
D
RA

FT
20
22
–0

7–
14

13
:4
0:
42

Example-Driven Exploratory Analytics over Knowledge
Graphs

Matteo Lissandrini
matteo@cs.aau.dk
Aalborg University

Katja Hose
khose@cs.aau.dk
Aalborg University

Torben Bach Pedersen
tbp@cs.aau.dk

Aalborg University

ABSTRACT

Due to their expressive power, Knowledge Graphs (KGs) have
received increasing interest not only as means to structure and
integrate heterogeneous information but also as a native stor-
age format for large amounts of knowledge and statistical data.
Therefore, analytical queries over KG data, typically stored as
RDF, have become increasingly important. Yet, formulating such
queries represents a difficult task for users that are not familiar
with the query language (typically SPARQL) and the structure
of the dataset at hand. To overcome this limitation, we propose
Re2xOLAP: the first comprehensive interactive approach that
allows to reverse-engineer and refine RDF exploratory OLAP
queries over KGs containing statistical data. Thus, Re2xOLAP en-
ables to perform KG exploratory analytics without requiring the
user to write any query at all. We achieve this goal by first reverse-
engineering analytical SPARQL queries from a small set of user-
provided examples and then, given the reverse-engineered query,
we propose intuitive and explainable exploratory query refine-
ments to iteratively help the user obtain the desired informa-
tion. Our experiments on real-world large-scale KGs show that
Re2xOLAP can efficiently reverse-engineer analytical SPARQL
queries solely based on a small set of input examples. Addition-
ally, we demonstrate the expressive power of our interactive
refinement methods by showing that Re2xOLAP allows users to
navigate hundreds of thousands of different exploration paths
with just a few interactions.

1 INTRODUCTION

Knowledge Graphs (KGs) are nowadays already in widespread
use because of their ability to represent entities and their rela-
tionships in many domains [38, 50]. Given the expressiveness of
the model, an increasingly large body of statistical data is also
stored and accessed through KGs within companies [47, 50] and
as Linked Open Data on the Web [5], e.g., Open Government
Data [11] or recent COVID-19 data1. In this context, statistical
data within a KG form a heterogeneous network of numerical
observations, entities, and relationships among them (Figure 1).
Given the importance of KGs, typically stored in RDF [43], there
is a need to support advanced analytics to extract relevant in-
sights [1, 4, 6, 11, 22, 33, 34]. Analytical queries allow analyzing
numerical information (observations such as the volume of immi-
gration flows or daily contagions) along well-defined dimensions,
e.g., the Time and Place dimension, to provide aggregate statis-
tics, for example, results aggregated by month or region. Yet,
expressing such analytical queries requires a significant level of
expertise in the data model, the query language, and the content

1https://op.europa.eu/en/web/eudatathon/covid-19-linked-data

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the
26th International Conference on Extending Database Technology (EDBT), 28th
March-31st March, 2023, ISBN 978-3-89318-088-2 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

403Num_applicants

“18-34”

Age_range

“October 2014”

Ref
_P

er
iod

In_year
“2014”

Country_Origin
“Syria”

“Asia”
In_Continent

“Germany”

“Europe”
In_Continent

Country_Destination

“F”

Sex

IRIs for dimension members

IRIs for observations

Dimension Predicates 𝒫D

Level Attributes 𝒫A (e.g., hasLabel)

Measure Predicates 𝒫M

iri1

iri2

iri4

iri5

iri6

iri7
iri8

iri9

iri0

Figure 1: Portion of an RDF graph describing statistical

data.

of the KG itself; expertise that is only very rarely unified within
a single person. Consider the following example.
Running example. Alex is a journalist writing an article on im-
migration flows inspecting “Requests for Asylum” applications
published as a statistical KG – a fragment is depicted in Figure 1.
First, Alex tries to get an initial overview of the data, e.g., by
examining how many people requested asylum to EU countries
and from which continent. This requires formulating an initial
query providing aggregate values for all combinations of conti-
nents of origin and countries of destination (Figure 2). Then, Alex
would like to refine the query and investigate the data about Ger-
many more closely and finally to identify countries with similar
volumes of asylum requests. This requires adding appropriate
filtering conditions to the initial query to obtain new refined
queries. Finally, upon inspection of the initial results, Alex would
like to look into particular details and aspects along dimensions,
such as variations between continents of origin or age groups.
This entails refining the query once more by expanding the set
of attributes and adapting the aggregation levels.

As we see, a typical workflow requires formulating complex
queries, inspecting their results, and providing appropriate re-
finements to obtain the required insights. These are cumbersome
tasks even for expert users. For instance, in the first step, Alex
expects the desired result to contain tuples relating to entities
like Germany and Asia. Yet, while searching for such entities
could be relatively easy, formulating an appropriate analytical
query requires deep knowledge about the structure of the data,
e.g., which sequence of triples connects the number of applicants
to the continent of origin and which attributes can be used to add
further filtering conditions. Here, we show how we allow users
like Alex to simply provide the entities of interest, e.g., Germany,
to bootstrap their analysis and directly obtain suggestions of
candidate queries.

A common way to help users explore complex datasets is to
develop algorithms and tools that synthesize queries based on
a set of (partial) input examples [29, 30, 34], which can then be

Series ISSN: 2367-2005 105 10.48786/edbt.2023.09

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2023.09

D
RA

FT
20
22
–0

7–
14

13
:4
0:
42

SELECT ?origin ?dest SUM(?obsValue) WHERE {
?obs <Country_Origin> / <In_Continent> ?origin .
?obs <Country_Destination> ?dest .
?obs <Num_Applicants> ?obsValue .

} GROUP BY ?origin ?dest

Figure 2: SPARQLquery to obtain aggregate per continent.

interactively refined in a sequence of consecutive steps. In such
scenarios, domain experts commonly explore a dataset by search-
ing for entities of interest, let the system identify appropriate
queries to retrieve relevant information, and then interactively
retrieve more information for those entities and similar ones [30–
32, 36, 48]. Yet, entity exploration approaches do not support
analytical queries. While the literature proposes approaches for
analytical exploration in relational databases [41], none of them
is applicable to KGs. The main reason is that KGs are character-
ized by heterogeneous structures composed of nodes and edges
instead of tables with well-defined relational schemas; these char-
acteristics already render reverse engineering of arbitrary (non-
analytical) queries computationally hard [8]. The alternative of
transforming KGs into the relational model and trying to syn-
thesize analytical queries there is not viable either, because it
incurs the extra cost and challenge of mapping and transform-
ing data to the relational model and, more importantly, forfeits
the advantages of the graph model, such as a flexible schema,
easy discoverability and integration, the possibility to perform
reasoning and to understand the context of the data.

Therefore, in this paper, we propose Re2xOLAP, which stands
for Reverse-engineering and Refining Exploratory OLAP. This
is the first approach to generate complex exploratory analytical
queries and query refinements for statistical data within a KG.
In summary, this paper makes the following contributions:
• The first formalization of the exemplar query problem for
example-driven exploratory analytics over KGs.

• Re2xOLAP, an end-to-end approach comprising a novel al-
gorithm, ReOLAP, to synthesize analytical SPARQL queries
from user examples and ExRef a suite of example-driven query
refinement methods for exploratory workflows.

• A fully functional Re2xOLAP system that operates on stan-
dard SPARQL interfaces (with non-specialized RDF stores) and
implements optimizations for core operations.

• A comprehensive experimental evaluation on real-world
datasets, which shows that Re2xOLAP efficiently reverse-
engineers queries and guides the user through thousands of
exploratory paths in a few seconds, even on large-scale statis-
tical KGs.

This paper is structured as follows. First, Section 2 discusses re-
lated work. Then Section 3 formalizes the notion of statistical KGs
and Section 4 formalizes example-driven analytical exploration
in this context. Subsequently, Section 5 presents our ReOLAP
method for synthesizing analytical SPARQL queries and Section 6
presents the query refinement methods introduced in Re2xOLAP.
Finally, Section 7 presents the experimental evaluation and Sec-
tion 8 concludes the paper with an outlook to future work.

2 RELATEDWORK

In the following, we discuss existing approaches to support data
exploration through analytical queries, i.e., On-Line Analytical

Processing (OLAP) queries [25], and discuss their limitations in
addressing exploratory analytics for statistical KGs.

Analytics for KGs. Supporting advanced analytics for KGs has
now received attention for a number of years [1, 4, 6, 7, 55].
This is also motivated by increasing interest from public and
private organizations to represent business data in specialized
KGs [17, 38, 47, 50]. As a result, there have been proposals
for standardized RDF vocabularies that allow describing sta-
tistical data [5]. The most complete is the QB4OLAP specifi-
cation, a vocabulary for defining multi-dimensional (MD) data
cubes on RDF [10, 11], which has also been extended for spatial
data [19, 20]. Also, approaches exist to automatically enrich KGs
with QB4OLAP annotations [56] and infer also dimension hierar-
chies [14]. These vocabularies allow specifyingwhat is the subject
of an observation (the fact), which measures are associated with
it, its dimensions, and their hierarchies. The above corpus of work
has hence focused on the definition of multi-dimensional data
cubes that could be queried with standard SPARQL. Other ap-
proaches allow to specify analytical operators on KGs by means
of “materialized views” and aggregations [4, 55] and allow OLAP
query optimization on RDF data cubes [13]. Such views are them-
selves expressed in RDF, hence existing methods can be adopted
to query these views as graphs. Finally, a different proposal al-
lows for modelling the structure of a social network within a
multi-dimensional space [2]. Yet, this model is not designed for
KGs and cannot be used to produce OLAP queries over statis-
tical KGs, which is the goal of Re2xOLAP. Therefore, despite
the growing need for exploratory analytics on KGs [33, 34], in
all the above cases, the user is required to be familiar with the
contents of the data and with the (complex) query language. In
this work instead, we are able to lift these requirements by allowing

automatic query synthesis and refinement from examples.

Different works have focused on helping users understand the
content of a graph by extracting summaries and interesting ag-
gregates. To this end, such approaches distill recurring structures
in order to produce summary graphs [28, 54, 58]. For instance,
graph summarization supports data understanding by extracting
recurrent structures describing how different entities are con-
nected [18, 54]. Other works, instead, select different aggregation
queries that describe specific entity types and are judged inter-
esting because they present some peculiar characteristics (e.g.,
some skew) [6, 7]. These systems are able to extract high-level
structural information from the data and to propose some ana-
lytical results profiling the numerical contents of an RDF graph.
Nonetheless, these systems do not take into consideration the user’s

information need and do not directly support the task of reverse
engineering and interactively refining complex analytical queries,
as our approach does.

