
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Article scientifique Article 2011 Accepted version Open Access

This is an author manuscript post-peer-reviewing (accepted version) of the original publication. The layout of

the published version may differ .

High-Level Petri Net Model Checking with AlPiNA

Hostettler, Steve Patrick; Marechal Marin, Alexis Ayar; Linard, Alban; Risoldi, Matteo; Buchs, Didier

How to cite

HOSTETTLER, Steve Patrick et al. High-Level Petri Net Model Checking with AlPiNA. In: Fundamenta

informaticae, 2011, vol. 113, n° 3-4, p. 229–264. doi: 10.3233/FI-2011-608

This publication URL: https://archive-ouverte.unige.ch/unige:18361

Publication DOI: 10.3233/FI-2011-608

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:18361
https://doi.org/10.3233/FI-2011-608

HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA

STEVE HOSTETTLER AND ALEXIS MARECHAL AND ALBAN LINARD
AND MATTEO RISOLDI AND DIDIER BUCHS

Centre Universitaire d’Informatique, Université de Genève
Route de Drize 7, CH-1227 Carouge, Switzerland

Abstract. Although model checking is heavily used in the hardware domain,
it did not take off in software engineering yet. One of the possible reasons is that
software models are very complex. They integrate many dimensions such as data
types and concurrency, leading to the infamous state space explosion problem.
This article introduces the Algebraic Petri Nets Analyzer (AlPiNA), a symbolic
model checker for High-level Petri nets. It is comprised of two independent
modules: a GUI plug-in for Eclipse and an underlying model checking engine.
AlPiNA’s goal is to perform efficient and user-friendly model checking of large
software systems. This is achieved by separating the model and its properties
from the optimisation artifacts. This article describes the features that AlPiNA
provides to the user for designing models and validating properties. It also
presents the techniques and artifacts used for tuning validation performance,
along with some theoretical background.

1. Introduction

Model checking consists in verifying whether a model satisfies a given prop-
erty, often expressed in temporal or modal logic. Model checking implies fully
automated property proving. When a property does not hold on a model, the
user gets a counterexample. Model checking requires expressing models using for-
malisms. Several approaches are possible for this. Using high-level formalisms
(e.g., [Jen97a, Vau87, Rei91, BG00]) users can specify complex models in a com-
pact and flexible way. The model checking benefits from the richness of information

Key words and phrases. System design and verification, Higher-level Nets Models, Algebraic
Petri Nets, State Space Generation, Computer Tools for Nets, Model Checking.

S. Hostettler and A. Marechal were partially supported by the COMEDIA project funded by
the Hasler foundation, project #2107.

A. Linard was partially supported by the BRINTA project funded by the Fonds National
Suisse de la Recherche Scientifique, #200021-130159.

This article was published in Steve Hostettler, Alexis Marechal, Alban Linard, Matteo Risoldi,
and Didier Buchs. High-Level Petri Net Model Checking with AlPiNA. Fundamenta Informaticae,
113(3-4):229–264, 2011.

1

2 HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA

of such models. This article describes the Algebraic Petri Nets Analyzer (AlPiNA),
a tool for model checking a particular high-level formalism called Algebraic Petri
nets (APNs) [Vau87, Rei91]. In APNs, the model is composed of a Petri net (PN)
and of Algebraic Abstract Data Types (AADTs). PNs express aspects related
to causality, non-determinism and concurrency. AADTs describe data and their
manipulation. AlPiNA is an integrated environment for modelling and checking
systems. It pursues two main goals. The first is to perform reachability analysis
on finite models in a user-friendly and efficient way. The second is to scale up to
large models without requiring the end user to understand the underlying model
checking techniques. AlPiNA provides a suite of graphical and textual editors in-
tegrated in the Eclipse environment. Its modular architecture includes an engine
that makes use of several optimisations to improve model checking performance. In
the current release, these optimisations are based on information about the model
provided by the user via a Domain Specific Language (DSL). AlPiNA is available
under the GPL license at http://alpina.unige.ch. Fig. 1 gives an overview of

