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Abstract. Video feeds from traffic cameras can be useful for many purposes, the most critical of which are related to monitoring
road safety. Vehicle trajectory is a key element in dangerous behavior and traffic accidents. In this respect, it is crucial to de-
tect those anomalous vehicle trajectories, that is, trajectories that depart from usual paths. In this work, a model is proposed to
automatically address that by using video sequences from traffic cameras. The proposal detects vehicles frame by frame, tracks
their trajectories across frames, estimates velocity vectors, and compares them to velocity vectors from other spatially adjacent
trajectories. From the comparison of velocity vectors, trajectories that are very different (anomalous) from neighboring trajec-
tories can be detected. In practical terms, this strategy can detect vehicles in wrong-way trajectories. Some components of the
model are off-the-shelf, such as the detection provided by recent deep learning approaches; however, several different options
are considered and analyzed for vehicle tracking. The performance of the system has been tested with a wide range of real and

synthetic traffic videos.
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1. Introduction

There has been a historic increase in video surveil-
lance cameras in public and private places. This trend
has resulted in a wide variety of research studies about
automated systems for object detection to monitor dif-
ferent activities by recognizing the events that occur
in the observed scene [1]. These systems play an im-
portant role in modern computer vision tasks such
as autonomous driving [2], pedestrian identification
[3, 4] image captioning [5, 6], object tracking [7, 8]
ship detection [9, 10], face recognition [11, 12], traf-
fic control [13, 14] action recognition [15, 16] envi-
ronment surveillance [17, 18], video checking in sports
[19, 20], building information [21-23], robotic dis-
infection [24], safety surveillance [25, 26] and many
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others. Deep Learning has been the main approach
when dealing with images for the last decade. Beyond
surveillance it is an approach also applied to other
fields such as material analysis [27], earthquake detec-
tion [28], medical applications [29, 30] and recommen-
dation systems [31].

This work focuses on vehicle detection, an impor-
tant part of surveillance systems and intelligent trans-
port systems. The widespread use of vehicles means
that numerous incidents regarding traffic violations oc-
cur. These incidents can be seen as anomalies with re-
spect to the usual traffic behavior and are typically a
source of problems and dangers. Therefore the detec-
tion of anomalies in traffic surveillance such as traf-
fic congestion, parking violations, and rash driving on
the roads can be considered one of the most researched
topics in vehicle detection [32].

However, the automated detection of vehicles that
follow an unusual, wrong-way trajectory has not re-
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ceived much attention in the literature. Here a method-
ology to detect wrong-way vehicle trajectories is pro-
posed. Its aim is to automatically spot potentially
dangerous behavior. This information could be later
passed on to a human operator so that the danger is fur-
ther evaluated and cautionary measures can be taken.
This model is capable of monitoring, frame by frame,
the movement of the vehicles to identify vehicles that
drive in an unusual way by using three basic steps:
vehicle detection, vehicle tracking, and trajectory pro-
cessing. Our proposal departs from the previous liter-
ature in several ways. Firstly, vehicle tracking is opti-
mized by several enhancements in the assignment pro-
cedure of vehicle detections to trajectories. Also, track-
ing errors for pairs of nearby vehicles and large trucks
are minimized by appropriate techniques. Finally, a ro-
bust anomaly measure is designed in order to effec-
tively evaluate trajectories, and an anomaly criterion is
proposed to ascertain whether a trajectory is actually
anomalous.

For moving vehicle detection, a Convolutional Neu-
ral Network is used because it can perform end-to-
end detection of objects without specific character-
istics [33]. Then the set of detections computed by
the network is filtered to execute the second step, ve-
hicle tracking. In this stage, vehicles are tracked as
they move around in a video using two popular object
tracking algorithms, Simple Online Real Time tracking
(SORT) and BYTE. These algorithms can make some
tracking errors in specific situations so a custom track-
ing algorithm is proposed and compared with the pre-
vious ones. Once trajectories are detected they are pro-
cessed, which is the third step. In this phase, the ve-
locity vectors are estimated by comparing the differ-
ence in the position of the vehicle between consecutive
image frames, and anomalies are detected by compar-
ing the vehicle’s trajectories with the trajectories of its
nearest neighbors using mean and median moduli of
the differences among vector velocities.

As this method has many tunable parameters, a com-
prehensive survey was conducted, including the im-
pact of adding techniques such as border correction
and bounding box similarity. This fine-tuning process
concludes in a suitable procedure for detecting anoma-
lous trajectories.

To describe the above mentioned methodology in
detail, the paper is arranged as follows. First, Section
2 summarizes the related work. Then, the methodol-
ogy to solve the stated problem is described in detail in
Section 3. After that, in Section 4, experimental results
are provided to verify the performance of the proposed
model. And finally, Section 5 outlines the conclusions.

2. Related work

There are many techniques proposed in the literature
to detect on-road traffic. Object detection can be per-
formed using either classical image processing tech-
niques or deep learning networks. Today, deep learning
object detection is a modern approach widely accepted
by researchers, involving two main types of detectors:
two-stage target detection algorithms and single-stage
target detection algorithms. As a general algorithm for
target detection, all the deep learning models can be
applied to vehicle detection tasks. Two-stage detection
algorithms divide the vehicle detection task into two
stages: generating vehicle region proposals and finding
vehicle targets from the region proposal. One-stage de-
tection algorithms eliminate the operation of generat-
ing vehicle region proposals and unifies vehicle identi-
fication and detection into one network for processing.

An example of a traditional proposal can be found
in [34], where it uses a foreground object detection
method and a feature extractor to obtain the most
significant features of the detected vehicles into sev-
eral categories such as car, motorcycle, truck, or van.
The same task is addressed by two-stage algorithms
in [35, 36] and [37] where a Convolutional Neural
Network (CNN) is used in the first two cases and a
Faster Regional Convolutional Neural Network (Faster
R-CNN) in the third one. The most representative one-
stage detector is YOLO [38] (You Only Look Once)
and [39] combines it with other traditional classifiers
to create a real-time vehicle detector. In [40] a compre-
hensive review of existing Faster Region-based Convo-
lutional Neural Network (Faster R-CNN) and YOLO-
based vehicle detection and tracking methods are in-
cluded so the interrelations between both methods can
be highlighted.

After carrying out an assessment of the advances in
the field of traffic video surveillance, it is interesting
to notice that there are other relevant problems whose
solution is related to the analysis and detection of ve-
hicles along the road. This is the case of the detection
of pollution levels of transport vehicles problem which
has been addressed in [41, 42]. In these works, the ob-
ject detection and classification process are based on a
pre-trained Faster-RCNN model [43]. With that recog-
nition and vehicle tracking, the system predicts the pol-
lution of the selected area in real time. Another exam-
ple can be found in [44], where a video measurement
system for road traffic surveillance has been developed
and applied to acoustic surveillance. This system in-
cludes a trained deep learning YOLOV2 object detec-
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tion model and uses it to show the usefulness of Intelli-
gent Transportation Systems (ITS) in the fight against
citizens’ exposure to noise.