Exploratory Search for RDF Data. Several approaches allow
exploring KGs by proposing graphical user interfaces for as-
sisting the user in formulating simple, non-analytical, SPARQL
queries [8, 9, 12]. These methods are designed to help users with
a clear information need in writing (relatively simple) queries
about specific entities. Recent advances have proposed systems
able to accept keyword-query search over RDF data [9], as well as
by-example reverse engineering of SPARQL queries from exam-
ples [8, 35]. In general, exemplar queries have proven effective for
exploratory search on graphs [30, 31] and SPARQLByE [8] is the
state-of-the-art method for reverse engineering SPARQL queries
from examples. Nonetheless, we note that these approaches, and
approaches for keyword search in general, can only help users

106

D
RA

FT
20
22
–0

7–
14

13
:4
0:
42

Table 1: Comparison of Existing Related Approaches:

our method supports large KGs in RDF, provides queries

with aggregations, and supports interactive query refor-

mulation based on the (partial) user input.

Re2xOLAP SPARQLByE [8] Spade [6] REGAL [51]

RDF ✔ ✔ ✔

Large KGs ✔ ✔

Aggregations ✔ ✔ ✔

Reformulations ✔

User Input ✔ ✔ ✔

Partial Input ✔ ✔

find how specific nodes are connected. Thus, none of the proposed
systems is designed to support analytical queries, nor to provide
appropriate query refinements for analytical exploration, unlike
our approach.
Exploratory Analytics for Relational Data. Exploratory an-
alytics received much attention in the context of the relational
model [23]. Typical methods to perform complex analytics over
relational data are data warehouses and OLAP queries [24, 25, 40].
These usually require advanced expertise. Hence, different solu-
tions have been studied to facilitate the user in the exploratory
and analytical process [15, 26, 37, 45]. In particular, there ex-
ist approaches that help the user in discovering interesting in-
sights by suggesting particular visualizations or filters on the
data [57]. Different methods allow for guided data exploration

by proposing query selectors that identify interesting subsets of
the data based on clustering [48, 57]. These also provide specific
navigation of the dataset with operations similar to drill-down
queries [27], especially to identify outliers [46, 52] or subspaces
(views) in which tuples are different from the rest of the data-
base [49]. Other approaches search for outliers and unexpected
trends (e.g., rapid rise during a time period) [52]. Additionally,
many studies have also focused on exploiting examples to query
enterprise data lakes (usually CSV files) [3] and reverse engi-
neer SQL queries [39, 51, 53]. Among those, some approaches
allow reverse-engineering SQL queries with aggregation and
ranking [39, 51]. Yet, these approaches require the user to explic-
itly provide also the result of the aggregation, which is a strongly

limiting assumption.
Furthermore, all aforementioned approaches are designed for

the relational model only. Hence, they are not directly applicable

to the graph data model, where there is no tabular schema. More-
over, as more and more data is being integrated into knowledge
graphs [16, 38, 47], it becomes infeasible to load the data into a

relational database system to explore it using existing relational
tools. In practice, transferring KG data into a relational model for
exploratory analysis defies the current needs of many companies
and organizations to model their data as graphs [38, 47].
Research gap. In conclusion, as summarized in Table 1, ap-
proaches for KGs are currentlymissing for both the task of reverse
engineering analytical queries as well as for suggesting appro-
priate query refinements. Thus, we focus on reverse engineering
queries for KGs from partial exemplar answers avoiding the need
for transferring the data to a relational system. In this paper, we

target this gap and introduce Re2xOLAP, the first comprehensive

approach for supporting exploratory analytics for statistical KGs.

3 STATISTICAL KNOWLEDGE GRAPHS

KGs are usually stored in RDF [43]. An RDF graph is a set of
⟨s p o⟩ triples, meaning that the subject s has the property p

with object o as value. An RDF graph may contain International-
ized Resource Identifiers I (IRIs), typed or un-typed literals L
(constants), and blank nodes B (representing placeholders for
IRIs or literals).

Definition 3.1 (RDF Graph). An RDF graph is a labeled directed
graph 𝐺 = ⟨N , E, 𝜆⟩ with:
• N⊆I∪B∪L is the set of nodes, letN0 denote the nodes inN
having no outgoing edges, and let N>0 = N \ N0;
• E ⊆ N>0 × N is the set of directed edges;
• 𝜆 : N ∪E ↦→ I∪B∪L is a labeling function2 such that 𝜆 |𝑁 is
injective with 𝜆 |N0 : N0 ↦→ I∪B∪L, 𝜆 |N>0 : N>0 ↦→ I∪B
and 𝜆 |E :E↦→I.

Finally, P:{𝑝∈I|∃𝑒∈ E .𝜆 |E (𝑒)=𝑝} is the set of predicates for 𝐺 .

Thus, an RDF graph represents any factual data in the form of
linked statements (see Figure 1).
Statistical Knowledge Graphs. Let us discuss first how statisti-
cal data is represented within a KG. The multi-dimensional (MD)
model is used to describe a set of observational data (called obser-
vations) associated with numerical information called measures
(e.g., statistical information about the number of applicants) that
can be aggregated across a number of common dimensions (e.g.,
time and location) each characterized by a set of attributes called
levels (e.g., month and year for time, and country and continent
for location). This model is also called a Data Cube [25]. In a KG,
MD data can be described with the RDF Data Cube (QB) Vocabu-
lary [5] (a W3C standard) and its extensions [11]. Additionally,
multi-dimensional data can be extracted from a KG by specifying
an analytical schema [4] over it, which is a set of view definitions
over the graph to define observations, measures, and dimensions.

Therefore, a statistical KG is an RDF graph, also called an RDF

cube [13], containing a set of observation nodes O ⊆ N to which
the statistical data is attached (e.g., iri0 in Figure 1). Following
previous work [4–6], our only assumption on the structure of the

KG is that all relevant observations are instances of a predefined

RDF class (e.g., qb:Observation [5]) and we design the system to
automatically infer the MD components and structure. We note
that it is straightforward to obtain a statistical KG by creating
a (materialized) view over an existing KG, as we discuss in the
experimental section (Section 7). Our model of a statistical KG is
composed of the following. First, a set of measures (M) with the
respective predicates PM⊆P (e.g., Num applicants) that define
edges (⊂E) between observations (O) and numerical values (⊂L).
These values are those to be aggregated in analytical (OLAP)
queries (e.g., the value 403).

Then, a set of dimensions D across which the measure of each
observation can be aggregated, which are identified by edges
(ED⊂E) between observations (O) and other nodes (ND⊂N)
called dimension members (e.g., iri5 representing Syria). These
edges are labeled with appropriate dimension predicates PD⊆P
(e.g, Country of Origin). Each dimension member can also be
linked to other members at a coarser or finer degree of specificity
(e.g., from iri5 Syria to iri6 Asia). Thus, we also distinguish the
case when two members reside at different levels in the hierarchy
of a dimension (e.g., country vs. continent of origin). Moreover,
level attributes PA⊆P are predicates that assign descriptive prop-
erties to each member (e.g., a label or a name).
Given the formalization above, it follows that for each obser-
vation 𝑜𝑏𝑠 ∈ O, there exists a set of dimension predicates
{𝑝1, ..., 𝑝𝑛} ⊆ PD (𝑛=|D|), such that we can link the observation
2Here 𝑓|𝑑 denotes the restriction of 𝑓 to its sub-domain 𝑑 .

107

D
RA

FT
20
22
–0

7–
14

13
:4
0:
42

node to the nodes of a corresponding member in each dimension
with a suitable set of edges, i.e., ∃𝑑𝑖∈I, 𝑒 :⟨𝑜𝑏𝑠, 𝑑𝑖 ⟩∈ E .𝜆 |E (𝑒) = 𝑝𝑖
(as in Figure 1).

Consider the sample RDF graph of Figure 1. Sex, Age Range,
Ref. Period, Country of Origin and Destination are attributes
identifying each a different dimension (fromD). Then Ref. Period
points to a hierarchy with lowest level Month and highest level
Year, similarly for the hierarchies for Origin and Destination
where the lower level is Country and the highest is Continent.
Entities like “Syria” and “October 2014” are dimension members
for levels Country of Origin and Ref. Period Month respectively,
while Num Applicants is the measure associated with each obser-
vation. Finally, a statistical KGmodeled as an RDF cube is queried
with SPARQL queries describing the connections between ob-
servations and dimension levels (as in Figure 2). In practice, a
SPARQL query is composed of triples where some of the s, p,
o positions are substituted with variables and are called basic
graph patterns (BGP).

4 FORMALIZING EXAMPLE-DRIVEN

EXPLORATORY ANALYTICS

Our first contribution is the formalization of example-driven an-
alytical exploration of statistical KGs and the identification of its
main steps and challenges (illustrated in Figure 3). For this rea-
son, we investigate two problems: query synthesis from examples
(Section 4.1) and interactive query refinement (Section 4.2).

In our system, the user provides as input one or more entities
(e.g., Germany) and obtains the analytical queries producing
output tuples involving those entities (e.g., aggregating volume
of requests across countries of destination or countries of origin,
as in the first interaction in Figure 3). The user will then select the
desired query to be executed and obtains a first set of results (e.g.,
summing up the number of applications with Germany as the
country of destination). This step of query synthesis is achieved
by reverse engineering an OLAP query Q. Subsequently, the user
asks for further query refinements. We propose three alternatives
for this phase: (i) producing results at a finer level by introducing
additional dimensions (Disaggregate operation), (ii) restricting
the output of Q to a subset by introducing range filters on the
measure values (Subset Results operation), and (iii) identifying
tuples with similar measure values (Similarity Search operation).
As shown later, the first operation corresponds to a drill-down
operator while the second and third operations correspond to a
dice operation in the OLAP model. Each operation can be applied
multiple times and in any order producing via simple interactions

queries of arbitrary complexity. Below, we provide the problem
formalization for each one.

4.1 Query Synthesis

In example-driven paradigms, the user presents examples of the
desired results instead of a query describing the conditions to be
satisfied by such results. The most common approach to support
this is to reverse engineer queries from example answers [30].

Definition 4.1 (REQ). (Reverse EngineeringQueries fromExam-
ples) Given a set of exemplar answersA𝐸 derived from a dataset
D, the task of reverse engineering queries requires to identify
the family of queries Q such that ∀Q ∈ Q, A𝐸 ⊑ A = Q(D),
where the symbol ⊑ represents an instance of a containment
relation andA=Q(D) is the set of answer obtained by execution
of Q over D.

Since the definition of the REQ task is general, the nature of
the set of queries Q to be obtained depends on both the type of
answers A and the adopted containment relation ⊑. Moreover,
depending on ⊑, the set A𝐸 can contain also partially incom-
plete answers [30]. In this work, we aim at reverse engineering

SPARQL OLAP queries over KGs. That is, we accept as input en-
tities and we support as output SPARQL queries of the form
SELECT...WHERE...GROUPBY with graph patterns (BGPs) spec-
ifying observation nodes (facts) and measure values to be ag-
gregated, and connecting them with members of a subset of the
dimensions (inferred from the input entities) that also appear in
the GROUP BY clause (as in Figure 2).

