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ABSTRACT
Can we push Edge computing one step further? This demonstra-
tion paper proposes an answer to this question by leveraging the
generalization of Trusted Execution Environments at the very
edge of the network to enable resilient and privacy-preserving
computation on personal devices. Based on preliminary published
results, we show that this can drastically change the way dis-
tributed processing over personal data is conceived and achieved.
The platform presented here demonstrates the pertinence of the
approach through execution scenarios integrating heterogeneous
secure personal devices.

1 INTRODUCTION
With forecasts at 29.3 billion connected devices by 2023 [1], the
current reliable, server-based, and infrastructure-centric data
management approach exhibits its limits in terms of efficiency,
privacy, and energy consumption. While Edge computing aims
at letting the data close to the sources and leverage in situ com-
puting resources [22], data is usually gathered again on cloud
or cloudlet servers [19] whenever multi-sources computation is
required (e.g., to perform statistics or machine learning).

A game changer is the generalization of Trusted Execution
Environments (TEEs) [18] at the extreme edge of the network:
Intel SGX [10] on PC and tablets, ARM’s TrustZone [17] on smart-
phones (Figure 1.a) and Trusted PlatformModule (TPM) on smart
objects (Figure 1.b). The security features of TEEs enable generic
and scalable computations, processing cleartext data without
any tradeoff between privacy and accuracy. Hence, large-scale
privacy-preserving computations are within reach in a more
generic and flexible way than with homomorphic cryptography
[8], differential privacy [12], or secure multiparty computation
protocols [6].

In [14], we advocate that the convergence between TEEs and
Opportunistic Networks (OppNets) [16] can be leveraged to or-
ganize fully decentralized and secure query computations among
data scattered on multiple personal devices, without resorting
to any central authority. We call this new data management
paradigm Edgelet computing and propose dedicated execution
strategies that guarantee three fundamental properties, namely
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Resiliency – a query completes before a given deadline according
to a given fault presumption rate –, Validity – the query result
is equivalent to the one obtained in a centralized context – and
Crowd Liability – the liability of the processing is equally dis-
tributed among all query participants –. The shift of responsibility
from a unique data controller (in the GDPR sense) to the crowd
is a salient feature of Edgelet computing. These properties pro-
vide tangible guarantees to both Data Contributors (individuals
supplying the data) and Data Processors (people whose personal
device performs the processing), but also to the beneficiaries of
the query results.

This research work is being validated in the field through
the DomYcile project [2]: 8,000 elderly people receiving home
care in the French Yvelines district are equipped with a secure
box (see Figure 1.b) where their medical records are stored and
processed (local queries today, clustering algorithms crossing the
data of several patients tomorrow); currently, the boxes are not
connected to the Internet for subscription cost and acceptability
reasons, but are connected opportunistically by caregivers during
their visits.
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Figure 1: Instances of Trusted Execution Environments.

Today, we aim at enlarging the use cases targeted by Edgelet
computing, considering that the solutions proposed in [14] ap-
ply whenever decentralized computations satisfying Resiliency,
Validity, and Crowd Liability need to be performed among TEE-
enabled personal devices (edgelets) connected through "uncer-
tain" communications. OppNets are an extreme case of uncertain
communications in terms of latency and then fault presumption,
but uncertainty is inherent in any decentralized computation
over a crowd of personal devices, because devices can be discon-
nected at will, be temporarily out of reach, or simply fail. We
sketch below two promising use cases as motivating examples:
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Opportunistic polling: during events that welcome a large au-
dience (e.g., a conference, a museum, a concert, a match, a
protest), the participants using a TrustZone-based smartphone
could contribute with their data (e.g., their centers of interest,
nationality, age, etc.) to a global processing to improve the
user experience in real time (i.e., adapting the services to the
characteristics of the audience).

Data altruism: the Data Governance Act [3] fosters data sub-
jects to give consent to process their personal data for purposes
such as scientific research or public services improvement
(e.g., a health survey organized by Santé Publique France).
The Edgelet framework allows individuals to provide their
health data with strong guarantees of confidentiality, through
a secure box, a smartphone, or a PC, and to benefit from the
results obtained.