In terms of trajectory analysis, the problem has also
been approached with classical algorithms before deep
learning such as [45], which analyses vehicle trajecto-
ries using clustering algorithms; or [46] using single-
class SVM clustering to allow trajectory classification
with no a priori information on the distribution out-
liers. Modern approaches often rely on neural networks
as [47], which trains a neural network model to de-
tect pedestrian trajectory anomalies by comparing pre-
dicted and actual trajectories; in [13], authors propose
a methodology to detect anomalous vehicle trajectories
by applying YOLOVS as a vehicle detection network;
[48] uses multi-scale tracking and multiple similarity
metrics to refine anomaly via backtracking after detect-
ing vehicles using YOLO; [49] also uses YOLO, Non-
Maximum-Suppression algorithm and DeepSort [50]
to obtain trajectories prior to filter them; [51] imple-
ments a noisy network using deep deterministic pol-
icy gradients to deal with the tracking task and predict
the trajectory result; [52] uses spatio-temporal autoen-
coder and sequence-to-sequence long short-term mem-
ory autoencoders in order to model spatial and tempo-
ral features in video to detect road accidents; [53] pro-
posal is to use YOLO and KCF object tracking algo-
rithm to get initial trajectories to later apply polyno-
mial approximation and Ramer-Douglas-Peucker thin-
ning to train agglomerative hierarchical clustering in
order to classify into normal or anomaly trajectories;
[54] implements NLP-inspired embedding to create
vector representations for each vehicle trajectory in or-
der to compute their similarities so a hierarchical clus-
tering algorithm can be used to identified falsified tra-
jectories; [55] extracts CNN features to perform two
separate traffic analysis, the first one is based on the
speed estimation using camera calibration and the sec-
ond one based on detecting abnormal events using op-
tical flow. However, there are also works nowadays us-
ing more classical approaches: [56] proposes a model
to detect anomalies in vehicle trajectories by using fed-
erated learning based on support vector machines and
isolation forests; [57] uses main flow direction vectors
to cluster coarsely vehicle trajectories prior to apply
K-means clustering algorithm to obtain fine classifica-
tions to distinguish outliers and then apply a hidden
Markov model to obtain path pattern within each clus-
ter.

Some works have also explicitly studied the prob-
lem of wrong-way vehicle detection. Early works used

traditional image processing techniques such as back-
ground subtraction, and optical flow estimation [58—
60], but these require very stable scene conditions
and a relatively long training stage for each video se-
quence. More recent works make use of deep learning
models to detect vehicles but usually require some de-
gree of manual setup or assume a specific scene orien-
tation to determine the natural direction of traffic flow
in the scene [61-63]. In contrast, our approach is au-
tomatic, fully unsupervised, and does not require long
training times for each specific scene. It is also dy-
namic: it does not look at whole trajectories post facto,
but works frame by frame, using only past and present
information at each frame to flag vehicles as following
anomalous trajectories.

3. Methodology

To detect anomalous trajectories in sequences from
traffic cameras, a model is proposed to monitor the
movement of vehicles across the camera’s field of view
frame by frame, with an architecture structured in three
stages: vehicle detection, vehicle tracking and trajec-
tory processing. a schematic view of the model is
shown in Figure 1.

Figure 1 shows a schematic of the proposed model:
a video sequence from a traffic camera (a) is fed, frame
by frame, to an object detector that outputs the vehi-
cles’ bounding boxes (b). A tracking algorithm incre-
mentally recovers vehicle trajectories (c, d) from the
bounding boxes, possibly enhanced by various heuris-
tics (not shown). At each frame ¢ + 1, the velocity vec-
tor is the difference between positions at frames ¢ and
t + 1 (e), and this velocity vector is compared to the
nearest velocity vectors from other trajectories (f), flag-
ging the trajectory as anomalous if the vectors are dif-
ferent enough. See Section 3 for details.

3.1. Vehicle detection

Our proposed model starts with the application of
a deep convolutional network for object detection to
obtain tentative detections of vehicles. Let us note as
S the set of detections obtained by the object detection
network F for a given input image X. Each detection
s; contains an axis-aligned bounding box w;, an object
class label ¢;, and a confidence level r;:

§ =F(X) 1
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Fig. 1. Schematic depiction of the proposed model.

S ={si|ie{l,..N}} )
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where N is the number of detections, (a;, b;) € R? are
the coordinates of the upper left corner of the i-th de-
tection within the image X, (c;,d;) € R? are the coor-
dinates of the lower right corner of the i-th detection
within X, ¢; is the class label of the i-th detection, and
r; € R is the confidence level of the i-th detection.

A minimum confidence level r,,;, is defined so that
detections below that threshold are ignored. Moreover,
the detections corresponding to non-vehicle classes are
filtered out, and the object class is disregarded after
that. As a result, the filtered set of detections is com-
puted:

S'={s; €S| ri>rmnqi €V} )

where V is the set of vehicle classes.

The next step consists in passing the filtered set S’
to the non-maximal-suppression algorithm to compute
a further filtered set of detections S’ for the currently
processed video frame, which is forwarded to the next
stage, namely vehicle tracking.

3.2. Vehicle tracking

The second stage is object tracking: after objects
have been detected and their bounding boxes defined at
isolated image frames, the next challenge is to track the
objects, associating bounding boxes across sequences
of image frames conforming to the trajectories of each
tracked object. Sophisticated tracking strategies are re-
quired when many objects move across the camera’s
field of view.

For objects detected with bounding boxes, object
tracking is frequently posed as a linear sum assignment
problem (LSAP) [64] between the detections at frames
¢+ 1 and 7 contained in the detection sets S/, ; and S/,
such that a cost C;; is specified for matching each pair
of detections s;, s; € S”, and there are off-the-shelf al-
gorithms to arrive at an assignment between objects in
frames ¢ and ¢ + 1, minimizing the total cost. LSAP-
based algorithms differ in the specification of the cost
C;; and in pre and postprocessing steps, such as apply-
ing Kalman filters, or hierarchically classifying bound-
ing boxes by confidence before matching them.

The performance of the pipeline is evaluated with
two well-known, generic, LSAP-based object track-
ers, SORT [65] and BYTE [66], as well as a custom
tracking algorithm. SORT and BYTE specify the as-
signment cost C;; as the intersection-over-union (also
known as the Jaccard index [67]) between the bound-
ing boxes. While specifying the cost in this way en-
ables these object trackers to be robust, it can fail when
objects with small apparent size move fast, and their
bounding boxes in consecutive frames are very close
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but do not intersect. Because of this, in the custom
tracking algorithm, the cost C;; of matching two detec-
tions s;, s; € S is specified as the Euclidean distance
between the centers y;, p; of their associated bounding
boxes:

= (5.

i )

”J _ (aj;Cj, bj;dj) (6)
Cij = [l = )

When a vehicle detected in frame ¢ is not assigned
a detection in frame ¢ + 1, the model does not keep
track of it in case it is detected later, given the apparent
speeds of cars on traffic cameras. This often results in
tracking errors. To compare the custom tracking algo-
rithm with SORT and BYTE, they are also configured
to not keep track of lost objects.