In accordance with the definition of an analytical schema [4],
we define the output of an OLAP query Q on an RDF graph 𝐺 in
the form of a set of answer tuplesQ(𝐺) = T . Each tuple 𝑡 ∈ T is of
the form 𝑡 :⟨𝑑1, ..., 𝑑𝑘 ,𝑚1, ...,𝑚 𝑗 ⟩, such that each 𝑑𝑖 , for 𝑖 ∈ [1, 𝑘],
is a member of some dimension 𝛿 , i.e., ∀ 𝑖 ∈ [1, 𝑘] ∃𝛿 ∈D, s.t.,
𝑑𝑖 ∈ I𝛿 . Also, we have𝑚1, ...,𝑚 𝑗∈R to be real values represent-
ing the results of the aggregations over measures𝑀1, ..., 𝑀 𝑗 ∈M.
Hence, with abuse of notation, we say that D(𝑡)={𝛿1, ..., 𝛿𝑘 } ⊆D
andM(𝑡)={𝜇1, ..., 𝜇 𝑗 } are the dimensions and the measures of
𝑡 . Similarly, we define D(T) and M(T) also for a set of tuples
T where all members have the same set of dimensions and mea-
sures. For instance, an output tuple from Figure 1 could be 𝑡 :⟨iri6,
iri2, 2500⟩, i.e., involving the node corresponding to “Asia” and
the year “2014” and assuming that 2500 is the result of some
aggregation across the measure values linked to those two nodes.

We do not expect the user to know the result of a specific
aggregation over an unfamiliar dataset, with the exception of
special instances (e.g., when the measure is some special number
like 0). Therefore, we reduce the amount of information required
from the user and accept example tuples without any numerical
value, i.e., where each example tuple 𝑡 has M(𝑡)=∅, e.g., 𝑡 :⟨iri6,
iri2⟩. This provides additional flexibility in exploratory settings.
Hence, in the following, we focus on reverse engineering queries
from exemplar answers where no measure information is provided

by the user, and we leave the study of more restrictive cases for
future work.

We also do not expect the user to specify an example tuple
with IRIs (e.g., the IRI for Germany), but instead to refer to some
literal value for their attributes (e.g., the label “Asia” or “2014”).
Hence, example tuples have the form 𝑡𝐸 :⟨𝑎1, ..., 𝑎𝑘 ⟩ where each
𝑎𝑖∈L is a literal value connected by a predicate 𝑝𝑖 to some dimen-
sion member 𝑑𝑖 . That is ∃𝛿∈D, such that 𝑑𝑖∈I𝛿 and ∃𝑝𝑖∈PA with
𝑒 :⟨𝑑𝑖 , 𝑎𝑖 ⟩∈ E, 𝜆 |E (𝑒)=𝑝𝑖 . We also say that the tuple 𝑡𝐸 :⟨𝑎1, ..., 𝑎𝑘 ⟩
is mapped to the tuple 𝑡 :⟨𝑑1, ..., 𝑑𝑘 ⟩ by 𝑝1, ..., 𝑝𝑘 and write 𝑡𝐸 |=𝑡 .
For instance, an example input tuple from Figure 1 could be
𝑡 :⟨“Asia”, “18-34”, “2014”⟩ and it can be mapped to the exemplar
tuple 𝑡 :⟨iri6,iri4,iri2⟩ by 𝑝1, 𝑝2, and 𝑝3 all set to the predicate
hasLabel. Hence, each IRI is the corresponding dimension mem-
bers for Origin, Age, and Ref. Period ∈D respectively.

Given this input format, the system is hence required to map
each input value 𝑎𝑖 to a matching dimension member 𝑑𝑖 . We
say that a tuple 𝑡 is subsumed by a tuple 𝑡 ′, and we write 𝑡⊑𝑡 ′,
iff D(𝑡) ⊆D(𝑡 ′),M(𝑡) ⊆M(𝑡 ′), and∀𝛿𝑖∈D(𝑡).𝛿𝑖 (𝑡)=𝛿𝑖 (𝑡 ′). By ex-
tension we also say that 𝑡𝐸 ⊑ 𝑡 ′ iff 𝑡𝐸 |= 𝑡 ∧ 𝑡 ⊑ 𝑡 ′. For instance, we
have that 𝑡𝐸 :⟨“Asia”, “2014”⟩|=𝑡 :⟨iri6,iri2⟩ and 𝑡⊑𝑡 ′:⟨iri6,iri4,iri2⟩.
Similarly, we say that a set of tuples T is subsumed by a set of
tuples T ′ if ∀𝑡∈T , ∃𝑡 ′ ∈ T ′, such that 𝑡⊑𝑡 ′, and we write T⊑T ′.

Based on these considerations, we define the following spe-
cialization of the REQ problem (Definition 4.1):

108

D
RA

FT
20
22
–0

7–
14

13
:4
0:
42

Example:
❬Germany❭

ReOLAP

Interpretations:
❬Country Destination❭
❬Country Origin❭

Disaggregate

Reformulations:
❬C.try Destination, Continent Origin❭

❬C.try Destination, Age❭

Similarity Search Subset Results . . .

1

2

✓ 1

2

✓

Execute

C. Dest. SUM AVG . . .

Germany 0.5M 3.1 . . .

C. Dest. SUM AVG . . .

Germany 0.5M 3.1 . . .

Sweden 0.2M 1.4

Query results:
Entities with similar values:

ReOLAP: Query Synthesis ExRef: Query Refinement

Figure 3: Re2xOLAP: example query synthesis and refinement steps, an interaction step is mapped to a pair of arrows.

Problem 1 (REQ for SPARQL OLAPqeries). Given a sta-

tistical knowledge graph G with a set of observations O and a set

of exemplar tuples T𝐸 as input. The problem of reverse engineer-

ing SPARQL analytical queries from examples requires to compute

the set of valid SPARQL OLAP queries Q over O such that ∀Q∈Q,
T𝐸⊑TQ=Q(𝐺) ∧∀𝑡∈TQ.M(𝑡)≠∅.

Since the set Q is usually large, it is common to enforce some sort
of minimality criteria on the obtained queries with the goal to not
overload the user [41, 53]. In our case, we enforce that for each
Q ∈ Q, it should hold that D(Q(𝐺)) =D(T𝐸), so that the reverse
engineered queries are limited to contain only dimensions that
are matched by some part of the user example.

Thus, in our problem, given the input 𝑡 :⟨“Asia”, “Germany”⟩,
the system would output the query in Figure 2, computing the
number of asylum requests for every continent of origin and
country of destination, as one of the valid output for the data
in Figure 1. Then, we present the interpretations to the user so
that they select the desired one. This corresponds to the Query
Synthesis part of the workflow in Figure 3. Thanks to this min-
imality constraint and the fact that input examples are usually
small given their exploratory nature, the number of resulting
queries is not very large, usually from 5 to 10 in our experiments.
Note that the user is free to expand to other dimensions in a
later refinement step (Section 4.2 below). Hence, we focus on
retrieving all such queries (ensuring completeness) and leave the
problem of ranking interpretations to future work.

4.2 Query Refinement

After the user has picked a query Q to retrieve an initial set of
results, the actual interactive exploratory phase starts. In this
phase, the user may either require to restrict the current result
set to just a few items that exhibit similar behavior, e.g., given the
input 𝑡 :⟨“Asia”, “Germany”⟩, identify only those other countries
of destination that have a similar amount of asylum requests, or
to expand the current results to include new information, e.g., dis-
aggregate the amount of requests across different years. The goal
of the system is to generate a set of relevant refinements for the
user to inspect and select among them those responding to their
needs (as in Figure 3). A refinement is obtained by updating the
query with filters to limit the resultset to a subset or introducing
new dimensions in order to aggregate or disaggregate measures
at different levels of granularity [25]. There are different ways in
which data (and the corresponding aggregates) can be projected
and filtered, e.g., returning only values where the country of des-
tination is Germany or only countries having an aggregate sum
between 0.5𝑀 and 1.0𝑀 ; in the OLAP terminology these filtering
operations are called slice and dice respectively [25]. While dis-
aggregating (or aggregating) values, i.e., moving between coarser
and finer granularity levels in a hierarchy, are referred to as the

drill-down (and roll-up) operations, e.g., drill-down the total sum
for an entire year in the separate sums for each month [25].

In the following, we present example-driven methods to au-
tomatically perform these different operations and some more
advanced ones for the Query Refinement phase of the workflow
(Figure 3). At its core, example-driven query refinements pro-
duce new queries providing a different perspective on the data at
hand while still describing the original user example (i.e., if Ger-
many appeared in the results of the initial query, all subsequent
refinements should still contain some tuples about Germany).

Problem 2 (Example-DrivenQuery Refinement). Given the

example tuples T𝐸 and the query Q over the statistical knowledge

graph𝐺 producing answer tuples T=Q(𝐺) s.t. T𝐸⊑T , provide a set
of example-driven refinement queries Q𝑟 , such that each Q𝑟 ∈Q𝑟
produces the resulting tuples T𝑟 =Q𝑟 (𝐺), for which it exists a subset
T ′⊂T s.t. T𝐸⊑T ′⊑T𝑟 .
According to the definition above, a refinement could be a query
for the same number of dimensions as the initial query Q but
limited to a subset of tuples, or it can introduce a new dimen-
sion. For example, given the query producing the total number
of applicants for all the countries of destination for a given year,
a refinement query would limit the result to only those countries
within the continent of the country appearing in the user example.
Since the number of possible refinements is particularly large,
we study a set of different refinement strategies that can pro-
duce filtering and disaggregation operations common of OLAP
workflows while being particularly suited for example-driven
exploration. In particular, we provide solutions for 3 refinement
operations (depicted in Figure 3). These operations are formalized
in Problems 2a-2c below.

Problem 2a (Example -Driven Disaggregate). Given the

example tuples T𝐸 and an OLAP query Q over the statistical knowl-

edge graph𝐺 producing tuples T=Q(𝐺) with T𝐸⊑T , identify a set
of refinement queries Q𝑟 , such that each Q𝑟 ∈Q𝑟 produces tuples
T𝑟=Q𝑟 (𝐺) with |D(T𝑟) |=|D(T)|+1∧T𝐸 ⊑ T𝑟 .

Problem 2b (Example-Driven Subset). Given the example

tuples T𝐸 and an OLAP query Q over the statistical knowledge

graph𝐺 producing tuples T=Q(𝐺) with T𝐸⊑T , provide the set of
subset-refining queries Q𝑟 , such that each Q𝑟 ∈Q𝑟 produces tuples
T𝑟=Q𝑟 (𝐺) with D(T) = D(T𝑟) ∧ T𝐸 ⊑ T𝑟 ∧ |T𝑟 | < |T |.

