelevant

paths in intermediate storage. It has been reported

(Bruno et al., 2002) that it has the worst-case I/O and

CPU complexities when all edges in twigs are “//”

(AD relationship) linear in the sum of the size of the

input and output lists. However, TwigStack’s perfor-

mance suffers from generating useless intermediate

results when twig queries encounter Parent-Child re-

lationships. The authors of (Lu et al., 2004) proposed

a new buffering technique to process twig queries

with P-C relationships more efficiently by looking

ahead some elements with P-C in lists to eliminate

redundant path solutions. TwigStackList guarantees

every single path generated is a part of the final re-

sult if twig queries do not have P-C under branching

query nodes (Lu et al., 2004). The authors of (Choi

et al., 2003) have proven that the TwigStack algorithm

and its variants which depend on a single sequentially

scan of the input lists can not be optimal for evalu-

ation of tree pattern queries with any arbitrary com-

bination of ancestor-descendant and parent-child re-

lationships. However, the approach to examine XML

queries against document elements in post-order was

first introduced by (Chen et al., 2006), Twig2Stack.

The decomposition of twigs into a set of single paths

and the enumeration of these paths is not necessary to

process twig pattern queries. The key idea of their ap-

proach is based on the proposition that when visiting

document elements in post-order, it can be determined

whether or not they contribute to the final result before

storing them in intermediate storage, which is trees

of stacks, to ensure linear processing. TwigList (Qin

et al., 2007) replaced the complex intermediate stor-

age proposed in Twig2Stack with lists (one for every

query node) and pointers with simple intervals to cap-

ture structural relationships. The authors in (Grimsmo

et al., 2010) proposed a new storage scheme, level

vector split which splits the list connected to its par-

ent list with P-C edge to a number of levels equals to

the depth of the XML tree.

6 Conclusion

In this paper we have proposed a new mechanism to

improve the pre-filtering strategy in twig join algo-

rithms when P-C edges exist in twig patterns. The

new technique has the ability to ensure pruning of un-

necessary elements from the streams which can en-

hance runtime efficiency and relieve memory con-

sumption by avoiding the storage of redundant paths.

We are currently working to extend our approach to

combine with the previous orthogonal algorithms to

propose a new one-phase twig join algorithm that we

hope will be faster in average worst-case than the pre-

vious algorithms. Furthermore, we plan to examine

processing ordered twig patterns and positional pred-

icate in a way that would consume less time and mem-

ory than the existing approaches.

REFERENCES

Alireza Aghili, S., Alireza Aghili, S., Hua-Gang, L., Hua-
Gang, L., Agrawal, D., Agrawal, D., El Abbadi, A.,
and El Abbadi, A. (2006). TWIX: twig structure and
content matching of selective queries using. InfoScale
’06: Proceedings of the 1st international conference
on, page 42.

Bruno, N., Koudas, N., and Srivastava, D. (2002). Holis-
tic twig joins: optimal XML pattern matching. In
Proceedings of the 2002 ACM SIGMOD international
conference on Management of data, pages 310–321,
Madison, Wisconsin. ACM.

Chen, S., Li, H.-G., Tatemura, J., Hsiung, W.-P., Agrawal,
D., Sel, K., #231, uk Candan, and Candan, K. S.
(2006). Twig2Stack: bottom-up processing of
generalized-tree-pattern queries over XML docu-
ments.

Chen, T., Lu, J., and Ling, T. W. (2005). On Boosting
Holism in XML Twig Pattern Matching Using Struc-
tural Indexing Techniques. Science, pages 455–466.

Choi, B., Mahoui, M., and Wood, D. (2003). On the
optimality of holistic algorithms for twig queries.
Database and Expert Systems Applications, pages 28–
37.

Grimsmo, N., Bjørklund, T. A., and Hetland, M. L. (2010).
Fast optimal twig joins. VLDB, 3(1-2):894–905.

Li, J. and Wang, J. (2008). Fast Matching of Twig Pat-
terns. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 5181 LNCS:523–
536.

Lu, J., Chen, T., and Ling, T. W. T. (2004). Efficient
Processing of XML Twig Patterns with Parent Child
Edges : A Look-ahead Approach. In Proceedings of
the thirteenth ACM international conference on Infor-
mation and knowledge management, number i, pages
533–542, Washington, D.C., USA. ACM.

Lu, J., Meng, X., and Ling, T. W. (2011). Indexing
and querying XML using extended Dewey labeling
scheme. Data & Knowledge Engineering, 70(1):35–
59.

Qin, L., Yu, J. X., and Ding, B. (2007). TwigList: Make
Twig Pattern Matching Fast. In Kotagiri, R., Kr-
ishna, P. R., Mohania, M., and Nantajeewarawat, E.,
editors, Advances in Databases: Concepts, Systems
and Applications: 12th International Conference on
Database Systems for Advanced Applications, DAS-
FAA 2007, Bangkok, Thailand, April 9-12, 2007. Pro-
ceedings, pages 850–862. Springer Berlin Heidelberg,
Berlin, Heidelberg.

Wu, H., Lin, C., Ling, T. W., and Lu, J. (2012). Process-
ing XML twig pattern query with wildcards. Lecture
Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 7446 LNCS:326–341.

Zhang, C., Naughton, J., DeWitt, D., Luo, Q., and Lohman,
G. (2001). On supporting containment queries in rela-
tional database management systems. ACM SIGMOD
Record, 30:425–436.