The performance of LSAP-based algorithms is ade-
quate as long as objects movements between one frame
and the next one are comparatively small, and the de-
tection of the objects during the frame subsequence
where they are visible is consistent. Videos acquired
by traffic surveillance cameras used in this work usu-
ally fulfill the first condition. However, the second con-
dition is not met even for object detectors with a very
good mAP score for vehicles that appear small in the
video. To address this limitation and enhance the per-
formance of our custom tracking algorithm, we avoid
making the assignments (i.e. matching bounding boxes
for frames ¢ and ¢ + 1 as the same tracked vehicle
across both time instants) that fulfill any of the follow-
ing heuristics:

e Given the two axis-aligned bounding boxes, the
ratios of their sizes differs more than a given
threshold in any of the two dimensions (horizon-
tal or vertical). This aims to avoid false tracking
events among vehicles of very different apparent
sizes. Moreover, the system becomes more robust
whenever the object detector fails and the bound-
ing box estimations fluctuate from one frame to
the next.

e The distance between the centers of the bounding
boxes in both frames is larger than a predefined
threshold. The threshold is computed for each pair
of bounding boxes relative to the smallest dimen-
sion of the bounding box at frame 741, rather than
using a constant threshold. The aim of this pro-
cedure is to avoid wrong tracking events, where
a vehicle is found at frame ¢ but not at the next
frame ¢ + 1 while a third vehicle appearing at

t + 1 is wrongly assigned to the vehicle at time
t. Since object detection networks are more likely
to fail in the detection of vehicles with small ap-
parent sizes, this technique is particularly effec-
tive for distant vehicles in the analyzed scene. The
technique can also be used for close vehicles with
large apparent sizes, but it has to be slightly mod-
ified to take into account that such objects un-
dergo large displacements that are not common
for faraway vehicles. This is addressed by em-
ploying two distinct thresholds, one for vehicles
with large bounding box sizes and another one for
small sizes. Values for these thresholds have been
found experimentally: if the length d of the small-
est side of the bounding box at ¢ + 1 is over 2.5%
of the largest side of the image side, it is deemed
to be part of the same trajectory as a bounding
box at ¢ only if the distance between their cen-
ters is at most 1.25 times d. If the bounding box
is smaller (such vehicles can be described as hav-
ing a small apparent size), the maximum distance
between centers is 0.75 times d.

Many tracking errors happen as a result of object
detection errors and induce false, large one-frame dis-
placements in trajectories, potentially confounding the
anomaly detection procedure into generating false pos-
itives (see next subsection). In the case of small ve-
hicles, such tracking errors can happen when two ve-
hicles are close, only one is detected at frame ¢, and
only the other one is detected at frame ¢ + 1. Large
vehicles do not present this problem, but in the case
of trucks, object detection can sometimes fail by de-
tecting the cabin as a separate entity for an isolated
frame. These kinds of object detection errors are diffi-
cult to solve even with domain-specific heuristics if the
only input to the tracking algorithm is the set of bound-
ing boxes. However, the subsequent tracking errors can
be minimized, by noting that the contents of several
bounding boxes identifying the same vehicle across
several frames should be similar: if they are not similar
enough, they should not be part of the same trajectory.
There are complicating factors such as non-convex par-
tial occlusions due to tree branches, but these are not
as important for the purpose of anomalous trajectory
detection.

This is a similar problem to vehicle re-identification
[68], and can be solved with similar techniques. Con-
cretely, to compute a similarity measure between the
contents of the bounding boxes, the contents of each
bounding box are resized (respecting the aspect ratio
with letterboxing) to the input size of a standard deep
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classification network such as ResNet or VGG. This
network is applied to the contents of the bounding box,
and the feature vectors from one of its final layers are
extracted. These feature vectors convey semantic infor-
mation about the input image, and their distance can
be used as a similarity measure for images. With this
information, two bounding boxes are determined to be
part of the same trajectory only if the similarity mea-
sure is below a given threshold.

To measure the distance between feature vectors, co-
sine similarity is used:

u-v

lall - V1l

d(u,v) =1 (7

This has practical advantages over Euclidean dis-
tance: the range of cosine similarity is clamped to the
interval [0.. . 2], while Euclidean distance is inherently
dependent on the statistical distribution of the feature
vectors. Calibration of the similarity threshold is nec-
essary both for cosine similarity and Euclidean dis-
tance, but the calibration is easier for cosine similarity.

3.3. Trajectory processing

As a result of the vehicle tracking stage, vehicle
trajectories are recovered across the camera’s field of
view. The detection of anomalous maneuvers carried
out by the vehicles can be done by comparing the tra-
jectory of the offending vehicles to those of the ve-
hicles in their vicinity. We propose a straightforward
but effective procedure to accomplish this task which
is based on measuring the difference between the ve-
locity of the vehicle with respect to the velocities of its
nearest neighbors. Here the velocity is taken as the dif-
ference in the position of the vehicle between consec-
utive image frames.

Next, a more detailed description of this procedure
is given with the help of some mathematical notation.
Let p1,(t) € R? be the center of the bounding box (the
position) of vehicle i at the current frame . Also, let
us assume that the tracking stage has found out that
the same vehicle was in position g;(r — 1) in the previ-
ous frame. Therefore the velocity vector of the vehicle
v;(t) € R? is defined as follows:

V() = g (1) =ty (1 = 1) ®)

Please note that in the above equation the camera
frame rate is subsumed as a scale factor. In the case that
a vehicle i is not found both at time instants f and t + 1,

its velocity is not defined. For each vehicle i at time
step ¢ with defined velocity v;(z), we note the set of the
detections of all other vehicles with defined velocities
during the last F frames as follows:

Di(t)y={j:3v;({),i#jt—1<F} 9

After that, the subset DY (¢) C D; (¢) of the N near-
est detections for the analyzed vehicle i at the current
time ¢ is considered. We employ the Euclidean distance
between the positions g, (#) and u;(#') of vehicle 7 at
time ¢ and each vehicle j at time 7 as a measure of their
proximity.

Once the set of nearest neighbors DY () is deter-
mined for each vehicle i, it is necessary to evaluate
the difference in the velocity vector v;(¢) of the ana-
lyzed vehicle as compared with the velocity vectors of
its nearest neighbors v;(') € DY (). To this end the
anomaly value A;(t) of vehicle i at frame ¢ is defined as
the mean of the moduli of the differences among vector
velocities:

A; (t) = mean (||v; (f) — v; ()| : j€ DY (1)
(10)

It must be highlighted some issues with A;(f) as
an anomaly criterion. In particular it is noisy, i.e. it
exhibits large spikes as one-off tracking errors occur.
These spikes can be smoothed out by using the median
filter:

Al (t) = median (A; (1),A; (t —1),A; (t — 2))
1D

such that A(¢) is defined if and only if the three values
A;(1), Ai(t — 1) and A;(r — 2) are defined.