Problem 2c (Example-Driven Similarity Search). Given
the examples tuple T𝐸 and an OLAP query Q over the statisti-

cal knowledge graph 𝐺 producing tuples T=Q(𝐺) with T𝐸⊑T ,
and given the number 𝑘 , provide a set of similarity search queries

Q𝑟 , such that each Q𝑟 ∈Q𝑟 produces tuples T𝑟=Q𝑟 (𝐺) such that

|D(T𝑟) |=|D(T)| ∧T𝐸⊑T𝑟 and for each tuple 𝑡∈T𝐸 and for some

measure𝑚∈M(𝑡) it holds that the set T𝑟 contains the 𝑘 tuples that

are most similar to 𝑡 when compared to the value of M(𝑡) for some

similarity measure 𝜎 : T×T ↦→R.

109

D
RA

FT
20
22
–0

7–
14

13
:4
0:
42

Table 2: Resultset from the example ⟨“Germany”, “2014”⟩,
interpreting “Germany” as Country of Destination

Country of Destination Year SUM(# Applicants)

Germany 2014 8030
France 2014 5011
Italy 2014 1220
Austria 2014 120
.

Therefore, Problem 2a corresponds to a Drill-down operation,
adding a new dimension to a query obtained from examples that
were not mentioning it, while Problems 2b and 2c correspond to
Dice operations that return a smaller subset of results based on
the aggregate values of the measure.

5 REVERSE ENGINEERING QUERIES

Given the problem formulations presented above, we focus now
on the query synthesis phase. Following the by-example para-
digm, the user input is a tuple of dimension members the user is
interested in, e.g., ⟨Germany, 2014⟩3. The expected output is a
list of queries containing the required graph patterns linking the
members to the observations (this requires also traversing the
hierarchies) and including the grouping and aggregates appropri-
ate to the obtained aggregation level. Thus, we present ReOLAP,
a novel reverse engineering algorithm (Algorithm 1) to obtain
SPARQL OLAP queries from examples (Problem 1). During query
synthesis, the system needs to access the triplestore (e.g., through
a SPARQL endpoint) to search for matches of the user example
and how they are connected. Hence, to ensure efficient query
answering, our algorithm adopts an in-memory representation
of the high-level structure of the graph, called Virtual Schema

Graph. In the following, we first present an example of the in-
put and output of the algorithm, then we describe the steps of
the algorithm (Section 5.1), then we illustrate how the virtual
schema graph is built and employed (Section 5.2), and finally, we
discuss correctness, completeness, and computational cost of our
approach (Section 5.3).

Example. Assume a set of observations (e.g., Figure 1) and the
input example ⟨“Germany”, “2014”⟩. Algorithm 1 will produce
queries that: (1) contain only 2 dimensions, resulting from the
combination {Origin, Destination}×{Ref. Period} and (2) aggre-
gate dimensions Origin and Destination at level Country and
dimension Ref. Period at level Year. Hence, the system will gen-
erate exactly 2 queries: one aggregating across countries of des-
tination and years, and another across countries of origin and
years instead. For instance, the results of the former are of the
form presented in Table 2.

5.1 The ReOLAP Algorithm

To generate the queries, in Algorithm 1, first each component of
the tuple 𝑡𝐸 :⟨𝑎1, ..., 𝑎𝑘 ⟩ is interpreted as an attribute of an example
member of some unspecified dimension (e.g., “Germany” is the
attribute label for the dimension member node). Consequently,
each item in the input tuple is analyzed to identify to which
dimensions it might refer to (Lines 2-3). Note that a single element
could appear as a member in distinct dimensions (a country

3For ease of presentation, the remainder of this section focuses on the case for a
single example tuple. We also support the general case of multiple tuples and mixed
queries targeting both dimension members and names.

Algorithm 1 ReOLAP: OLAP Query Reverse Engineering
Input: Target RDF KG 𝐺

Input: Exemplar Tuple 𝑡 :⟨𝑎1, . . . , 𝑎𝑘 ⟩
Output: Candidate Queries Q

// Input is a single exemplar tuple with no measures
1: Dims←new Map()
2: for each 𝑎𝑖 ∈ D(𝑡) do

// Retrieve the dimension members that 𝑎𝑖 may describe
3: 𝐷𝑖 ←matches(𝑎𝑖)

// Retrieve dimensions corresponding to each member
4: for each 𝑑 ∈ 𝐷𝑖 do

// The same entity can be member of multiple dimensions
5: Dims[𝑎𝑖] ←Dims[𝑎𝑖] ∪ {⟨𝑑, 𝛿⟩ | 𝛿∈D∧𝑑∈𝛿}
6: end for

7: end for

8: Q ← ∅
// Combine all possible interpretations

9: for each ⟨⟨𝑑1, 𝛿1 ⟩, ..., ⟨𝑑𝑘 , 𝛿𝑘 ⟩⟩∈Dims[𝑎1] × . . . ×Dims[𝑎𝑘]
do

// Build the corresponding query
10: Q ← Q ∪ {getQuery(PM, ⟨⟨𝑑1, 𝛿1⟩ . . . ⟨𝑑𝑘 , 𝛿𝑘 ⟩⟩)}
11: end for

12: return Q

appears both as Country of Destination and Country of Origin).
To obtain the match, we search in the database, i.e., we query the
triplestore, for any entity matching the provided value (that is
by keyword matching over labels). Then we retrieve to which
predicates the retrieved entities are connected, and checkwhether
any of those predicates is a dimension predicate 𝑝 ∈ PD. In this
way, each component 𝑎𝑖 in the example tuple is associated with
a set of possible interpretations (Lines 4–5). Then, a query is
generated (with the method getQuery) for each combination of
the interpretations retrieved in the previous step (Lines 6–9).

The getQuery function produces a candidate SPARQL analyt-
ical query for a given combination of dimension members. When
generating the queries, the dimensions that are not mentioned
by the user will not appear in the query, following the minimal-
ity criteria of ReOLAP. For measures instead, we will retrieve
results for all aggregation functions (max, min, avg, sum) over
all available measures (in our example only Num Applicants).
The resulting query has the form SELECT...WHERE...GROUP BY.
The core of the query is in the corresponding WHERE statement.
For each dimension member (𝑑𝑖 ∈ {𝑑1,𝑑𝑘 }), the WHERE clause
will contain a distinct set of Basic Graph Patterns (BGP) to pro-
duce the triple pattern of the path from the observation variable
(?obs) to the desired member 𝑑𝑖 in the selected dimension 𝛿𝑖 . The
variables corresponding to the level members for each dimension
(𝑣𝑎𝑟𝑠𝛿) also appear in the GROUP BY clause. These variables can
also appear in filter conditions in the WHERE clause to restrict the
query output.

Presenting Query Interpretations. Once we obtain the candi-
date queries, we aim to provide some natural language descrip-
tion of them to the user by exploiting existing domain-specific
annotations in the database itself. In particular, in RDF, annota-
tions on the schema of the data reside alongside the data itself.
Therefore, we retrieve declarations of types and classes as well
as labels on predicates and IRIs and use them to annotate the
results. For instance, we can find in the graph that the predicate
connecting the observation to the node for Germany is labelled
as “Country of Destination”, while another edge pointing to the

110

D
RA

FT
20
22
–0

7–
14

13
:4
0:
42

IRI for Syria has a predicate with the label “Country of Origin”.
This allows us to translate the resulting queries into some de-
scriptive text to facilitate their interpretation. Hence, we present
the query to the user by using classic templating techniques like
in Sparklis [12], for example, a query can be presented as: Return
SUM(Num Applicants) grouped by “Country of Destination” and
“Country Of Origin / Continent”.

5.2 Virtual Schema Graph optimization

To efficiently support the query reverse engineering task (lines
2-3 in Algorithm 1 and method getQuery), we employ an in-
memory representation of the organization of hierarchies for each
dimension (see Figure 4). This allows us to reduce the need for
querying the database. This structure, called the Virtual Schema
Graph (also virtual graph for short), is a directed labelled graph
that represents how the hierarchies of members are organized
within each dimension and it is built automatically during the
system bootstrap.
Definition. In practice, a dimension 𝛿 (e.g., Ref. Period) can be
composed of one or more hierarchiesH of dimension members,
each hierarchy 𝐻∈H is composed by one or more levels ℓ∈L𝐻
(e.g., the Month level, and the Year level) and each level contains
the dimension members (e.g., the Year level contains 2014 as
dimension member, while the lowerMonth level contains, among
others, October 2014 as dimension member).

In the virtual graph, we do not represent every single member
(e.g., each year) but only the corresponding level (e.g., just the
concept of Year). This design allows the virtual graph to be orders

of magnitudes smaller than the underlying graph.Hence, as shown
in Figure 4, the virtual graph has one node 𝑣ℓ for each hierarchy
level ℓ ∈ L𝐻 for each hierarchy 𝐻∈H𝐷 for each dimension 𝐷∈D
, plus a default node 𝑣𝑜 representing the base observation level,
i.e., |𝑉 |≈|L|+1 where L =

⋃D
𝐷

⋃H𝐷

𝐻
L𝐻 . In this graph then, given

levels ℓ1 and ℓ2, we insert an edge 𝑒1,2 : 𝑣ℓ1 ↦→𝑣ℓ2 if ∃𝐻 ∈ H
s.t. ℓ1, ℓ2 ∈ 𝐻 and the graph contains a predicate 𝑝 ∈ PD that
connects a member of ℓ1 to a member of ℓ2, and we assign to 𝑒
the corresponding label 𝑝 (e.g., the In Continent predicate). Then
all nodes 𝑣ℓ𝑖 that have no incoming edges are the base levels
and are connected directly to the observation node 𝑣𝑜 with an
edge 𝑒𝑜,𝑖 :𝑣𝑜 ↦→𝑣ℓ𝑖 with the predicate that connects instances of
the observations to the corresponding base level members (e.g.,
the Country Origin predicate).
Construction and use. The virtual graph is built iteratively and
automatically. The algorithm requires as input only access to the
triplestore storing the graph 𝐺 and the class identifying the set
of observation nodes (e.g., qb:Observation, but different classes
can also be provided or automatically constructed [7]). The sys-
tem enumerates predicates linked to a set of observation nodes
pointing to other non-literal nodes, these nodes are considered
dimension members and the incident predicates are considered
dimension predicates. Then, recursively, the process builds the
hierarchies by enumerating predicates linking dimension mem-
bers to further non-literal nodes, which are considered dimension
members in higher hierarchy levels. Thus, this requires a bidi-
rectional depth-first traversal (to handle cycles) of the graph
starting from observation nodes. The virtual graph is easily stored

in memory since its size (number of edges) is bounded by |L|2. This
allows reducing the number of queries to execute against the
triplestore to extract information about the dimensions and their
hierarchies. That is, when constructing a SPARQL query, the
system produces the BGPs required in the body of the query by

Age_r
ange

Re
f_P
er
iod

In_year

Country_Origin
In_Continent

In_Co
ntinen

t

Country_Destination

Sex

H1

H2

H3

H4
H5

Month
Level

Year
Level

Age
Level

Country
Level

Country
Level

Continent
Level

Sex
Level

Figure 4: VirtualGraph forRequests ofAsylumdata

depth-first traversals of this graph and by keeping track of the
labels of edges and nodes instead of querying the triplestore to
identify connected predicates.