The goal of this demo paper is twofold. First, it exemplifies the
versatility of the approach by demonstrating the Edgelet com-
puting mechanisms running on different TEE-enabled devices
(from PC with SGX up to smart objects with TPM). Second, it
presents the internals of Edgelet computing and let the audience
play with important parameters related to resiliency and data
privacy and observe the outcome by themselves. A video of the
demonstration is available online1.

2 EDGELET COMPUTING FRAMEWORK
A lot of research work has been produced on the different areas
encompassed by Edgelet computing: Computing architectures:
from cloud, fog, edge computing to mobile edge [13], mobile
ad-hoc cloud computing [25] and cross-device federated machine
learning [7]; Private/Confidential computing: using homomorphic
encryption [8], secure multiparty computation [6], differential
privacy techniques [12] or TEEs (in the cloud [20], or at the edges
[9, 15]). To the best of our knowledge, none of the aforementioned
papers and surveys address the challenge raised by Edgelet com-
puting: how to perform complex and scalable distributed queries
on data scattered on multiple personal devices while ensuring fault
and disconnection tolerance?

In this section, we first recall from [14] the basics of Edgelet
execution strategies that can scale to a large number of partic-
ipants while providing privacy guarantees. Then, we present a
resilient execution strategy that handles device failures as well
as temporary disconnections, and produces accurate results.

2.1 Design of Edgelet Computation Plans
Contrary to participatory sensing or sensor networkswhich focus
on stream queries over elementary data, Edgelet computing aims
at handling rich data (e.g., healthcare folders, spending habits)
and complex processing (e.g., machine learning, data mining)
over edgelets data seen as a horizontal partitioning of a shared
database (i.e., edgelets data conform to a common schema). We
represent these computations in the form of a Query Execution
Plan (QEP), that is a directed graph where vertices materialize
the operators to be computed and edges represent the dataflow
among them. A secure assignment of these operators is then
essential to avoid any targeted attacks, but is not detailed here
for the sake of brevity.

The simplest form of a QEP is a tree with Data Contributors at
the leaves (one per edgelet contributing to the query with its data)
sending the requested data to a Snapshot Builder operator, the
1https://project.inria.fr/edgeletdemo
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Figure 2: Vertically and Horizontally partitioned QEP.

role of which is to collect a representative snapshot of cardinality
𝐶 (e.g., select tuples from 𝐶 = 2000 patients over 65 years old).
The Snapshot Builder then sends the representative snapshot to
a Computer operator which, in turn, computes the final result
and eventually delivers it to the Querier.

The Data Processors (here, the Snapshot Builder and the Com-
puter) can be decomposed into sub-operators assigned to different
edgelets (i.e., TEE-enabled devices) for performance or privacy
concerns. Indeed, although highly difficult to conduct and requir-
ing physical instrumentation, side-channel attacks compromising
data confidentiality cannot be totally ignored [24], placing the
TEE in a "sealed glass" mode [23] (the integrity guarantee is
preserved, but not the confidentiality). This decomposition can
help minimizing the amount of data exposed at each edgelet by
horizontally partitioning the dataset. This can also preclude the
concomitant exposure, in the same edgelet, of data items that
become sensitive when combined (e.g., a quasi-identifier) by ver-
tically partitioning the dataset. This can finally help minimizing
the workload (e.g., when energy consumption matters) or exploit
the inherent Edgelet computing parallelism. A Computing Com-
biner operator must then be added in the QEP to combine the
outputs of all sub-operators.

Figure 2 presents the QEP for an example query using hori-
zontal partitioning (Data Contributors are assigned to Snapshot
Builders, e.g., by hashing their public key) and vertical partition-
ing (each Computer manages a single statistic, e.g., Age, BMI).

2.2 Edgelet Query Execution
During the execution of a QEP, each edgelet acting as a Data
Processor is a potential Single Point of Failure, either because it
really fails or because of a temporary disconnection.

To solve this problem, we explored in [14] two resiliency strate-
gies, namely Backup and Overcollection, which both enable the
execution of a query while respecting the resiliency, validity and
crowd liability properties introduced earlier. These two strate-
gies differ on complexity, performance and on the way privacy is
enforced, making each strategy best adapted to different contexts
(see [14] for a complete taxonomy). In this demonstration, we
focus on the Overcollection strategy which is best adapted to any
use case where performance matters and approximate results are
acceptable (e.g., statistics, machine learning processes).