A second issue is that A(r) is not dimensionless.
Its dimension depends on the frame rate, traffic speed
patterns, the distance to the camera, and other factors.
This is managed by considering A!(r) as potentially
anomalous whenever its value is equal to or higher than
the Pi-th percentile of the anomaly values observed
during the last F frames.

Also, there is an issue when vehicles take several
frames to gradually go from being partially occluded
to fully visible: the larger the vehicle, the lower the ap-
parent velocity. This happens because the object detec-
tor defines the vehicle’s boundary relative to its visible
portion, and the center of the bounding box is taken as
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Fig. 2. Vehicle position estimation example.

a proxy for the position. As larger and larger portions
of the vehicle become visible in the image, the bound-
ing box will gradually grow, and the velocity of the
center of the vehicle will be slower than if the vehicle
were fully visible (see Figure 2). This issue can happen
with any road occlusion such as bridges or large trees,
but the effect is especially acute at the borders of the
camera’s field of view, since in general there will be
one or more borders where traffic will appear or disap-
pear.

This might not be a problem unto itself, because it
just means that velocities will be generally slower near
borders and road occlusions. However, the severity of
the effect varies greatly according to apparent vehi-
cle size, so large trucks will have significantly slower
velocities than cars and motorcycles, and for longer
stretches of road. When comparing these velocities of
large trucks to cars, there will be a greater probability
of marking the former as anomalous. To mitigate this
effect, border correction is performed, i.e. filtering out
as not potentially anomalous any A;(r) whose underly-
ing bounding box is close to the border. As a quantita-
tive heuristic, we apply this criterion with a bounding
box if any of its edges is closer to the border than 5%
of its smallest edge.

The final step is to classify a potentially anomalous
A}(¢) as actually anomalous if any of the following two
conditions are met:

e Its value relative to the Pj-th percentile is larger
than a specific ratio s: A/(¢) > s - Py.

o Along record of potentially anomalous values has
been accumulated for the vehicle during a num-
ber of consecutive frames. This criterion depends
on the characteristic time and size scales of the
vehicles in the traffic scene.

Table 1
Parameters of the model.

Parameter description [ Value(s) ]
number of nearest neighbors N=5
anomaly threshold: percentile P € {0.85,0.9,0.95,0.98,0.99}
anomaly threshold: severity S € {3,4,5,6}

anomaly threshold: number of frames F =60
apply border correction no/yes

apply bounding box similarity no/all vehicles/small vehicles

bounding box similarity: network | resnetl8, resnetl01, vggll, vggl9
T €{0.1,0.2,0.3,0.4,0.5}

bounding box similarity: threshold

Figure 2 shows a vehicle position estimation exam-
ple: the vehicle position is estimated as the center of
the bounding box. Velocity is estimated as difference
between such positions (a). For comparison, in this fig-
ure the real velocity (b) is estimated by measuring the
distance between frames for a specific keypoint (the
windshield). As a result, large vehicles appearing into
the scene may be erroneously considered to be slower
than they really are, thus potentially flagging them as
anomalous. This problem is most common along the
borders of the image, and a pragmatic and effective so-
lution is to ignore vehicles near the border.

4. Experiments and results

The proposed model has been evaluated with a
dataset several times, testing various configurations.
The source code is available at http://github.com/jdfr/
anomalous_trajectory_detection_2023.

4.1. Methods

All proposals have been implemented using Python
(https://www.python.org/) language, tracking stage lin-
ear sum assignment is solved by using SciPy’s (https://
scipy.org/) implementation and video snippets are pro-
cessed by using OpenCV library (https://opencv.org/).

Yolov5, a well-known neural network model, is used
as the object detection method. We only need to de-
tect vehicles, so yolov5’s configuration has been al-
tered to only return objects from the following classes:
car, motorcycle, bus, and truck. Most Yolov5 config-
uration values are the standard (particularly r,,;, =
0.25) but since the object detection model sometimes
wrongly detects cars instead of truck cabins, even in-
side a bounding box of the whole truck, object class
is disregarded in the non-maximum-suppression algo-
rithm.

Concerning anomaly detection parameters, the num-
ber of nearest neighbors to check if a trajectory is
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anomalous (size of DV (1)) should be small. Otherwise,
DY (1) is likely to contain many vehicles with very dif-
ferent trajectories for a long time after initialization.
A number of preliminary, non-exhaustive experiments
were performed with different values for the number
of nearest neighbors (), finding the method prone to
false positives in the first processed frames when using
high values for N. Setting N = 5 provided for a reason-
able performance compared to other values. Regarding
the number of frames the algorithm keeps track of past
detections (F'), experiments show better results when
no data are forgotten for the duration of each video se-
quence. To classify a trajectory as potentially anoma-
lous, Py parameter is used, so a value equal to or above
it will flag the trajectory as anomalous.

Table 1 provides a concise view of the parameters of
the model. Exhaustive search to determine parameters
N and F was deemed impractical, so preliminary ex-
periments were conducted to settle on values providing
reasonable performance. For the other parameters, this
table provides the ranges of tested values. See the fol-
lowing subsections for an in-depth exploration of the
parameters in the Table. Regarding the conditions to
consider vehicles as actually anomalous:

e For vehicles having very large A(z) values, an ar-
ray of experiments has been conducted to tune the
values of parameters s and P (see Section 4.3).

e For vehicles keeping anomalous A!(z) values for
extended periods of time, they are marked as ac-
tually anomalous if they keep anomalous A/(?)
for 60 or more consecutive frames (corresponding
to 2-3 seconds for the videos used in the exper-
iments). In preliminary experiments, shorter ex-
tents of time translated into increased false posi-
tive rates, while longer extents of time led to re-
duced detection rates of true positive frames.

4.2. Datasets

Different videos selected from several datasets have
been considered in the experiments. With these se-
quences, the performance of the model can be analyzed
under different anomaly conditions related to wrong-
way driving, such as a vehicle in the opposite direction
or backing onto roads. Videos from four datasets were
used:

o First subset: three videos from a project [69] deal-
ing with anomalous trajectory detection in traffic
videos. The selected sequences are a real video
(Clip from 02:10 to 02:31 in this Youtube video:

https://youtu.be/BF3WuB-7iPo) noted as Videol
that shows a vehicle backing onto a busy road, and
two videos synthesized with CARLA [70] (noted
as Video2, and emphVideo4), both of them de-
picting a car doing counterflow driving. All three
videos depict anomalous vehicles.

e Second subset: Six videos from the Ko-PER In-
tersection dataset [71]: the sequences la-SK_I,
la-SK_4, 2-SK_1, 2-SK_4, 3-SK_1, and 3-SK_4.
Each pair of sequences with the same prefix and
ending in _1 or _4 are recordings of the same
scene from two different cameras, providing valu-
able validation of the model for scenes that should
result in similar predictions in each case. Videos
with prefixes la- and 3- do not actually show
anomalous trajectories, while videos with prefix
2- show a vehicle that waits in the middle of the
intersection to turn. To test the proposed method-
ology, that vehicle has been considered anoma-
lous.