5.3 Analysis of the Approach

Correctness and Completeness. As mentioned earlier, the Re-
OLAP procedure searches for all dimension members matching
the examples in the query separately (e.g., first searches for all
the interpretations of “Europe”, then for all interpretations of
“2014”), then builds all the possible combinations of interpreta-
tions, this guarantees the completeness of the process. Additionally,
each interpretation is checked to return at least one observa-
tion by running it against the triplestore. This guarantees the
correctness of the results. Therefore, our algorithm produces all
possible queries matching the user input and guarantees that
all of them are valid and return a non-empty result set when
executed against the given graph.
Computational cost. Previous studies demonstrate that the
complexity of reverse engineering SPARQL queries containing
simple triple patterns (i.e., without aggregates and grouping) goes
from P-time to co-NP [8], that is because for general queries there
is no prior information on which predicates can be combined
and in which sequence.

In our approach, despite the complexity of the triple patterns
and the use of group-by operators we need to employ, we are
able to reduce the search space by exploiting the structure of the

virtual graph and, therefore, we drastically reduce the overall com-

putational cost. In particular, in Algorithm 1, the matches for
the examples are combined by navigating the virtual graph and
not the complete graph. Hence, for each member of the user
example, running time grows proportionally to the number of di-

mensions, the number of hierarchies, and the cardinality of their

members, but time complexity is independent of the actual number

of observations.
For instance, in the case of the asylum application data in our

example, the search algorithm should look for a match among
the 373 distinct dimension members (see Table 3 in Section 7)
despite the dataset contains 15M observations. Then, while the
number interpretations is |ND | |D(𝑡) | , the number of queries can
be reverse engineered is |L| |D(𝑡) | , i.e., it grows with the existing
dimension levels (there are 7 in Figure 4, and actually 9 in the
complete asylum application data, since some hierarchies have
not been depicted for simplicity). This means that, theoretically,
for a given database, the number of queries that can be obtained

111

D
RA

FT
20
22
–0

7–
14

13
:4
0:
42

Algorithm 2 Re2xOLAP: Reverse-engineering and Refinement
Input: Target RDF KG 𝐺

Input: Exemplar tuple 𝑡 :⟨𝑎1, . . . , 𝑎𝑘 ⟩
// Retrieve candidate queries from exemplar tuple

1: Q ←ReOLAP(𝐺, 𝑡)
// Present the queries to the user, the user picks one

2: Q←Show(Q)
// Query refinement phase

3: ExRef← {Dis, TopK, Perc, Sim}
4: while true do

// Execute the query
5: T ← Q(𝐺)

// Present the query results and the refinement methods
6: R←Show(T , ExRef)

// The user selects a refinement method R ∈ ExRef
7: if R = ⊥ then

// The user can stop at any time
8: break;
9: end if

// Apply R to obtain refinements for Q given T
10: Q ← R(Q,T)

// Present the refined queries, the user picks one
11: Q←Show(Q)
12: end while

grows exponentially in the number of input examples, e.g., for
the input ⟨“Europe”, “2014”⟩ this is 3732 interpretations of di-
mension members and 102 possible queries. Similar proportions
usually hold for other datasets as shown in Table 3. Nonetheless,
the actual search space is limited in practice. First, the number of
user-provided examples is usually small (<10). Moreover, in real-
world scenarios, the number of matched dimension members
is much smaller than |ND |, since the attributes of the dimen-
sion members are usually well-differentiated, and then each user
example usually matches only very few of them.

6 EXAMPLE-DRIVEN QUERY REFINEMENT

In the previous section, we discussed how the user can start from
a tuple of entities of interest and obtain a list of interpretations
(i.e., queries). After the user has selected a query Q from the
output Q of the query synthesis phase above and obtained its
results T , the query refinement phase of Re2xOLAP produces
exploratory query refinements. Figure 3 and Algorithm 2 show
how these two phases are linked. In the interactive refinement
phase (Lines 3-12 of Algorithm 2), the system presents to the
user the current query Q and its results T , and the user can
select one refinement strategy among those we offer. Thus, to
support the query refinement phase, we devise ExRef, a suite
of methods to address Problem 2a, 2b, and 2c. Thus, we enable
three independent refinement operations: disaggregate, subset,
and find similar (see example in Figure 3). The user can then
decide which operation to execute, then obtains the new (refined)
result, and continues the exploration with a new refinement (or
backtracks to a previous query to start a different exploration
path). Therefore, a user can move from very simple queries to
more complex ones without the need to write any query.

Solution criteria. Following the example-driven exploration
paradigm [30], we produce refinement queries whose result sets
still contain at least some tuple matching the original user ex-
ample. Moreover our preliminary study (Section 7.2) lead us to

identify two complementary main criteria to guide the design of

our solutions: 1) simplicity and 2) explainability. When explor-
ing unfamiliar data, the system is going to present results for
which the user cannot immediately assess the correctness and for
which they may have no prior expectation. Therefore, query re-
finements proposed by the system should introduce the minimal
amount of variation possible in the conditions applied (simplicity)
and the reasoning behind each new condition that is added (or
removed) should be easily explainable to the user (explainability).
In the following, we show concrete implementations for each
operation based on these criteria.

6.1 Example-Driven Disagreggate

Problem 2a requires to provide refinements that disaggregate
the current results over an additional dimension (or at a more
detailed level within the current dimension). For this refinement
method (Dis), we exploit once more the virtual graph (Section 5)
and enumerate all available dimensions and levels not yet in-
cluded in the query to generate a list of alternative queries. In
practice, to produce valid triple patterns connecting observa-
tions to level members, we enumerate all paths starting from the
root node (𝑣𝑜), each path identifies a sequence of predicates to
reach a specific level in a specific hierarchy for a given dimension
(e.g., the sequence Country Origin followed by In Continent to
reach the continent level). By checking each path against those
already described by the query, the system can discard invalid
refinements (i.e., those that are already included or that would
aggregate at a higher level instead of disaggregating). Thanks to
the virtual graph, this operation does not need to query the triple
store and is performed very efficiently, with complexity linear in
the number of levels over all dimensions, i.e., O(|L|).

6.2 Example-Driven Subset

During the exploration, it is common that for a given query Q
the cardinality of its results T is too large for the user to be in-
spected (e.g., in Figure 3, after disaggregating both for Country of
Origin and Year the query returns hundreds of tuples). Therefore,
a solution for Problem 2b requires to obtain a query that can
produce a smaller set of tuples that the user can focus their atten-
tion on. In both the literature [49] and our interviews with users
(Section 7), we have found that a common need is to identify
tuples for which the resulting measure values are the highest
(or lowest), or alternatively form a cluster of similar values. In
any case, the identified subsets are guided by the initial user ex-
ample, i.e., ∀𝑡 ′∈T ′.∃𝑡∈T𝐸 s.t. 𝑡 ′∼𝑡𝑒 , for some similarity relation
∼. Hence, we propose two options: top-k refinement (TopK) and
percentile-based refinement (Perc).

Top-K refinement. This refinement method returns a set of
top-k tuples T𝑘 for a measure 𝑚𝑖 such that at least one tuple
matching the user input appears among them, i.e., ∃𝑡∈T𝐸 .𝑡∈T𝑘 .
The refinement algorithm works as follows. For every measure
𝑚𝑖 , it orders the tuples in T according to the computed value for
𝑚𝑖 . Then, it iterates over each tuple 𝑡𝑖 ∈ T in this ordering until
it finds a tuple 𝑡𝑖∈T𝐸 such that the next tuple 𝑡𝑖+1 does not match
the user example, i.e., 𝑡𝑖+1∉T𝐸 . Then it uses the value of𝑚𝑖 for 𝑡𝑖+1
to add a filter to the current query so that 𝑡𝑖 is included and 𝑡𝑖+1
is excluded. The system can then explain that the provided query
refinement returns values in the top-𝑘 with 𝑖=𝑘 for measure𝑚𝑖 .
The same is done twice both for ascending and descending order.

Percentile-based refinement. The above strategy returns
groups of tuples that are notable because of their extreme values.

112

D
RA

FT
20
22
–0

7–
14

13
:4
0:
42

C. Dest. C. Origin Year SUM

Germany Syria 2013 0.3M

France Syria 2013 0.3M

Sweden Syria 2013 0.2M

Germany China 2013 0.1M

France China 2013 0.1M

Sweden China 2013 0.3M

Germany Syria 2014 0.6M

France Syria 2014 0.3M

Sweden Syria 2014 0.4M

Germany China 2014 0.1M

France China 2014 0.3M

Sweden China 2014 0.2M

Itemsets:
tE : ❬ Germany , Syria❭

t1 : ❬France , Syria❭

t2 : ❬Sweden , Syria❭

t3 : ❬Germany , China❭

t4 : ❬France , China❭

t5 : ❬Sweden , China❭

Features:
❬Year:2013, Year:2014❭

Vectors:
❬0.3 , 0.6❭
❬0.3, 0.3❭

❬0.2, 0.4❭

❬0.1, 0.1❭

❬0.1, 0.3❭

❬0.3, 0.2❭

Top-2 similar (σ):
t2 (1) ; t4 (0.99)

Figure 5: Example of similarity computation.

Yet, sometimes, other interesting tuples are not located in the top-
k (or bottom-k). Therefore, we propose an alternative refinement
strategy that, given a set of tuples T and a measure𝑚𝑖 , computes
a set of percentile values for𝑚𝑖 , e.g., the 90th percentile, the 75th,
and so on, and checks in which intervals (e.g., between 90th and
75th) there exists some tuple matching the user example 𝑡𝑖∈T𝐸 .
Then, for all such intervals, a different query is generated using
those values as filtering conditions. The system can then inform
the user that the provided query refinement returns values within
the selected percentile for𝑚𝑖 .

6.3 Example-Driven Similarity Search

The last refinement strategy (Sim), solving Problem 2c, is closely
connected to the concept of example-based search through im-
plicit similarity [30]. This strategy aims at limiting the query
processing to the few (top-k) members within a dimension (or
set of dimensions) that are most similar to the member identified
by the user example. For instance, given the example ⟨Germany⟩
and a measure𝑚𝑖 (see Figure 3 for the Similarity Search step), we
produce a refinement that reports only those 𝑘 countries that are
the most similar to Germany based on the values of the measure
𝑚𝑖 at the current aggregation level. Note that the effect of this
method and the way in which examples are taken into account
are not the same that are used in the context of the subset-based
refinement. The similarity-based refinement searches for the 𝑘
entities most similar to those initially provided, while the subset
refinement, presented above, first determines subsets and then
exploits the examples only to validate such subsets.