We illustrate the Overcollection principle by considering a
query over a sample dataset (e.g., 𝐶 individuals with age > 65)
where Data Processors (i.e., Snapshot Builder and Computers)
execute distributive operators. Instead of executing the operators
on single edgelets, we distribute (using hashing) its execution
over 𝑛 +𝑚 edgelets where each one processes a partition of the
original dataset, with 𝑛 the minimum number of partitions to
be collected and𝑚 the overcollection parameter (see Figure 3).
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Figure 3: Overcollection for the QEP of Figure 2.

The validity is then trivially preserved as long as (1) each of the
𝑛 +𝑚 partitions is representative and has a cardinality 𝐶/𝑛, and
(2) less than m partitions are lost. Note that we need to add to the
Computing Combiner an Active Backup, i.e., a replicated instance
running in parallel with it, in order to handle its potential failure.

Many data-intensive queries of interest are distributive by na-
ture and can accommodate Overcollection. This is also the case
of general interest Machine Learning (ML) algorithms. However,
ML algorithms are often iterative and require to exchange partial
results computed over different data partitions. A strict valid-
ity between the different iterations would require that a valid
snapshot is processed at each iteration, and that the same valid
snapshot (same partitions) is kept during the subsequent itera-
tions, which is not easily ensured due to various message loss
at each iteration. Fortunately, strict validity is not a prerequisite
for these algorithms, and resampling at each iteration sometimes
even produces better accuracy (as in Mini-batch K-Means [21]).

The method for executing an iterative algorithm A (e.g., K-
Means [11]) in the Edgelet context is the following: each edgelet
implementing a Computer iterates on (1) a local convergence
phase where it computesA on its local partition, improving its lo-
cal knowledge (e.g., its centroids), and broadcasts this knowledge
to all others Computers, and (2) a synchronization phase where
it receives the knowledge of the other Computers it has heard of
and integrates them in its own knowledge (e.g., the barycenter for
each centroid). Right before the query deadline, the knowledge
is sent to the Computing Combiner which combines all received
knowledges and sends the final result to the Querier. We enforce
the progression of the algorithm on all edgelets thanks to a Heart-
beat, that is each iteration is cadenced by a clock, whatever the
local state of the processing, i.e., the Computers move to the next
iteration even if few or no messages were received (failures or
disconnections).

3 DEMONSTRATION
3.1 Demonstration Platform
The first objective of this demonstration is to present the computa-
tional mechanisms of the Edgelet framework using TEE-enabled
devices ranging from high-end device (PC) to low-end device
(home box). Therefore, we deploy the following hardware:

• PC (Intel SGX). A laptop with an Intel Core i5-9400H
2.5GHz 4 Cores with SGX 1-FLC runs secure enclaves in
an Ubuntu Linux 20.04 environment. The code is writ-
ten on top of Open Enclave [5], an SDK for developing
enclave applications in C/C++. Open Enclave provides
support for Intel SGX as well as preview support for ARM
TrustZone, thus aiming to generalize the development of
enclave applications across TEEs.

• Home boxes (TPM). These secure boxes (see Figure 1.b,
identical to those deployed in the field by the DomYcile
project [2], incorporate a STM32F417 microcontroller. The
latter is connected to a 𝜇-SD card hosting the owner’s
raw data and to a tamper-proof Trusted Platform Module
(TPM). This TPM secures the cryptographic keys and guar-
antees, during the secure boot, that the embedded code
has not been tampered with.

The second objective is to present the internal aspects of the
solution, we thus develop the following software: (1) a GUI im-
plemented in Dash Python that allows interactive configuration
and visualization of Edgelet queries; (2) an Edgelet manager that
orchestrates executions and communications between simulated
and real edgelets (PC and home boxes); (3) a web client accessi-
ble to attendees’ smartphones via a QR code allowing them to
visualize the processed data and interact in real-time with the
execution.