e Third subset: Three videos from the 2014 CD-
NET dataset [72]: the sequences highway, street-
Light, and traffic. All of them were taken from
a camera looking at traffic on a straight road
from different orientations (respectively: from the
front, side, and rear). None of them show anoma-
lous vehicles.

e Fourth subset: Fifteen videos from the training
set of the 2021 NVidia Al City Challenge [73],
Track #4: videos 1, 2, 3, 5, 9, 13, 14, 17, 20, 22,
25, 33, 39, 41, and 50. These were selected with
two criteria in mind: avoiding views of intersec-
tions and avoiding videos where the off-the-shelf
object detector struggles to detect vehicles reli-
ably (see Section 4.3.6 for details on these limita-
tions). Each video is 15 minutes long. For practi-
cal reasons, each video was divided into 15 seg-
ments, approximately one minute each, resulting
in 225 video clips. At 30 frames per second, these
one-minute clips average 1800 frames each. It is
worth noting that this dataset is designed as a
challenge to detect traffic accidents where anoma-
lous vehicles pull up to the roadside. However,
our proposed method does not detect this type of
anomaly, but wrong-way anomalies. Because of
this, none of these one-minute video clips has any
anomalous frame for our purposes.

Thus, we have four subsets of video sequences, 237
videos in total. The fourth one (the video clips from the
NVidia AI City Challenge dataset) represents the vast
majority of the videos (225), but they have no anoma-
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lous frames. The first three subsets represent a mix
of videos of various lengths, some depicting vehicles
in wrong-way trajectories. To effectively use comput-
ing resources, we will use videos from these first three
subsets to evaluate the system’s performance under a
wide variety of configurations. Once the best configu-
ration is selected, we will also evaluate its performance
with the fourth subset (the video clips from the AI City
Challenge).

It should be noted that datasets containing many
examples of videos with wrong-way, anomalous tra-
jectories can be found for videos taken from dash-
cams. However, we do not know of such a dataset
with videos taken from traffic cameras, and videos
taken from dashcams are not suitable for the pro-
posed model. While the model is designed for views of
non-intersecting roads, videos from intersections de-
picting vehicles that might be considered anomalous
have been included in the experiments, as described
above. For comparison, videos of intersections with-
out anomalous trajectories have also been included (it
should be noted, however, that the proposed model
does not work well for these).

For each video, ground truth is determined by
manually labeling each frame of each video as be-
ing anomalous/not anomalous (in all instances, videos
with anomalies had at most one anomalous car in each
frame). At evaluation time, for each frame in a video:

o [f the frame was labeled as non-anomalous, it is a
true negative (TN) if no trajectory was considered
as actually anomalous by the model at that frame;
false positive (FP) otherwise.

e [f the frame was labeled as anomalous, it is a true
positive (TP) if exactly one trajectory was con-
sidered as anomalous by the model at that frame;
false negative (FN) otherwise.

With these considerations, standard measures such as
precision P, recall R, and Jaccard index J (which can
be interpreted as a combination of the first two) can be
computed for each video:

_Tre
TP+FP

_ TP
R= 7pirn (12)

[ ¥
TP+FP+FN

Please note that these formulae might become indeter-
minate for videos with no frames labeled as anoma-
lous. In such cases, if there are no false positives, the

algorithm performs perfectly. Because of this, when
these formulae are indeterminate, the value is set to
1if FP = 0 (0 if FP > 1). Since we are interested
in being able to flag whole videos as either having or
not having anomalous trajectories, TP and FP frames
are considered to be more significant than FN frames.
Therefore, for our purposes, precision and the Jaccard
index are deemed to be more significant than recall.
Also, as long as the TP frame count is not zero for
videos whose ground truth includes anomalous frames,
the model is considered to have correctly predicted the
video as containing anomalous vehicles.

Labeling anomalies at the bounding box level might
be a more precise way to measure performance, but the
proposed methodology works reasonably well for the
use case exposed here.

4.3. Results

Experiments were carried out to evaluate the per-
formance of the model under various combinations of
parameters. Because of the large number of parame-
ters and unknowns, it was impractical to perform an
exhaustive evaluation of performance for all possible
combinations of parameters, with a large number of
video sequences. Instead, a staggered approach was
followed, conducting three studies of the performance
of the system:

e First, reasonable values were sought for the pa-
rameters s and Py of the anomaly detection model
by disabling advanced techniques (border correc-
tion and bounding box similarity), testing all pos-
sible combinations of parameters s € {3,4,5,6}
and Py € {0.85,0.9,0.95,0.98,0.99}.

e With established values for s and Py, the model
was tested with all combinations of using/not us-
ing border correction, not using bounding box
similarity, or using bounding box similarity with
various deep classifiers (resnetl8, resnet101, vggl1
and vggl9) at a range of similarity thresholds:
{0.1,0.2,0.3,0.4,0.5}. This range was selected
by manually examining the similarity values at
the beginning of a few videos.

e A comparison of the performance yielded by
other state-of-the-art LSAP-based trackers. In
particular, our proposal is compared to two well-
known methods: SORT and BYTE. Also, we
study its performance in videos with added rain
and snow.
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Table 2
Mean values for precision, recall, and Jaccard index, across videos from the first three subsets, for each combination of s and P.
Pgg Pos Poys Poo Psgs
P|R|J|P|R|IJ P R J P R J P R J
s=3 | - - -] - - | - | 0409 | 0263 | 0.219 | 0.275 | 0.327 | 0.171 | 0.222 | 0.335 | 0.147
s=4 | - - -] - - | - | 0.445 | 0.259 | 0.220 | 0.290 | 0.298 | 0.163 | 0.244 | 0.330 | 0.146
s = - - -] - -] - - - - 0.319 | 0.289 | 0.158 | 0.249 | 0.295 | 0.139
s - - -] - -] - - - - - - - 0.265 | 0.257 | 0.133

The first two studies (Sections 4.3.1 and 4.3.2) re-
quire an extensive array of experiments. Because of
this, the system’s performance with different config-
urations in these two studies is conducted with the
videos from the first three subsets. Once the best con-
figuration is determined, the third study (Sections 4.3.4
and 4.3.5) evaluates its performance on all videos from
the four subsets. For more details on the four subsets
of videos, see Section 4.2.

4.3.1. Finding optimal values for s and Py

Results for the first stage are shown in Table 2.
It shows mean values for precision, recall, and Jac-
card index, across videos from the first three sub-
sets, for each combination of s and Pj. Cells with
"-" correspond to configurations resulting in one or
more videos with actual anomalies but no TP frames.
The best values for each performance measure are in
bold, computing the average values across all videos
from the first three subsets (see Section 4.2) for pre-
cision, recall, and Jaccard index. Since one of the ap-
plications of the model might be to flag video snip-
pets as containing anomalous vehicle behaviors, it is
deemed especially important to tune the model so that
no video actually depicting anomalous vehicles has
zero TP frames, since that would mean that video to be
predicted as having non-anomalous trajectories at all.
Consequently, parameter combinations leading to this
are not considered adequate (even if they have better
performance values than others). From Table 2, it can
be seen that the best configuration in terms of precision
and Jaccard index corresponds to s = 4 and Py = 0.95.