In practice, this method works as follows. Assume a query
Q with dimensions D(Q)=⟨𝛿1, ..., 𝛿𝑚, ..., 𝛿𝑛⟩, where dimensions
{𝛿𝑖 |𝑖 ∈ [1,𝑚]} correspond to dimensions matching the exam-
ple tuple 𝑡𝐸=⟨𝑑1, ..., 𝑑𝑚⟩, while dimensions 𝛿𝑚 + 1, ..., 𝛿𝑛 have
been added as a result of some refinement. Then, the set of ad-
ditional items T ′ is composed of all existing combinations of
members for the dimensions 𝛿1, ..., 𝛿𝑚 . For instance, given the
initial example tuple 𝑡𝐸 :⟨Germany, Syria⟩ and assuming the user
is refining the current query Q:⟨Country Destination, Country
Origin, Year⟩, with result T (see Figure 5), we have that the set
of additional items T ′⊑T contains ⟨France, China⟩ as well as
⟨Germany, China⟩ (as well as many others) since only the first
two dimensions match the user example, while the third has been
added in a refinement step (solving Problem 2a).

Then, we compute the similarity between 𝑡𝐸 and the members
of T ′ to extract the 𝑘 most similar tuples T ′

𝑘
⊆ T ′ according

to a target measure𝑚𝑖 . Therefore, the combination of member
values for all the remaining dimensions 𝛿 (𝑚+1) , ..., 𝛿𝑛 is treated

as a feature set and the feature value is the value for𝑚𝑖 (or zero if
a specific combination does not appear). Therefore, for both the
example tuple 𝑡𝐸 and the tuple 𝑡 ∈ T ′, we create a feature vector
v𝑡 having size equal to the number of distinct values appearing
for 𝛿 (𝑚+1) , ..., 𝛿𝑛 in the result tuples T of Q. For instance, in our
previous example, this corresponds to having a feature for each
distinct member of the Year dimension. Finally, for every pair
⟨𝑡𝐸 , 𝑡 ′⟩∈{𝑡𝐸 } × T ′, we compute the similarity between the cor-
responding vectors v𝑡𝐸 and v𝑡 ′ with some vector similarity (in
our case the cosine similarity) and keep the top-k most similar
tuples. For instance, in Figure 5, this corresponds to tuple pairs
⟨Sweden, Syria⟩ and ⟨France, China⟩ which observed similar
trends in the two years ⟨2013, 2014⟩ that are used as features.
Therefore, the query refinement consists of adding that combina-
tion of values as filters for the dimensions Country Destination
and Country Origin.

7 EXPERIMENTS

Here, we show both the effectiveness and appropriateness of our
method with user interviews, a comparison to existing methods,
and experiments on real and synthetic datasets. First, we show
that despite the REQ problem suffering from high complexity
in general, in our case our approach allows fast response time
(below 2.5 seconds on average) in practice. Then, we study the
performance of our query refinement methods and the effect on it
of the performance of the underlying SPARQL endpoint. Further-
more, we study the expressiveness of our framework showing
the wide range of exploration paths it can support. Moreover,
we verify the efficiency of the system’s bootstrapping phase. Fi-
nally, we demonstrate that for exploratory analytics, existing
SPARQL reverse engineering methods do not produce useful an-
swers. Moreover, interviews with real users validate the for our
proposal of example-driven analytics.

7.1 Performance Analysis

Experimental setup. Experiments are run on a virtual machine
with 62GB of RAM, and 8 2.3GHz cores. Our system is imple-
mented as a server application, written in Java (to be released
as open-source) implementing all the algorithms, data struc-
tures, and methods described above. The server sends SPARQL
queries to a standard RDF triplestore (Virtuoso v7.2). We note
that the server, at startup, is only provided with the address of the
SPARQL endpoint, the list of named graphs to query, and the RDF
class identifying the observations. No other information about the

dataset is assumed since all the extra information is obtained by
the system by automatic crawling. Finally, the triplestore employs
a traditional full-text index to provide a faster response time for
the task of resolving keywords to IRIs (Algorithm 1, line 3).
Datasets. We employed three real, publicly available, RDF
graphs: Eurostat [11], Production [17, 21], and a subsample of
DBpedia (from March 2020) describing entities of type Creative
Work (see Table 3 and Figure 6). Eurostat describes open data
asylum applications and is used in the literature as a typical exam-
ple of a statistical KG [11]. Production records macro-economic
information about materials, energy, and monetary production
across 43 countries for more than 160 industries, and 200 prod-
ucts or services. This data is currently in use by domain experts
in a framework of open-source environmental assessments [16].
Finally, DBpedia represents an analytical view [7] describing
songs categorized by genre, artist, label, instrument, and direc-
tor, automatically extracted from DBpedia by retaining all IRIs

113

D
RA

FT
20
22
–0

7–
14

13
:4
0:
42

Table 3: Datasets characteristics

|D| |M| |H | |L| |ND | Disk (GB) VGraph (MB)
Eurostat 4 1 8 9 373 1.1 72
Production 7 1 5 9 6444 2.0 73
DBpedia 5 1 14 23 87160 3.8 79

Figure 6: Dataset Size as: (a) # of Observations, and (b) # of

Triples; and (c) Time for bootstrapping.

that are instances of the class Creative Work and performing a
bi-directional BFS at depth 3.

Eurostat and Production both have ∼15M observations, but
Eurostat has almost twice as many triples as Production (∼160M
vs. ∼90M; Figure 6a,b), i.e., Eurostat has a richer set of observa-
tion attributes. DBpedia, instead, has ∼541K observations but
∼20M triples, this is mainly due to an extremely complex set
of connections interpreted as hierarchies. Interestingly, the DB-
pedia dataset has a prevalence of hierarchy steps with M-to-N
cardinalities (e.g., a song can be associated with multiple gen-
res). Moreover, the three datasets differ greatly in the number
of members across all the dimension levels (|ND |). Overall, the
DBpedia dataset, being extracted from an open-domain KG, is the
most heterogeneous in structure. Thus, the performance results

on DBpedia can be considered a worst-case scenario, rather than a

typical use case.

ReOLAP Query Synthesis.We generated 4 sets of inputs with
a variable number (between 1 and 4) of examples entities (marked
as 1𝐸𝑥. to 4𝐸𝑥. in the charts). The number of example entities
corresponds to the size of the input, e.g., the input ⟨Germany⟩
is of size 1, while ⟨Germany, 2014⟩ is of size 2. In particular, we
randomly selected dimension members from each dimension
and combined them. We created 10 input queries, i.e., tuples of
entities for each size, and we measured the total time required by
the system to produce a set of queries derived from that input.

Overall ReOLAP running time: Results show that time grows

proportionally to the size of the input from 100 − 400ms for size
1 to 2 − 5secs for size 4, depending on the dataset (Figure 7a).
Both for Eurostat and Production, we report reverse engineering
times on average below or around 1 second with size 1 or 2, and
around 2 seconds with size 3 or 4. Therefore, the system can easily

support real-time interactive exploration of real datasets. Finally,
for DBpedia running times start around ∼100 msecs with input
of size 1 and grows up to ∼6 secs for size 4. It is important to note
that the schema for the DBpedia dataset contains a high number
of dimensions sharing similar values (e.g., the genre of artists and
the genre of production labels). Hence, the search step is often
comparing large combinations of interpretations. In contrast,
this does not happen so often in most real-world statistical KGs.
Nonetheless, comparing the running times to the dataset statistics

confirms that the running time for ReOLAP depends on the total

number of dimension members (see Table 3), rather than on the

absolute size of the dataset (Figure 6a), making it scalable even to

large amounts of observations.

Number of output queries: Figure 7b presents the average
number of queries synthesized depending on the size of the input.
With input of size 1 or 2, the number of queries is largely below
10 across all datasets. This ensures that the user will need to in-

spect only very few alternative interpretations.With a larger input
size, only in some rare cases, we obtain more than 10 reverse-
engineered queries. Comparing these results with Table 3, we see

that the number of hierarchies and the number of members shared

in different levels (e.g., country of destination and origin) are gen-

erally the determining factor.

Query RefinementWe tested each refinement method with the
40 queries synthesized in the previous experiment.

Effect of disaggregation: The running times for generating the

refined queries are below 100ms across all datasets and queries. This
shows the efficiency in assisting interactive exploration. Nonethe-
less, all the subsequent refinement methods depend on obtaining
the results of the refined queries. Hence, we additionally studied
the running time for the endpoint to answer the SPARQL query
obtained by this step (Figure 8), since this is part of the user explo-
ration workflow. Figure 8a depicts the running time of the initial
(Orig.) query obtained through ReOLAP and of the refinements
obtained by applying 1 (Dis.1) and 2 (Dis.2) Disaggregate steps.
The running time for the initial query varies according to the
size of the input: with size 1 the triplestore needs to compute a
high-level aggregation over one single dimension, while with a
larger input size, the resulting query is noticeably more selective,
hence faster. With more dimensions (i.e., after Dis.1/Dis.2), the
running time increases more prominently for queries generated
from input of size 1.

Figure 8b describes the average number of result tuples for
each generated query (see Section 5). For Production, with input
of size 4, we see that adding more dimensions typically does not
increase the number of tuples, these are cases where there is only
one (or none) observation for the given combination of entities.
This demonstrates how the disaggregation step can provide access

to many facets of the data and allows to verify whether the dataset

at hand contains any relevant information in just a few seconds.

Subset Refinement: In Figure 9a we present running times for
both the refinement based on top-k selection (Top-k) and the
refinement based on percentile selection (Perc.) as described in
Section 6.2. We test them with the queries obtained, after ReO-
LAP, after applying 1 (Dis.1) and 2 (Dis.2) Disaggregate steps,
since they contain larger numbers of tuples. Here we see that the
processing time is generally below 1 second and scales linearly to
the number of tuples to process. In Figure 9b, we report the num-
ber of alternative query refinements produced on average by both
Top-k and Percentile. By design, the Top-k method returns two
refinements (for ascending/descending order) for each measure
and aggregation function. The percentile method (Perc.) instead,
produces a variable number of refinements, which is still propor-
tional to the number of measures but by definition depends also
on how the query results are clustered. Therefore, the proposed
methods introduce almost no delay in the exploration process while

providing a huge advantage to the user that can quickly obtain

query refinements to explore distinctive portions of the data.