3.2 Demonstration Scenario
In this demonstration, we take the motivating example presented
in the introduction. Santé Publique France (Querier) wants to
perform a set of queries on population health data to improve
the quality of its services. Some individuals are equipped with a
PC, others with a secure home box, but all are interconnected by
uncertain communications. The scenario consists of two interac-
tive parts related to the configuration and execution of Edgelet
computations. In the first part, the attendees will understand
the impact of privacy and resiliency parameters on the QEPs. In
the second part, they will follow the execution in real time and
visualize the results obtained. These two parts are represented
on Figure 4.

Part 1: QEP Configuration. The attendees are first invited to
select a query among the 2 proposed ones: (i) a Grouping Sets
query [4] which allowsmultiple Group-By clauses to be evaluated
within a single SQL query (e.g., to cross multiple statistics over
the same data sample); or (ii) a K-Means [11] followed by a Group
By on the resulting clusters (e.g., to identify which characteristics
most influence the dependency level of an elderly person). Then,
following their intuition, the attendees can try to improve the pri-
vacy of the QEP of the selected query to reduce data exposure in
case of TEEs compromise. To do so, they can adjust the horizontal
and vertical partitioning parameters presented in Section 2.1, by
specifying the maximum number of raw data per edgelet and
selecting the attribute pairs to be separated. Finally, the attendees
can vary the failure probability value of the scenario and observe
automatic changes in the execution plan to keep it resilient.
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Part 2: Execution of an Edgelet computation. After the at-
tendees have configured the query as desired, we proceed to its
real-time execution on the heterogeneous personal devices avail-
able for the demonstration (concrete edgelets), the rest of the
operators being associated to a configurable number of simulated
edgelets to attest scalability. The demonstration platform allows
the attendees to visualize, step by step, the query execution. Ini-
tially, we launch the collection phase where Snapshot Builders
receive contributions from thousands of simulated Data Con-
tributors and build representative snapshots. Next, the Edgelet
platform redistributes the data and launches the computation
phase with the corresponding Computers. At each step, the user
can interact with the execution using their own smartphone to
analyze the input and output data. At the end, the aggregated
data is transmitted to the Computing Combiners for the combi-
nation phase and the query is completed. In case of failures or
disconnections, the attendees will be able to directly identify the
concerned edgelets on the QEP and understand the impacts on
the execution. For example, we can intentionally power off some
concrete devices to generate a failure at will. In order to verify
the results, the attendees can take the same dataset used with
the distributed edgelets and run the processing centrally on the
demonstration platform.

3.3 Demonstration Results
The demonstration shows the internals of the Edgelet computing
framework applied to the fully decentralized context and illus-
trates its usage through execution scenarios on multiple personal
devices. It helps to answer the following questions:

Does Edgelet computing concretely make sense? The practi-
cal implementation on high-end and low-end personal devices
demonstrates both its applicability and versatility. It shows that
large-scale general-purpose computations can be performed over
devices while providing high-security guarantees. This opens up
important opportunities in terms of personal data management.

Can any form of computation be handled? Edgelet com-
puting leverages the TEE security to perform computations on
clear-text data (once decrypted locally). It can then combine
computation generality – demonstrated by our demonstration
queries – and scalability – demonstrated by the number of simu-
lated edgelets –, contrary to homomorphic encryption, secure
multiparty computation, or local differential privacy solutions.
Note that the Overcollection strategy only applies if the process-
ing is distributive; otherwise, the Backup strategy can be used
at the price of a higher complexity and lower performance (see
[14] for details).

Is privacy protected whatever the attack? While highly diffi-
cult to implement, side-channel attacks on TEEs could compro-
mise the confidentiality of the manipulated data. Edgelet com-
puting counter-measures are horizontal and vertical partitioning.
Through the demonstration, attendees will be able to visualize
the distribution of data among the edgelets and measure the
respective benefit of both types of partitioning. They will also
understand that only the results of the computations, i.e. the
aggregated data, are sent (encrypted) to the successor operators.

Can a query always proceed despite the failures? Providing
fault tolerance in a distributed context where messages are sent
among weakly connected personal devices is a real challenge,
either because they are down or because they are temporarily

unavailable (e.g., offline smartphones). The demonstration shows
that the Overcollection strategy can answer this: attendees will
be allowed to vary the failure context (e.g., disconnection proba-
bility) and see the impact on the overcollection degree as well as
the effects on the results accuracy with respect to the number of
heartbeats.
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