4.3.2. Effects of border correction and bounding box
similarity

For the second stage, with the first parameters fixed
to s = 4 and Pys, the performance of the system was
studied when using both border correction and bound-
ing box similarity with various configuration of deep
network and threshold 7, using the videos from the
first three subsets (see Section 4.2). Results can be seen
in Table 3, applying bounding box similarity for all
vehicles, for each combination of backbone and simi-

larity threshold 7. Cells without values correspond to
configurations resulting in one or more videos with
actual anomalies but no TP frames. The best values
for each performance measure are in bold. values for
T 0.4 are slightly better than for 7 = 0.5 for
resnet18 and resnet101. Additionally, for T = 0.4,
resnet18 and resnet101 are tied for recall and the Jac-
card index. ResNet models were found to produce bet-
ter results than VGG models, with deeper models pro-
viding little to no benefit over shallower, more efficient
models. Table 4 shows that with small vehicles it is
slightly preferable to use VGG models, although the
value T = 0.4 is still preferable. This trend changes if
we look at configurations without border correction in
Table 5. In these we observe that the values 7 = 0.2 for
precision and 7" = 0.3 for recall and Jaccard index are
significantly better. On the whole, very few configura-
tions with border correction and bounding box similar-
ity had either better precision or better recall than us-
ing border correction alone, but one of them was found
to have a better average value for the Jaccard index,
which can be considered as a combination of the other
two.

The purpose of applying bounding box similarity
is to limit errors in trajectory tracking. Given that
the model already performed well for vehicles with
large apparent sizes, we hypothesized that the rela-
tively small performance improvement of bounding
box similarity was the result of excessive disruption
to the tracking of vehicles with large apparent sizes.
In order to test this hypothesis, all experiments with
bounding box similarity were run again, but restricting
its application to vehicles of small apparent size (as de-
scribed in Section 3.2, vehicles whose smaller side is
below 2.5% of the largest side of the image). Results
for this array of experiments are shown in Table 4. In
this case, results improve significantly over using bor-
der correction alone for most configurations. However,
no backbone and no threshold T seem to consistently
outperform others, although all configurations with the
best performance used VGG backbones.
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Table 3

11

Mean precision, recall, and Jaccard index, across videos from the first three subsets, for configurations with s = 4, P95 with border correction.

resnet18 resnet101 vggll vggl9
P R J P R J P R J P R J
T=0.1 - - - - - - - - - - - -
T=02 | 0512 | 0240 | 0.238 - - - - - - - - -
T=0.3 | 0503 | 0290 | 0.281 | 0.521 | 0.288 | 0.285 - - - - - -
T=04 | 0494 | 0298 | 0.285 | 0.494 | 0.298 | 0.285 | 0.499 | 0.282 | 0.280 | 0.426 | 0.199 | 0.196
T=0.5 | 0507 | 0298 | 0.284 | 0.507 | 0.298 | 0.284 | 0.413 | 0.213 | 0.201 | 0.405 | 0.213 | 0.201
Table 4
Same as Table 3, but applying bounding box similarity only to vehicles of small apparent size.
resnet18 resnet101 vggll vggl9
P R J P R J P R J P R J
T=01 | 0519 | 0287 | 0.282 | 0.520 | 0.287 | 0.282 | 0.530 | 0.277 | 0.274 | 0.519 | 0.277 | 0.274
T=0.2 | 0516 | 0290 | 0.284 | 0.525 | 0.290 | 0.284 | 0.534 | 0.277 | 0.274 | 0.519 | 0.287 | 0.282
T=03 | 0507 | 0298 | 0.284 | 0.533 | 0.290 | 0.285 | 0.517 | 0.290 | 0.284 | 0.517 | 0.290 | 0.284
T=04 | 0508 | 0.298 | 0.284 | 0.507 | 0.298 | 0.284 | 0.550 | 0.313 | 0.306 | 0.543 | 0.316 | 0.305
T =05 | 0507 | 0298 | 0.284 | 0.508 | 0.298 | 0.284 | 0.508 | 0.298 | 0.284 | 0.507 | 0.298 | 0.284
Table 5
Same as Table 3, but for configurations without border correction.
resnet18 resnet101 vggll vggl9
P R J P R J P R J P R J
T=0.1 - - - - - - - - - - - -
T=0.2 | 0526 | 0251 | 0.241 | 0.550 | 0.283 | 0.279 - - - - - -
T=03 | 0424 | 0223 | 0.203 | 0.514 | 0.324 | 0.304 | 0.477 | 0.248 | 0.237 | 0.540 | 0.245 | 0.236
T=04 | 0448 | 0.259 | 0.222 | 0.448 | 0.259 | 0.222 | 0.481 | 0.292 | 0.280 | 0.491 | 0.292 | 0.282
T=05 | 0446 | 0.259 | 0.221 | 0.445 | 0.259 | 0.220 | 0.507 | 0.315 | 0.294 | 0.507 | 0.314 | 0.293
Table 6

Best performance of the proposed method with different combina-
tions of border correction and bounding box similarity.

border correction | bounding box similarity‘ P ‘ R ‘ J ‘
no no 0.44510.259 [ 0.220
yes no 0.507 | 0.298 | 0.284
no all vehicles 0.550]0.283|0.279
no small vehicles 0.463|0.229|0.216
yes all vehicles 0.5120.240 | 0.238
yes small vehicles 0.550(0.313|0.316

The performance of the model was also investigated
for configurations with bounding box similarity but
not border correction. When applying bounding box
similarity only for small vehicles with apparent size,
results were consistently worse than also using bor-
der correction (data not shown). However, when ap-
plying it to vehicles of any size, some configurations
outperformed border correction alone, as shown in Ta-

ble 5, possibly because boxes of vehicles that are ap-
pearing/disappearing naturally tend to have lower sim-
ilarity scores, thus having an effect similar to border
correction. In this case, ResNet models outperformed
VGG models, and deeper models produced better re-
sults.

According to these results, we determine the best
configuration: use border correction and bounding box
similarity just for vehicles of small apparent size, with
threshold 7 = 0.4 and network vggl1. These results
are shown in Table 6, where the results of the other
tables discussed in this section are included in an ab-
lation study (third, fifth and sixth rows are best re-
sults from Tables 5, 3 and 4, respectively), showing
the relative performance gains of using each configu-
ration of parameters. For the sake of completeness, ad-
ditional experiments were carried out to test the sys-
tem’s performance with all possible combinations of
using/not using border correction and bounding box
similarity. While the table shows progression in per-
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formance from the vanilla system to the best combi-
nation of border correction and bounding box similar-
ity, this progression does not seem to represent a lin-
ear progression of gains in performance, reflecting that
the effects of both border correction and bounding box
similarity interact in non-trivial ways.