Similarity Search: Running time for the similarity search (Sim.)
refinement is presented in Figure 9a, where apply the method to
the same queries as for the previous two refinements described
above. This is the most computationally expensive refinement
method and its running time depends on the number of total
tuples (not only those matching the examples) returned by the

114

D
RA

FT
20
22
–0

7–
14

13
:4
0:
42

Figure 7: ReOLAP: (a) running time; (b) queries retrieved.

Figure 8: (a) Running time and (b) number of results per query, varying number of input examples. (c) Evolution of ex-

ploration workflow. Orig. is the query result fromReOLAP, Dis.1 and Dis.2 are the queries after 1 and 2 applications of

Disaggregate.

Figure 9: (a) Query running time and (b) number of refinements produced, varying number of input examples. Dis.1
and,Dis.2 are the queries after 1 and 2 applications of Disaggregate.

current selection. Nonetheless, this method runs in less than
1 second with inputs of sizes 1 and 2. For DBpedia, given the
M-to-N hierarchies, many of the randomly generated queries
were producing extremely large resultsets (e.g., by combining
every artist with every musical instrument or with every sub-
genre), and with inputs of size 3 and 4 members, the SPARQL
endpoint reached the timeout (set to 15 minutes). This highlights
a challenge for this specific refinement method when analyzing
highly unstructured KGs. This also requires optimized query
processing at the database level, which is an orthogonal area
of research [23, 42, 44]. However, for a typical KG scenario, the

similarity search method provides query refinements with only little

(∼1 sec) additional processing time. Finally, Figure 9b shows that
this refinement returns a fixed number of reformulations.

Exploration workflow: We consider an example workflow
starting with ReOLAP, then Disaggregate twice, then Similarity
Search and finally TopK refinement. In Figure 8c we see (for Eu-
rostat) that at the first interaction (ReOLAP step) given the single

input example we offer 4 query interpretations. Each query inter-
pretation gives access to a different view of the data, which we
call an exploration path. Applying Disaggregate to any of them
(i.e., selecting one path) returns a set of refinements correspond-
ing to new exploration paths (i.e., queries) each giving access
to many (usually aggregate) tuples. We report the cumulative
number of exploration paths and tuples the system gives access
to with just this small sequence of operations, that is, how many
different aspects of the data the user can access with just a few
iterations. For instance, after 4 interactions the system gives ac-
cess to 12.000 distinct paths and a total of 8000 tuples, while each
TopK reformulation (5th interaction) filters out tuples and each
filter corresponds to a new exploration path. This provides further
evidence of the expressiveness of our framework as it provides the

user with a wide range of different exploration paths.

System Bootstrapping. We investigated the time required by
the system to bootstrap (Figure 6c). This operation is done only

once offline and its main operation is to build the Virtual Schema

Graph. Moreover, if the schema does not change and only new data

115

D
RA

FT
20
22
–0

7–
14

13
:4
0:
42

SELECT * WHERE {
?x olap:memberOf schema:year .
?y olap:memberOf schema:continent . }

SELECT ?citizen_continent ?refPeriod_year sum(?obsValue)
WHERE {

?hq prop:citizen / schema:inContinent ?citizen_continent .
?hq dimension:refPeriod / schema:inYear ?refPeriod_year .
?hq measure:obsValue ?obsValue .

} GROUP BY ?citizen_continent ?refPeriod_year

a)

b)

Figure 10: Queries obtained from the example ⟨“Asia”,
“2011”⟩ with (a) SPARQLByE [8] and (b ReOLAP

is added, all the in-memory data structures are updated efficiently

without the need for re-computation. Running time varies from
∼25minutes for DBpedia up to∼60minutes for Eurostat. We note
that the bootstrap time is influenced mainly by the complexity of
the schema and not by the number of observations. We conclude

that it is both the number of dimension members and attributes

that affect this phase, and in all cases, the triplestore performance

in serving the data is the determining factor and dominates the

bootstrap time.

7.2 Appropriateness of the Solution

Comparison with SPARQLByE.Here, we show an illustration
of the fact that ReOLAP and SPARQLByE [8] (the state-of-the-
art SPARQL reverse engineering method) solve two different
problems. Thus, we compare the queries returned by the two
systems when given equivalent inputs. In particular, SPARQLByE
and ReOLAP accept the same input format, but SPARQLByE’s
reverse engineering algorithm is designed to return the minimal
BGP pattern that covers the user example. For instance, for in-
put ⟨“Asia”, “2011”⟩, SPARQLByE recognizes that the two are
members of the levels Continent and Year (Figure 10-a) but it
does not connect them to IRIs of observations. Instead, providing
an example for an observation, SPARQLByE returns an empty
resultset, because it does not navigate connections with 2 or more
hops. ReOLAP instead, explicitly navigates the complete structure

of the dataset to retrieve those connections, and is moreover able

to query measure values and instantiate group-by and aggregate

operators (Figure 10-b).

Understanding User Exploration Needs.We recruited 8 vol-
unteers (4 researchers in Computer Science and 4 domain experts
in Environmental Science) and asked them to fill out an anony-
mous questionnaire regarding their data exploration workflow.
Then, to investigate user behavior more in-depth, in relation to
data-exploration tasks, we invited 4 users (2 researchers from
Computer Science and 2 domain expert from Environmental Sci-
ence) in a 1-to-1 session with a preliminary prototype of our
system. The prototype implemented the functionalities described
in this work, with a few differences. It provided (i) a data pro-
filing functionality, returning general information and statistics
about the dataset (e.g., listing the available dimension and the
number of distinct members); (ii) it was missing the subset query
refinement based on top-k (see Section 6); and it offered in its
place (iii) a clustering-based refinement [48]. As a result, we iden-
tified two groups of common information needs: (1) to compute
max and min values within distinct groupings of data points, and
(2) to compare values for known entities alongside other values
that provide some context. Moreover, we highlight how all users

commonly refer to some entities of interest from the domain of
the dataset as a starting point of their investigations.

From the interviews, we also noticed a striking difference in
how people with a CS background (especially familiar with SQL)
were more keen on exploring the data-profiling information and
recognized the need for top-k query functionalities (as in Sec-
tion 6). On the other hand, users from Environmental Science
preferred to immediately investigate specific entities of interest,
e.g., one user reported “I would expect it to contain information
about China’s electricity production, and I want to see other
countries with similar production”. Moreover, after some inter-
action, also the CS users started to ask similar questions, e.g., “I
come from this country, I’m really curious to see the sums for my
country compared to the other”. Finally, we also asked the users
to evaluate methods providing more complex filtering conditions
based on clustering [49]. Users reported that methods providing
complex filtering conditions were not useful since they could not
understand the rationale behind them.

This preliminary study supports our problem definitions and the

proposed refinement methods based both on simple subset methods

and on example-driven search.

8 CONCLUSIONS AND FUTUREWORK

In this work, we analyze for the first time and we describe
Re2xOLAP, the first solution for example-driven exploratory
analytics over statistical KGs. It consists of ReOLAP, a query-by-
example algorithm for synthesizing analytical queries in SPARQL
and a suite of intuitive and explainable query refinement methods
for exploratory analytics. This method enables users to perform
example-driven analytics of statistical KGs without the need for
them to formulate a query in SPARQL. Our experiments demon-
strate the applicability and effectiveness of our approach in semi-
automatically synthesizing exploratory analytical queries over
large statistical KGs. In particular, ReOLAP depends only on the
complexity of the schema and is thus able to provide response
times of a few seconds even for large KGs. Furthermore, our re-
finement methods allow the user to easily navigate a wide range
of exploratory paths identifying distinct facets of the data.

Moving forward, we identify the need to evaluate how to
provide user-friendly natural language descriptions of the queries
that are produced by the system and to study whether more
complex refinement techniques can be added. Moreover, our
current approach does not support complex use cases where
the user is interested in contrasting the measure values of two
different sets of examples or where the user provides instead a
set of negative examples. Furthermore, for cases in which many
different refinements are produced, we envision the need for a
method for ranking the suggested query reformulations to help
the user prioritize among them. Finally, we draw attention to
the poor performance of existing systems in executing complex
analytical queries and identify the need for improving analytical
query executions within triplestores.

ACKNOWLEDGMENTS

Matteo Lissanrini is supported by the EU’s H2020 research and
innovation programme under the Marie Skłodowska-Curie grant
agreement No 838216. Katja Hose was supported by the Danish
Council for Independent Research (DFF) under grant agreement
no. DFF-8048-00051B, and the Poul Due Jensen Foundation.

116

D
RA

FT
20
22
–0

7–
14

13
:4
0:
42

REFERENCES

[1] Alberto Abelló, Oscar Romero, Torben Bach Pedersen, Rafael Berlanga, Victo-
ria Nebot, Maria Jose Aramburu, and Alkis Simitsis. 2015. Using semantic web
technologies for exploratory OLAP: a survey. TKDE 27, 2 (2015), 571–588.

[2] Dritan Bleco and Yannis Kotidis. 2019. Using entropy metrics for pruning
very large graph cubes. Information Systems 81 (2019), 49–62.

[3] R. Castro Fernandez, Z. Abedjan, F. Koko, G. Yuan, S. Madden, and M. Stone-
braker. 2018. Aurum: A Data Discovery System. In ICDE. 1001–1012.

[4] Dario Colazzo, François Goasdoué, Ioana Manolescu, and Alexandra Roatiş.
2014. RDF analytics: lenses over semantic graphs. In WWW. ACM, 467–478.

[5] Richard Cyganiak, Dave Reynolds, and Jeni Tennison. 2014. The RDF data
cube vocabulary. W3C Recommendation, W3C (Jan. 2014) (2014).

[6] Yanlei Diao, Paweł Guzewicz, Ioana Manolescu, and Mirjana Mazuran. 2021.
Efficient Exploration of Interesting Aggregates in RDF Graphs. In Proceedings

of the 2021 International Conference on Management of Data. 392–404.
[7] Yanlei Diao, Ioana Manolescu, and Shu Shang. 2017. Dagger: Digging for

interesting aggregates in RDF graphs. In ISWC.
[8] Gonzalo Diaz, Marcelo Arenas, and Michael Benedikt. 2016. SPARQLByE:

Querying RDF data by example. PVLDB 9, 13 (2016), 1533–1536.
[9] Ahmed El-Roby, Khaled Ammar, Ashraf Aboulnaga, and Jimmy Lin. 2016.

Sapphire: Querying RDF data made simple. PVLDB 9, 13 (2016), 1481–1484.
[10] Lorena Etcheverry and Alejandro A Vaisman. 2012. QB4OLAP: a new vocabu-

lary for OLAP cubes on the semantic web. Proceedings of COLD (2012).
[11] Lorena Etcheverry and Alejandro A Vaisman. 2017. Efficient Analytical

Queries on Semantic Web Data Cubes. Journal on Data Semantics 6, 4 (2017),
199–219.

[12] Sébastien Ferré. 2017. Sparklis: an expressive query builder for SPARQL
endpoints with guidance in natural language. Semantic Web 8, 3 (2017), 405–
418.

