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Abstract. Prostate cancer is a dominant health concern calling for advanced 
diagnostic tools. Utilizing digital pathology and artificial intelligence, this study 
explores the potential of 11 deep neural network architectures for automated 
Gleason grading in prostate carcinoma focusing on comparing traditional and recent 
architectures. A standardized image classification pipeline, based on the AUCMEDI 
framework, facilitated robust evaluation using an in-house dataset consisting of 
34,264 annotated tissue tiles. The results indicated varying sensitivity across 
architectures, with ConvNeXt demonstrating the strongest performance. Notably, 
newer architectures achieved superior performance, even though with challenges in 
differentiating closely related Gleason grades. The ConvNeXt model was capable 
of learning a balance between complexity and generalizability. Overall, this study 
lays the groundwork for enhanced Gleason grading systems, potentially improving 
diagnostic efficiency for prostate cancer. 
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1. Introduction 

The ever-growing burden of prostate cancer, exceeding 68,000 diagnoses annually in 
Germany alone, necessitates the development of robust and efficient diagnostic tools [1]. 
The Gleason scoring system remains a cornerstone in guiding treatment decisions, which 
depends on the accurate identification of cancer in tissue sections [2]. Recent 
advancements in digital pathology and artificial intelligence, particularly deep neural 
networks, offer great potential for improved diagnostic robustness and efficiency [3]. 
These medical image analysis models have showcased their prowess in detecting 
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complex patterns within digitized tissues, both established and novel ones, making them 
invaluable assets in aiding tumor diagnosis and biomarker prediction [3]. While 
established neural network architectures from a decade ago have paved the way, recent 
advances demonstrated cutting-edge architectures pushing the boundaries of computer 
vision [4]. However, existing Gleason grading research often overlooks this progress, 
heavily relying on older architectures.

To address this gap, this study delves into a comprehensive performance comparison, 
evaluating both traditional and cutting-edge deep neural network architectures for 
automatic Gleason grading via tile-based image classification of prostate carcinoma. 
This study aims to not only provide detailed insights into the capabilities of state-of-the-
art automated Gleason grading pipelines but also pave the way for future advancements 
in this crucial area of cancer diagnosis.

2. Methods

In order to ensure comprehensive and reliable evaluation of various neural network 
architectures for Gleason grading, we established a standardized pipeline based on the 
AUCMEDI framework [5], specifically designed for building medical image 
classification pipelines. This approach facilitated seamless switching between 
architectures, enabling a robust comparison and detailed evaluation of their performance
based on equal conditions.

2.1. Prostate Carcinoma Dataset

In a recent in-house retrospective study, we extracted 325 prostate cancer cases 
diagnosed between 2019 and 2021 within the University Hospital Augsburg. We 
digitalized and annotated 369 H&E-stained tissue slides obtained from these patients 
ourselves. This detailed annotation process involved identifying various tissue types and 
potential artifacts such as air pockets or tissue distortion. Subsequently, we divided these 
annotated whole-slide images into small patches to create a dataset for training and 
evaluating deep learning models. This division resulted in a dataset with 34,264 tiles 
which we sampled according to a 38-10-52 percentage split into training, validation, and 
testing subsets, respectively. For our analysis, this study incorporated five main tissue 
classes: regular tissue, representing normal prostate tissue (23.1%), and Gleason grades, 
which categorized cancer severity based on the Gleason scoring system. The data 

Figure 1. Visualization of the tile-based prostate carcinoma dataset with associated class examples.
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included Gleason 3 (mild cancer: 2.9%), Gleason 4 (moderately differentiated cancer: 
8.4%), and Gleason 5 (poorly differentiated cancer: 7.5%). Additionally, we included 
two artifact classes: Artefact Empty, representing empty tissue including minor issues 
like dust or scratches (13.1%), and Artefact Sponge, indicating tissue distortion caused 
by sponges during biotechnical processing (45.0%). Examples of tiles are visualized in 
Figure 1. 

2.2. Image Preprocessing 

Before feeding images into the model, we applied various preprocessing techniques to 
enhance their quality and improve the model's pattern-recognition capabilities. During 
training, on-the-fly image augmentation diversified the dataset with flips, rotations, and 
color adjustments, avoiding artificial bias. Furthermore, preprocessing involved resizing 
tiles to match the model's input format (224x224 pixels), normalizing stain variations 
utilizing the method by Reinhard et al. [6], and standardizing pixel intensities across 
images utilizing Z-Score normalization. These steps prepared the data for optimal 
learning and neural network architecture comparison. 

2.3. Neural Network Models 

For the neural network model comparison, we deployed and evaluated a total of 11 deep 
learning architectures: VGG16, DenseNet121, ResNet101, MobileNetV2, ResNeXt101, 
Xception, InceptionV3, NASNet (variant Large), EfficientNet (variant B4), Vision 
Transformer (variant B16, short: ViT), and ConvNeXt (variant Base). Details and more 
information about the implementation can be found in the AUCMEDI documentation 
[5]. All models underwent a standardized training procedure to ensure comparability. 
Initially, a transfer learning approach fine-tuned the classification head for 10 epochs 
using pre-trained ImageNet weights and Adam optimization with an initial learning rate 
of 1e-4. Subsequently, fine-tuning encompassed the entire architecture for a maximum of 
1,000 epochs, employing a dynamic learning rate starting at 1e-5 and progressively 
decreasing to 1e-7 (reduction factor of 0.1 after 5 epochs of validation loss plateau). Early 
stopping halted training after 10 epochs with no validation loss improvement. Training 
used a batch size of 28 samples, the traditional epoch definition, and a weighted Focal 
loss for optimization. 