Designing the
model

+

Performing the
validation

+

property does not hold property holds

counter-example

Model checking

Scaling up
the model

+

optimisation meta-data

model must
be enlarged

model is large
enough

Figure 1. Model checking process using AlPiNA

AlPiNA’s approach to the model checking activity using Business Process Modeling
Notation (BPMN). First (“Designing the model”) the user designs a model of the
system to analyse, containing also a set of properties that are expected to hold
on the system. Usually the first versions of the model are rather small. Then
(“Performing the validation”) AlPiNA either confirms that the properties hold, or
reports a violation. In the latter case, it provides a counterexample, i.e., a state
that violates the property. The user may use the counterexample to refine the
model of the system or to correct the property. Once these small versions of the
model are correct, bigger models are considered. In order to handle the increase
in the state space size, the user may provide optimisation information to improve
the validation performance (“Scaling up the model”). The advantages of AlPiNA

include its ability to manage large state spaces and the separation of concerns
between modelling and optimisation. The former is achieved via the use of a par-
ticular approach to model checking, called Symbolic Model Checking (SMC). The
latter is the result of the separation of the modelling and optimisation languages.
As a matter of fact, modelling and optimisation are two independent activities:

HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA 3

AlPiNA can perform model checking even without optimisation, although this lim-
its the performance and the complexity of the models that can be handled. This
article begins by illustrating the steps of APN model checking in AlPiNA shown
in Fig. 1. For each activity of the process, details about the underlying theory
and techniques will be given. Section 2 will describe the model design activity.
Section 3 will talk about the validation. Section 4 will talk about optimisation. In
Section 5, we will compare the performance of AlPiNA with other model checkers
that use a variety of approaches. Section 6 will describe AlPiNA’s architecture.
Finally, Section 7 will wrap up the article with conclusions and perspectives for
future developments. Related work will be discussed throughout the article as the
subject unfolds, instead of in a dedicated section.

2. Designing the model

AlPiNA covers both activities of designing models and performing validation,
shown in Fig. 1. This section gives an informal overview of the model design
activity, which is outlined in Fig. 2. The modelling task is twofold:

• first, users design the system to verify. This requires the definition of both
the control flow and the data types of the system. In AlPiNA, APNs are
used to express this information;
• second, users write properties that are expected to hold on the sys-
tem. In AlPiNA, properties are expressed using an extension of first order
logic [BE93], which allows verifying invariants.

Defining Data
Types

Defining the
control flow

Creating
the properties

Designing the model

Figure 2. Expanded view of the activity “Designing the model" of
Fig. 1

This section will describe the design process with the help of a toy example,
which is included in AlPiNA’s example repository along with other standard mod-
els.1 We first focus on the modelling formalism used in AlPiNA: Algebraic Petri
nets (APNs).

1The example can be loaded in AlPiNA by following the menu:
File � New � Example � AlPiNA � SimpleNet � .
All editors, UI elements and menus mentioned in the remainder of this sec-
tion are available when the AlPiNA perspective is enabled via the menu
Window � Open Perspective � Other � AlPiNA � .

4 HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA

APNs [Vau87, Rei91] are a combination of Petri nets (PNs), modelling concur-
rency and non-determinism, and Algebraic Abstract Data Types (AADTs) [EM85]
modelling the data types of a model. PNs are used to model and analyse discrete
systems where notions such as concurrency, synchronisation and interaction among
components play a central role. The state of a system is modelled using places
(i.e., system variables). The system’s evolution is represented by transitions.

In the original formulation of PNs, called Place/Transition Petri nets (PTs),
only one type of token with a single value exists, called the black token. This
restriction limits the expressiveness of PTs. Modelling complex systems using
PTs leads to huge models that may be difficult to read and maintain. In other
variants of PNs, called High-level Petri nets (HLPNs), tokens have an internal
structure. This greatly increases the modelling power compared with PTs. APNs
are a member of the HLPN family. Other examples of HLPNs are Coloured Petri
nets (CPNs) [Jen97a] and Symmetric Petri nets (SNs) [DIPVM02] (formerly known
as “Well-Formed Petri nets”). APNs in a way can be compared to CPNs, but they
replace colour sets with algebras defined using AADTs.

2.1. Defining Data Types. AADTs describe data types in an abstract way,
i.e., independently from a particular implementation. They can be seen as con-
tracts that specify types and their values. AADTs define sorts, i.e., classes of
objects, via their signature. They also define the observable behaviour of func-
tions operating on the sorts. Functions are divided into two categories: generators
and operations. Generators are the minimal set of functions on the sort that are
necessary to construct any distinct element of that sort.

The observable behaviour (i.e., the semantics) of the functions is given by a finite
set of axioms in the form of conditional equations. The equations and conditions
may contain variables that are universally quantified. There are several ways
to derive semantics from the axioms: denotationally (by defining a morphism
to another algebra, e.g., the natural numbers), axiomatically (i.e., by equational
logic) and operationally (i.e., as sequences of computational steps). AlPiNA takes
the latter approach by using Term Rewriting (TR) [Ter03]. Term Rewriting uses a
set of directed rewriting rules. These are derived from axioms specified in the data
part of the model, by interpreting them from left to right. The derived rewriting
rules must constitute an orthogonal (thus confluent) and terminating rewriting
system, i.e., rules must be left-linear and non-overlapping, and any term must
have a unique normal form. The normal form of a term is reached when no further
rewriting rules can be applied on that term.