[13] Luis Galárraga, Kim Ahlstrøm Jakobsen, Katja Hose, and Torben Bach Peder-
sen. 2018. Answering Provenance-Aware Queries on RDF Data Cubes Under
Memory Budgets. In ISWC 2018. 547–565.

[14] Enrico Gallinucci, Matteo Golfarelli, Stefano Rizzi, Alberto Abelló, and Oscar
Romero. 2018. Interactive Multidimensional Modeling of Linked Data for
Exploratory OLAP. Information Systems (2018).

[15] Irene Garrigós, Jesús Pardillo, Jose-Norberto Mazón, and Juan Trujillo. 2009.
A conceptual modeling approach for OLAP personalization. In International

Conference on Conceptual Modeling. Springer, 401–414.
[16] Agneta Ghose, Katja Hose, Matteo Lissandrini, and Bo Weidema Pedersen.

2019. An Open Source Dataset and Ontology for Product Footprinting. In
ESWC.

[17] Agneta Ghose, Matteo Lissandrini, Emil Riis Hansen, and Bo Pedersen Wei-
dema. [n.d.]. A core ontology for modeling life cycle sustainability assess-
ment on the Semantic Web. Journal of Industrial Ecology ([n. d.]), 1–16.
https://doi.org/10.1111/jiec.13220

[18] François Goasdoué, Pawel Guzewicz, and Ioana Manolescu. 2020. RDF graph
summarization for first-sight structure discovery. The VLDB Journal 2 (2020).

[19] Nurefsan Gür, Jacob Nielsen, Katja Hose, and Torben Bach Pedersen. 2017.
GeoSemOLAP: Geospatial OLAP on the Semantic Web Made Easy. In Pro-

ceedings of the 26th International Conference on World Wide Web Companion.
International World Wide Web Conferences Steering Committee, 213–217.

[20] Nurefşan Gür, Torben Bach Pedersen, Esteban Zimányi, and Katja Hose. 2018.
A foundation for spatial data warehouses on the semantic web. Semantic Web

9, 5 (2018), 557–587.
[21] Emil Riis Hansen, Matteo Lissandrini, Agneta Ghose, Søren Løkke, Christian

Thomsen, and Katja Hose. 2020. Transparent Integration and Sharing of
Life Cycle Sustainability Data with Provenance. In The Semantic Web – ISWC

2020. Springer International Publishing, 378–394. https://doi.org/10.1007/
978-3-030-62466-8_24

[22] Dilshod Ibragimov, Katja Hose, Torben Bach Pedersen, and Esteban Zimányi.
2014. Towards Exploratory OLAP Over Linked Open Data - A Case Study. In
BIRTE. 114–132.

[23] Stratos Idreos, Olga Papaemmanouil, and Surajit Chaudhuri. 2015. Overview
of data exploration techniques. In SIGMOD. 277–281.

[24] Mohsin Iqbal, Matteo Lissandrini, and Torben Bach Pedersen. 2022. A founda-
tion for spatio-textual-temporal cube analytics. Information Systems (2022),
102009. https://doi.org/10.1016/j.is.2022.102009

[25] Christian S Jensen, Torben Bach Pedersen, and Christian Thomsen. 2010.
Multidimensional databases and data warehousing. Synthesis Lectures on Data

Management 2, 1 (2010), 1–111.
[26] Mikael R Jensen, Thomas Holmgren, and Torben Bach Pedersen. 2004. Dis-

covering multidimensional structure in relational data. In DaWaK. Springer,
138–148.

[27] Manas Joglekar, Hector Garcia-Molina, and Aditya G Parameswaran. 2017.
Interactive Data Explorationwith Smart Drill-Down (Extended Version). TKDE
1 (2017), 1–1.

[28] Shahan Khatchadourian and Mariano P Consens. 2010. ExpLOD: summary-
based exploration of interlinking and RDF usage in the linked open data cloud.
In ESWC. 272–287.

[29] Matteo Lissandrini, Davide Mottin, Themis Palpanas, Dimitra Papadimitriou,
and Yannis Velegrakis. 2015. Unleashing the Power of Information Graphs.
ACM SIGMOD Record 43, 4 (Feb. 2015), 21–26. https://doi.org/10.1145/2737817.
2737822

[30] Matteo Lissandrini, Davide Mottin, Themis Palpanas, and Yannis Velegrakis.
2018. Data Exploration Using Example-Based Methods. Synthesis Lectures on
Data Management, Vol. 10. Morgan & Claypool Publishers. 1–164 pages.

[31] Matteo Lissandrini, Davide Mottin, Themis Palpanas, and Yannis Velegrakis.
2018. X2Q: Your Personal Example-based Graph Explorer. In Proceedings of the

Conference in Very Large Databases (PVLDB), 11 (12) 2018 (Rio, Brazil) (VLDB
’18). ACM, New York, NY, USA, 2026–2029. https://doi.org/10.14778/3229863.
3236251

[32] Matteo Lissandrini, Davide Mottin, Themis Palpanas, and Yannis Velegrakis.
2020. Graph-Query Suggestions for Knowledge Graph Exploration. In Proceed-

ings of The Web Conference 2020. 2549–2555. https://doi.org/10.1145/3366423.
3380005

[33] Matteo Lissandrini, Torben Bach Pedersen, Katja Hose, and Davide Mottin.
2020. Knowledge graph exploration: where are we and where are we going?
ACM SIGWEB Newsletter Summer 2020 (2020), 1–8.

[34] Matteo Lissandrini, Torben Bach Pedersen, Katja Hose, and Davide Mottin.
2022. Knowledge Graph Exploration Systems: are we lost?. In 12th Conference

on Innovative Data Systems Research, CIDR 2022. www.cidrdb.org.
[35] Steffen Metzger, Ralf Schenkel, and Marcin Sydow. 2017. QBEES: query-

by-example entity search in semantic knowledge graphs based on maximal
aspects, diversity-awareness and relaxation. Journal of Intelligent Information

Systems 49, 3 (2017), 333–366.
[36] Tova Milo and Amit Somech. 2016. REACT: Context-Sensitive Recommenda-

tions for Data Analysis. In SIGMOD. 2137–2140.
[37] Tapio Niemi, Jyrki Nummenmaa, and Peter Thanisch. 2001. Constructing

OLAP cubes based on queries. In DOLAP. ACM, 9–15.
[38] Natasha Noy, Yuqing Gao, Anshu Jain, Anant Narayanan, Alan Patterson, and

Jamie Taylor. 2019. Industry-scale knowledge graphs: Lessons and challenges.
ACM Queue 17, 2 (2019), 48–75.

[39] Kiril Panev and Sebastian Michel. 2016. Reverse Engineering Top-k Database
Queries with PALEO. In EDBT. 113–124.

[40] Dennis Pedersen, Karsten Riis, and Torben Bach Pedersen. 2002. A powerful
and SQL-compatible data model and query language for OLAP. In Australasian
Database Conference, Vol. 5.

[41] Fotis Psallidas, Bolin Ding, Kaushik Chakrabarti, and Surajit Chaudhuri. 2015.
S4: Top-k Spreadsheet-Style Search for Query Discovery. In SIGMOD. 2001–
2016.

[42] Kashif Rabbani, Matteo Lissandrini, and Katja Hose. 2021. Optimizing SPARQL
Queries using Shape Statistics. In Proceedings of the 24th International Confer-

ence on Extending Database Technology, EDBT 2021, Nicosia, Cyprus, March 23

- 26, 2021. OpenProceedings.org, 505–510.
[43] W3C RDF Working Group. 2014. Resource description framework. http:

//www.w3.org/RDF/.
[44] Tomer Sagi, Matteo Lissandrini, Torben Bach Pedersen, and Katja Hose. 2022.

A design space for RDF data representations. The VLDB Journal (2022), 1–27.
[45] Babak Salimi, Johannes Gehrke, and Dan Suciu. 2018. Bias in OLAP Queries:

Detection, Explanation, and Removal. In ICMD. ACM, 1021–1035.
[46] Sunita Sarawagi. 2000. User-adaptive exploration of multidimensional data.

In PVLDB, Vol. 2000. 307–316.
[47] Stefan Schmid, Cory Henson, and Tuan Tran. 2019. Using Knowledge Graphs

to Search an Enterprise Data Lake. In ESWC.
[48] Thibault Sellam and Martin Kersten. 2016. Cluster-driven navigation of the

query space. TKDE 28, 5 (2016), 1118–1131.
[49] Thibault Sellam and Martin Kersten. 2016. Ziggy: Characterizing query results

for data explorers. PVLDB 9, 13 (2016), 1473–1476.
[50] Juan Sequeda and Ora Lassila. 2021. Designing and Building Enterprise

Knowledge Graphs. Synthesis Lectures on Data, Semantics, and Knowledge 11
(2021).

[51] Wei Chit Tan, Meihui Zhang, Hazem Elmeleegy, and Divesh Srivastava. 2017.
Reverse Engineering Aggregation Queries. PVLDB 10, 11 (2017), 1394–1405.

[52] Bo Tang, Shi Han, Man Lung Yiu, Rui Ding, and Dongmei Zhang. 2017. Ex-
tracting top-k insights from multi-dimensional data. In SIGMOD. 1509–1524.

[53] Quoc Trung Tran, Chee-Yong Chan, and Srinivasan Parthasarathy. 2014. Query
Reverse Engineering. The VLDB Journal 23, 5 (2014), 721–746.

[54] Georgia Troullinou, Haridimos Kondylakis, Evangelia Daskalaki, and Dimitris
Plexousakis. 2015. RDF digest: Efficient summarization of RDF/S KBs. In ESWC.
119–134.

[55] Georgia Troullinou, Haridimos Kondylakis, Matteo Lissandrini, and Davide
Mottin. 2021. SOFOS: Demonstrating the Challenges of Materialized View
Selection on Knowledge Graphs. In SIGMOD. Association for Computing
Machinery, New York, NY, USA, 2789–2793.

[56] Jovan Varga, Alejandro A Vaisman, Oscar Romero, Lorena Etcheverry, Tor-
ben Bach Pedersen, and Christian Thomsen. 2016. Dimensional enrichment
of statistical linked open data. Web Semantics: Science, Services and Agents on

the World Wide Web 40 (2016), 22–51.
[57] Manasi Vartak, Sajjadur Rahman, Samuel Madden, Aditya Parameswaran, and

Neoklis Polyzotis. 2015. SeeDB: efficient data-driven visualization recommen-
dations to support visual analytics. PVLDB 8, 13 (2015), 2182–2193.

[58] Mussab Zneika, Claudio Lucchese, Dan Vodislav, and Dimitris Kotzinos. 2016.
Summarizing linked data RDF graphs using approximate graph pattern mining.
In EDBT. 684–685.

117