4.3.3. Best configuration

The configuration with the best precision and Jac-
card index is the one with border correction and bound-
ing box similarity applied only to vehicles with small
apparent size, using the vggl1 backbone, and similar-
ity threshold T = 0.4. For this configuration, Table 7
shows per-video performance figures, for all videos
from the first three subsets (see Section 4.2) using
border correction and bounding box similarity applied
only for vehicles with small apparent size, backbone
vggll, and similarity threshold 77 = 0.4. Please note
that formulae for P, R, and J might be indeterminate for
videos with no frames labeled as anomalous. In such
cases, we set the value to 1 if FP = 0, and O other-
wise: the algorithm performed perfectly in such videos
if there were no false positives. As explained in Sec-
tion 4.2, the model struggles with videos of intersec-
tions, but videos for intersections (1a-SK_1, 1a-SK_4,
2-SK_1, 2-SK_4, 3-SK_1, and 3-SK_4) are included
for comparison.

The information in the table about the TP, FP, TN
and FN frames is also shown in Figure 3 in a more vi-
sual way: each video is represented by a horizontal bar
whose length is its number of frames. These are the
videos used to compute the statistics for Tables 2, 3,
4, 5 and 6. For each video, its length is expressed in
frames. Frames can be labeled as TP (bright red), FP
(dark red), TN (bright green) and FN (dark green). Ac-
tually anomalous frames (ground truth) are the union
of TP and FN frames, comprising one or two contigu-
ous segments in several videos. For Videol, the anoma-
lous segments are the periods when a car is backing
onto a busy road. For Video2 and Video4, the anoma-
lous segment includes cars engaging in counterflow
driving. For seq. 2 - SK_I and SK_4, the anomalous
segment depicts a car stopped in the middle of an in-
tersection, flanked by fast traffic. All other videos lack
anomalous segments. The bar is colored according to
the status of each frame: TP frames are bright red, FP
frames are dark red, TN frames are bright green, and
FN frames are dark green. Given the above configu-
ration, the frame-by-frame results for the tested video
sequences are shown in Figure 3. Videol, Video2, seq.
2, cam. SK_I and seq. 2, cam. SK_4 contain real, well-
detected anomalies (i.e. true positives). False positives

typically represent very brief segments, and by analyz-
ing the frames in which the false positives appear, two
cases are deduced: the first time that, after the start of
the sequence, any vehicle uses a lane of the road or an
intersection, the system is likely to mark those vehicles
as anomalous; the second case is when many overlap-
ping trajectories accumulate in the same area (e.g. an
intersection) due to the comparison between the trajec-
tories of some vehicles with very different overlapping
trajectories.
Specific vehicles with trajectories classified as anoma-

lous by the model are shown in Figure 4:

e Left image: a vehicle is backing onto a busy road.

e Center image: a vehicle driving in opposite direc-
tion.

e Right image: a vehicle is stopped in the middle of
a busy intersection.

Cyan-colored lines on the center of each vehicle
bounding box represent the N = 5 nearest neighbors
involved in obtaining A;(¢) value for each vehicle at
time . Each line goes from the center of the vehicle’s
bounding box to the center of the bounding box of one
of the nearest neighbors (these bounding boxes are typ-
ically from past frames, and they are not shown in the
current frame to avoid cluttering the scene).

4.3.4. Comparison with other models

Finally, the model was tested by substituting the cus-
tom tracker with two well-known generic LSAP-based
trackers: SORT and BYTE. In this case, once the best
configuration has already been established for our pro-
posal, we test the performance of the models with all
videos, including the fourth subset (see Section 4.2)
with 225 one-minute video clips. As border correction
is applied outside the tracking algorithm, both trackers
were tested with and without border correction, find-
ing that border correction can enhance the performance
of both. Without border correction, SORT is superior
to BYTE in all metrics. However, BYTE’s metrics are
more significantly boosted than SORT’s, to the point
that BYTE’s precision surpasses SORT’s with border
correction, while its recall and Jaccard index get close
but do not surpass SORT’s.

Table 8 shows average precision, recall and Jac-
card index across all videos for six different possibil-
ities: our best configuration (with vggl1l and similar-
ity threshold 7" = 0.4, only for vehicles with small ap-
parent size), SORT and BYTE, each one either with
or without border correction, from all six evaluated
methods. The best configuration of the custom tracking
algorithm outperforms both SORT and BYTE for all
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Table 7

Detailed performance values (TP, FP, TN, EN, Precision, Recall, Jaccard index) for the best configuration.

vid.1 vid.2 | vid4 | la-SK_1 | 1a-SK_4 | 2-SK_1 | 2-SK_ 4 | 3-SK_1 | 3-SK_4 | highway | streetLight | traffic
TP 60 7 3 0 0 395 108 0 0 0 0 0
FP 19 1 0 136 36 14 0 21 39 0 3 0

TN 168 1046 807 2283 2383 512 521 999 981 1700 3197 1570
FN 66 91 139 0 0 26 318 0 0 0 0 0
P 0.759 | 0.875 1 0 0 0.966 1 0 0 1 0 1
R 0.476 | 0.071 | 0.021 0 0 0.938 0.254 0 0 1 0 1
J 0.414 | 0.071 | 0.021 0 0 0.908 0.254 0 0 1 0 1

Table 8

Mean values for precision, recall, and Jaccard index across all videos, for configurations with s = 4, Pgs and using either SORT or BYTE
instead of the custom tracking algorithm.

SORT BYTE OURS
P R J P R J P R J
no border correction | 0.541 | 0.532 | 0.530 | 0.460 | 0.453 | 0.452 | 0.592 | 0.583 | 0.581
border correction | 0.577 | 0.568 | 0.567 | 0.526 | 0.512 | 0.512 | 0.619 | 0.607 | 0.606

Table 9

Pairwise Cochran’s Q tests between distributions of correctly classified frames for the best method with border correction and all other methods
in Table 8.

OURS, bord ti
or ?r coffection Cochran’s Q statistic| p-value
correct incorrect
t 415912 80
SORT, border correction | " 215.112 1.05E-48
incorrect| 402 1764
t |413956 197
BYTE, border correction o 1827.757 0
incorrect| 2358 1647
t |415235 342
SORT, no border correction |- oo 382.244 4.03E-85
incorrect| 1079 1502
t [413601 380
BYTE, no border correction .correc 1759.744 0
incorrect| 2713 1464
t 415602 320
OURS, no border correction e 148.899 3.01E-34
incorrect| 712 1524
traffic
streetLight
highway
seq. 3a, cam. SK_4
seq. 3a, cam. SK_1
seq. la, cam. SK_4
seq. la, cam. SK_1
seq. 2a, cam. SK_4
seq. 2a, cam. SK_1 — TP
Video4 — P
Video2 = TN
Videol — N
0 500 1000 1500 2000 2500 3000

frame number
Fig. 3. Graphic depiction of the results for our best method with border correction and bounding box similarity (see Section 4.3.3 for details).

three metrics in both modalities (with and without bor- of the tracking algorithm, tests with and without bor-
der correction). As border correction is applied outside der correction were carried out. For comparison, values
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mm flagged as anomalous

1 bounding box from detection stage

[ potentially anomalous A, ()

lines to neighbors

o tracking identifier

Fig. 4. Predictions made for different videos in an specific instant. Left to right: Videol (frame 247), Video4 (frame 873) and seq. 2 SK_4 (frame

672).