Example 2.1. The AADT for natural numbers is classically defined as a sort
called nat with two generators, zero and suc (the successor). It also declares op-
erations on naturals; for the sake of the example, let us declare just one plus

operation for the addition:

HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA 5

zero : −> nat
suc : nat −> nat
plus : nat, nat −> nat

The axiomatisation a1, a2 shown below gives the semantics of plus following the
Peano arithmetic. Two directed rewriting rules r1 and r2 can be derived from a1

and a2:
a1 : plus(x, suc(y)) = suc(plus(x, y)) r1 : plus(x, suc(y)) −> suc(

plus(x,y))
a2 : plus(x, zero) = x r2 : plus(x, zero) −> x

Let us suppose that one wants to represent the 2+1 operation on naturals. The value
2 is represented as suc(suc(zero)) (i.e., twice the successor of zero). Likewise, suc
(zero) represents the value 1. The whole operation is represented by the term plus

(suc(suc(zero)), suc(zero)), which is rewritten as suc(suc(suc(zero))) (i.e., the
natural value 3) by application of r1 followed by r2.

Iter theory [CDE+02] is supported in order to enable shorthand notation for
repeated application of the same operation on a term. Thus, in order to represent
the natural number 100, one can use the term suc^100(zero) instead of writing a
long sequence of suc(suc(suc(...))). �

AlPiNA also supports order-sorting [GM92]. A subsort is a sub-set of the elements
of the parent sort. The functions defined in the parent sort are preserved for the
elements of the sub-sort. Subsorting is mainly used to avoid partial functions. For
instance, the axiomatisation of the division of natural numbers div : nat, nat

−> nat requires a non-zero condition on the second operand. An elegant way to
solve this problem is to make div a total function. For that, we require the second
operand to be of sort nznat, which is a subsort of nat that does not contain zero.
The generators and rewriting rule become:
zero : −> nat
suc : nat −> nznat
div : nat, nznat −> nat

Using AADTs brings several benefits to the end-user, especially when compared
to more ad hoc approaches (e.g., native types). Among other things, AADTs
allow users to reason on data types in a general and abstract way. For example,
axiomatisation enables theorem proving. Moreover, the inductive nature of AADT
is well-suited to model complex structures such as lists, stacks, sets or trees.
Inductive data structures are indeed used in AlPiNA for optimisation purposes as
will be shown in Section 4. Fig. 3 shows an excerpt from the naturals AADT using
AlPiNA’s syntax. The complete file is named Naturals.adt and can be found in the
SimpleNet example (as well as in any new AlPiNA project). The Naturals AADT
begins by importing the definition of other AADTs, which are used in some of the
operation definitions. Then it defines a sort called nat and two generators zero

and suc. All values in the algebra can be represented by combining these generators.

6 HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA

The third section declares the operations. The behaviour of operations is defined
in the Axioms section. The AADT ends with the declaration of the variables used in
the axioms. AlPiNA’s data types provide more features than this example shows, like
sub-sorting, polymorphism or data type modularity similar to that of [BG00]. The
AADT editor provides syntax highlighting and auto-completion. An interactive
term rewriter is included where one can specify a term and ask for its normal form.
This is useful while debugging a data type definition.

2.2. Defining the control flow. While AADTs define the data types of the sys-
tem, its control flow is described by APN places, transitions and arcs. Places
usually represent process states or system resources. Each place contains a multi-
set of values of a single sort, i.e., a set allowing multiple occurrences of the same
value. For instance, the multiset [suc(zero), 2∗zero] contains once the value 1 and
twice the value 0. An empty multiset is denoted by []. For the user, defining a
multiset by explicit enumeration of its contents may be tedious. Thus, in addition
to the standard way of defining multisets, AlPiNA supports multiset definition by
intension. For instance, let us suppose one wants to represent the multiset of natu-
rals that contains every number between 0 and 100 twice. The standard definition
would be an enumeration like [2∗zero, 2∗suc(zero), ..., 2∗suc^100(zero)]. The
definition by intension is much more compact: [2∗($n : le($n, suc^100(zero)))]

where le is the less than or equal to operation.

Figure 3. The Naturals AADT

The multiset contained in a
place is called the marking of
that place. It represents the
state of the corresponding re-
source. The set of place mark-
ings is called the marking of
the APN and it represents the
state of the system. Note that
there is no way in PNs to dis-
tinguish a process state from
a resource.