3. Results 

We were able to successfully build a standardized pipeline as foundation for comparing 
the performance of various deep learning architectures in Gleason grading for prostate 
cancer classification. The performance of all architectures is illustrated in Figure 2. 

We observed that sensitivity for the different architectures significantly varied, with 
ConvNeXt achieving the highest sensitivity at 83%, followed by VGG16 at 80%. In 
contrast, EfficientNet demonstrated the lowest sensitivity at 68%. Notably, the ViT 
architecture ranked third-last in sensitivity at 75%, slightly behind the minimalistic 
architecture MobileNetV2 with 76% sensitivity. All architectures demonstrated a 
consistently high specificity, averaging around 97%. The overall accuracy of the models 
ranged from 94.5% to 97.5%, with a mean accuracy of 96.5%. Notably, the accuracy 
results were consistent with the sensitivity order across all architectures.  
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 Furthermore, we evaluated the performance in two popular categories commonly 
utilized in the literature to assess Gleason grading performance: detection and 
classification. In the detection task, the objective is to distinguish between malignant 
(Gleason grades G3-G5) and benign tissue (regular tissue). EfficientNet demonstrated 
the highest sensitivity at 99%, indicating its ability to accurately detect malignant tissue. 
However, it also exhibited the lowest specificity at 28%, suggesting a higher rate of false 
positives. Conversely, ConvNeXt achieved a sensitivity of 96% with a higher specificity 
of 94%, indicating its effectiveness in correctly identifying malignant tissue while 
minimizing false positives. In the classification task, the aim is to assess fine distinction 
within cancer severity by distinguishing between Gleason grade 3 (G3) and higher grades 
(G4-G5). ResNeXt101 and ConvNeXt showed the highest sensitivity at 89% and 88%, 
respectively, indicating their capability to accurately classify tissue into different 
Gleason grades. However, ResNeXt101 had a specificity of 67%, indicating a higher rate 
of false positives, whereas ConvNeXt exhibited a higher specificity of 75%. On the other 
hand, ViT demonstrated the lowest sensitivity of 72% but compensated with the highest 
specificity of 87%, suggesting its ability to minimize false positives at the expense of 
missing positive cases. 

4. Discussion 

Gleason grading of prostate cancer presents a multifaceted problem due to the substantial 
intricacy of histopathological pattern interpretation [2–4]. Heterogeneous tumor 
morphologies characterized by coexisting architectural and cellular features further 
complicate this task [2,4]. Discerning these subtle nuances requires expertise in both 
normal and pathological tissue structures. Our proposed pipeline, utilizing various deep 

Figure 2. Comparison of deep neural network architectures for Gleason grading. A: Receiver Operating Characteristics 
(ROC) curves categorized into the detection and classification task. B: Confusion matrix between predicted and annotated 

classes illustrating the overall performance and showing the Sensitivity and Specificity. 
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learning architectures, demonstrates remarkable performance in automated Gleason 
grading. Not only does it replicate previous studies' results, but it surpasses them by 
employing cutting-edge architectures for enhanced reliability [3,4]. 

Comparing newer architectures like ViT and ConvNeXt to established models like 
DenseNet and ResNet yielded noteworthy observations. As anticipated, newer 
architectures exhibited superior performance, likely due to their increased complexity 
and capacity to capture intricate patterns more effectively, especially for differentiating 
closely related Gleason grades. However, this increased capacity can lead to overfitting 
on small datasets, hindering generalization to unseen data. We suspect this occurred with 
the EfficientNet and ViT model, as complexity-scaled convolutional neural networks as 
well as transformers often require vast and diverse training data. Conversely, the 
ConvNeXt model struck a balance between complexity and generalizability. 

Deviations from ground truth primarily involve adjacent classes, reflecting the 
ordinal structure of the Gleason system. The models struggled most with differentiating 
regular, Gleason 3, and Gleason 4 tissues which is why the distinguishment between 
these subtly transitioning classes based on the ordinal nature of Gleason grades 
demonstrated the dominant aspect for our architecture comparison. This challenge, 
inherent to the ordinal nature of Gleason grades, also manifests in our model's predictions.  

5. Conclusions 

This study compared established and cutting-edge deep learning architectures for 
automated Gleason grading. Newer architectures, particularly ConvNeXt, showed 
superior performance, demonstrating the benefits of incorporating recent advancements 
in computer vision. Nevertheless, challenges remain, especially with differentiating 
similar grades, highlighting the need for further research towards robustness and 
generalizability. This work paves the way for future development and potential clinical 
integration of automated Gleason grading systems, potentially improving the robustness 
of the Gleason scoring and diagnostic efficiency in prostate cancer. 
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