Fig. 5. Lower-left corner of the frame 150 of Videol with detections and trajectory identifier, same excerpt with synthetically added rain, and

with snow.
Table 10

Comparison of mean values for precision, recall, and Jaccard index,
across all videos, for the best method in different conditions.

Weather|P|R|J|
no changes | 0.619 | 0.607 | 0.606

added rain 0.582 | 0.572 | 0.572
added snow | 0.559 | 0.546 | 0.546

are shown for the best configuration with our custom
tracker (using box similarity with vggl1 and similarity
threshold 7" = 0.4, only for vehicles of small apparent
size). The best values for each performance measure
are in bold.

To validate the statistical significance of these re-
sults, we perform an array of statistical tests to vali-
date that the distributions are different. However, in or-
der to have a higher level of statistical significance, the
statistical tests are performed not at the level of whole
videos (237 videos in total) but over the population of
all frames from all videos (418158 frames in total). At
the frame level, a useful way to characterize each of
these six methods is to consider the associated Boolean
distribution that represents the set of frames correctly
classified by that method (i.e., frames being either TP
or TN). The Cochran’s Q test [74] assesses whether
there is a statistically significant difference between bi-

nary distributions. To test whether these distributions
are statistically different, we run pairwise Cochran’s
Q tests between the distribution for the best method
and all other methods. The resulting very low p-values
(presented in Table 9, together with the contingency
table for each test) mean that the distribution of cor-
rectly classified frames with the best method is statisti-
cally different from the other ones with a high level of
confidence. For each test, the contingency table (num-
ber of frames correctly/incorrectly in each test) is pro-
vided in the third and fourth columns, and the resulting
Cochran’s Q statistic and associated p-value in the fifth
and sixth columns. In all cases, the p-value is effec-
tively 0, meaning that the distributions are statistically
significant.

4.3.5. Rain and snow

As an anomaly detection system for outdoor cam-
eras, it is also desirable to test its performance for traf-
fic videos with rain and snow. The Aalborg dataset [75]
provides real traffic videos in raining and snowing con-
ditions. However, only select frames (i.e. not the full
videos) are readily available, and all videos from this
dataset depict intersections rather than highways. In-
stead, we tested the system’s performance by artifi-
cially adding rain and snow to all the videos (from all
four subsets) using a publicly available library (https:
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//github.com/aleju/imgaug). Figure 5 shows the lower-
left corner of frame 150 for Videol with synthetically
added rain and snow. Performance results (average pre-
cision, recall and Jaccard index across all videos from
all four subsets) are shown in Table 10: rain and snow
degrade performance, but not dramatically so.

4.3.6. Limitations

The previous sections explore the model’s perfor-
mance of the model under good favourable conditions.
However, it is also necessary to discuss the limitations
of the proposed model. An important restriction is that
all used videos have reasonably high framerates, trans-
lating into relatively small and smooth vehicle dis-
placements from one frame to the next. When applying
the method to videos with significantly lower framer-
ates (from half to a third), we found the performance to
be substantially poorer, as the various tested tracking
subsystems failed to accurately track trajectories for
very fast vehicles and vehicles of small apparent size.
As a result, the statistical distribution of anomaly val-
ues significantly changed, dramatically increasing the
number of false negatives.

Other limitations come from using a generic object
detector (yolov5) as the detection stage: as the detector
was trained on generic image datasets with very lim-
ited ranges of traffic conditions, the detecting perfor-
mance is severely degraded in various scenarios:

e For vehicles of very small apparent size (e.g.
when using a wide camera aperture, or when cam-
eras are placed relatively high).

e For overlapping vehicles of small apparent size
(e.g. with very dense traffic, when the viewing an-
gle does not minimize vehicle overlapping in the
image).

e For unfocused vehicles (this is especially serious
for vehicles of small apparent size).

e For scenes with bad illumination (e.g., videos
recorded at night).

Finally, the development of the system has been
done with flexibility and ease of data collection in
mind, resulting in a Python implementation that is sig-
nificantly slower than it could be. The full-fledged sys-
tem (using bounding box similarity and border correc-
tion) takes about 3.5 minutes to process a one-minute
video clip in a machine with an Intel i7 processor and
a 3080 GPU. Consequently, it cannot be used for real-
time detection in its current state.

5. Conclusions

An approach to detect anomalous, wrong-way vehi-
cle trajectories from traffic video sequences has been
proposed in this work. This proposal computes the
video frame by frame, and it is based on the veloc-
ity vectors of those detected trajectories. The proposed
methodology is composed of several steps. First, the
detection of the vehicles that appear in a frame is
addressed by a component base on a deep learning
model. Then, the trajectories of the detected vehicles
are tracked. To enhance the performance of the tracker,
the impact of adding techniques such as border correc-
tion and bounding box similarity has been analyzed.
Once trajectories have been tracked, the velocity vector
of each trajectory is computed and compared with ve-
locity vectors from other spatially adjacent trajectories.
This comparison aims to detect those unusual (that is,
anomalous) trajectories.

Different experiments have been conducted to test
the performance of the approach. A set of synthetic
and real sequences and several methods from state-of-
the-art have been considered in the comparison. Re-
sults demonstrate our proposal is suitable for detect-
ing anomalous trajectories such as vehicles driving in
opposite directions or backing onto a road.

Future works include the addition of a specific pro-
cedure to manage intersecting roads. In these situa-
tions, the velocity vectors of the normal trajectories ex-
hibit two or more different modes associated with the
allowed directions for the cars to traverse the cross-
roads. In other words, the velocity vector distribution
is multimodal. This adaptation could be done by mod-
eling each of the modes with a probabilistic mixture
component, or any other unsupervised learning model
that finds the clusters in a multimodal input distribu-
tion.

Another line of future work is the optimization of
the implementation: if it were fast enough to be applied
in real-time, it would allow for the online detection
of anomalies, as at each time step, no information is
used to determine if a trajectory is anomalous. This can
be accomplished by reimplementing the deep learning
parts of the pipeline in TensorRT, as well as carefully
reimplementing the data structures used for trajectory
tracking and anomaly detection, bounding their sizes
and optimizing them for fast access times.

While the system as currently proposed works rea-
sonably well in various weather conditions, another av-
enue for improvement is to optimize the off-the-shelf
object detector. It can be fine-tuned to reliably detect
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individual vehicles in currently problematic scenarios
such as nighttime, unfocused cameras, small apparent
size and the high overlapping of vehicle silhouettes that
can arise from a combination of the camera angle and
dense traffic. In a related line of work, it should also
be possible to tweak the trajectory subsystem to track
trajectories at lower framerates reliably. This would
enable application in real-time with less optimization
work, and also application to video feeds that are nat-
urally available at lower framerates.

To test other classification approaches we plan to
test dynamic neural classifications [76], fast learning
[77] and ensembles of classifiers [78], as well as to
study the possibility of processing 3D data [79, 80].
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