Like places, arcs are la-
belled with multisets. A tran-
sition may consume resources
(i.e., tokens) according to the
labelling of its input arcs. It
may also generate resources
according to the labelling of
its output arcs. A predicate
called guard may also be at-
tached to each transition. A guard is a conjunction of term equations

In transition firing, the variables on the input arcs are bound to the values

HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA 7

consumed from the input places. This is called the binding of the transition. Note
that we do not consider bindings that do not satisfy the input arcs. A transition
can be fired if its binding satisfies the guard. The binding may be used to compute
the output values of the transition according to the terms attached to the output
arcs.

To define the control flow, AlPiNA offers a graphical interface, where places,
transitions and arcs are annotated with algebraic terms. Fig. 4 is a screenshot of
the graphical interface. A tool palette on the right allows the user to create Petri
net elements (i.e., places, transitions, arcs). The properties of the elements can be
edited using the standard Eclipse Properties view (bottom part of the screenshot).
For instance, in Fig. 4, the place P1 is selected, and the Properties panel shows its
name, sort and the contained multiset.

Figure 4. AlPiNA’s GUI showing an example APN

Example 2.2. Fig. 4 shows the net of a toy example. This APN is comprised of
two places P1 and P2 and a transition T. P1 initially contains two tokens: suc^3(

zero) and suc^4(zero). P2 is initially empty. T consumes a value from place P1

binding it to $x. It also produces one token suc($x) in the place P2. There are two
possible bindings for firing T: $x := suc^3(zero), which will produce suc^4(zero) in
P2; and $x := suc^4(zero), which will produce suc^5(zero) in P2. In this example,
T can only be fired twice, after which there will be no available tokens in P1 to
obtain a binding for $x. �

2.3. Property definition. To perform verification, it is necessary to specify the
properties that the design must satisfy. There are two main families of properties:

8 HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA

invariant/reachability properties:: they are evaluated on each state of
the system. They are usually expressed with first-order logic. In this case,
the predicates are defined over the individual states of the system, using a
tool-specific language.

temporal properties:: they assert how the system evolves over time.
Therefore, they are evaluated on sequences of states. They require to
extend the properties defined over single states by using temporal logic,
such as Computation Tree Logic (CTL) [CE82] or Linear Temporal Logic
(LTL) [Pnu77].

The added expressiveness of temporal properties comes at a cost. First, it
requires expertise for the user to write and understand properties. Second, it
requires more advanced model checking techniques and is more time and memory
consuming.

Figure 5. Property definition example

In AlPiNA, we have chosen to implement a property language that is roughly
equivalent to first-order logic with deadlock detection. This language was inspired
by that of Helena [PE09], a well-known model checker for HLPNs, but was adapted
to benefit from the flexibility of AADTs. This section presents an example of
property definition, which shows some of the features of the language. A complete
description of the syntax and semantics of the property language is out of the
scope of this article and can be found in [MB10].

Like all text-based editors in AlPiNA, the property editor provides syntax high-
lighting and automatic completion. A property is a Boolean expression that must
be evaluated to true for every state of the model. If there is a reachable state
where the property does not hold, a textual representation of this state is returned
as a counterexample2.

2As of version 1.0, only one counterexample is returned and the tool does not provide a trace
of the transitions fired to reach it.

HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA 9

Example 2.3. Fig. 5 shows a screenshot of the property editor containing property
definitions for our toy example. The property file starts with the import of the used
AADTs and APNs. The Expressions section defines Boolean predicates that can
be used to form the property. This is done in the Check section by combining the
predicates via Boolean operations. In Fig. 5, the empty predicate states that the
tokens in places P1 and P2 must have different values. The atMost predicate states
that there are at most two tokens with value 4 or 5 in P1 (the card operator yields
the cardinality of a multiset). The notEmpty predicate states that P1 is never empty.
The property @empty & @atMost checks that both expressions hold on every state of
the system. The property definition does not have to use all predicates defined in
the file: in this example, notEmpty is defined but not used in property check. The
file ends with variable declarations. �

Property checking in AlPiNA is launched via a Check property button on the
tool palette (seen in Fig. 4). Checking the property defined in Fig. 5 will produce
a counterexample, i.e., a state where the property does not hold: < P1: [1∗suc^4(
zero)]; P2: [1∗suc^4(zero)] > This state indeed violates the empty predicate. It
can be reached from the initial state by firing T with a binding of $x := suc^3(zero

).

3. Performing the validation

Once a model and its properties have been defined, the next logical step is to
check whether the model satisfies the properties. Unlike model design, valida-
tion is an activity that is typically automated. Fig. 6 gives an overview of the
validation process in AlPiNA. First, a pre-processing step prepares the model for
state space computation. During this step, static checks (i.e., static type checking)
are performed on the model. Also, the pre-processor unfolds the domain of the
free variables and the sets of terms declared by intension. Namely, it instantiates
free variables with each value of their domain (either completely or up to a given
bound). After that, the model checker computes the reachable state space, i.e., the
set of the possible states the system can reach from the initial state. Finally, the
properties are checked on the state space. If the property does not hold for all
states, then AlPiNA returns one of the states that violate it.

This section will now go into the details of AlPiNA’s approach to model check-
ing. We will see the theoretical foundations as well as the state space encoding
techniques. Finally, we will describe how property checking is performed.

3.1. Managing complexity. One of the major issues of model checking is
the State Space Explosion (SSE) problem [Val98]. A naive approach to model
checking is to compute sequentially all the states that are reachable from the ini-
tial state, and to check whether a property holds for each of them. To know that
a state has already been visited, the model checker has to keep track of the whole
state space. Usually, this is done using some sort of map of states. This requires

10 HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA

Pre-processing State space
computation

property
check

Performing the validation
counter-example

Figure 6. Expanded view of process “Performing the validation"
of Fig. 1

an amount of memory that is linear to the number of states. Although this tech-
nique is practical for a few states, it does not scale up. The main reason is that
the number of states often grows exponentially with the size of the model — and
so does the required amount of memory — thus, becoming intractable. This is
particularly true of models with a large set of independent components. This is
an active research field, and authors came up with many different techniques to
mitigate this issue. For instance, partial order reductions [God91, Val92] exploit
the independence of concurrently executed tasks. Another approach is symbolic
model checking, the technique used in AlPiNA.

3.2. Symbolic Model Checking. One way to avoid SSE is to use a state space
encoding with a lower complexity than the explicit enumeration of states. McMil-
lan [BCM+92] realised that using Bryant’s Reduced Ordered Binary Decision Di-
agrams (ROBDDs) [Bry86] — a variant of Decision Diagrams (DDs) — it was
possible to encode the transition relation symbolically. This approach is called
Symbolic Model Checking (SMC). Because ROBDDs are well-suited to express
regularity in the state space of circuits and protocols, they provide an encoding
that is usually logarithmic to the number of states in the best case and linear in the
worst. Many authors improved the original idea: Ciardo et al. [CLS00], Couvreur
et al. [CEPA+02, CTM05] have checked models having up to 102500 states. The
main drawback of these approaches is that model design is influenced by consider-
ations about the model checking performance. Because of this, the model designer
must have a deep knowledge of the model checking techniques.

AlPiNA extends these works to APNs. While doing so, it clearly separates the
model and the information for model checking optimisation. For instance, previous
works such as [HKPAE10] require to statically unfold an HLPN (i.e., transform it
into a PT with an isomorphic transition relation, as in [Mur89]) before computing
the state space. AlPiNA handles a particular kind of unfolding (see 4.1) but it is
not mandatory. This allows AlPiNA to handle models that cannot be completely
unfolded (e.g.,models with infinite data types). The commutative diagram in
Fig. 7 explains the symbolic approach and its correctness principle. Let S be the set
of all possible markings of an APN, and S0 ∈ P(S) the set of its initial states. The
set τ(S0) of states reachable from S0 can be calculated by applying τ , the transitive

HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA 11

closure of the application of the set of transitions T on S0 (top-left part of Fig. 7).
The calculated sets of states must be encoded in some domain D (encS : P(S)→ D,
link between the top and bottom part of Fig. 7). The transitive closure is encoded
as well (encT (τ) : D → D, bottom-left part of Fig. 7). The central point of SMC
is the choice of a D that can encode sets of states with a sub-linear complexity.
McMillan proposes ROBDDs as the co-domain for encS and encT . Couvreur et
al. propose to use Data Decision Diagrams (DDDs) for the same purpose, as
well as DD-Homomorphisms (DDHoms) to encode encT . As computing the state
space is not enough, it is also necessary to encode the check of the properties.
The right part of Fig. 7 illustrates the verification of a property Φ on the state
space and its encoding encP (|=φ). Symbolic Model Checking approach proposes to
apply encP (|=φ) on the symbolic state space encT (τ)(encS(S0)). A DDD encodes
a set of sequences of variable assignments. Each sequence encodes a state. Some
variables assignments may be shared by several sequences, therefore modifying
one assignment may impact a set of states. To manipulate DDDs, one can use
set operations and user-defined functions. These functions are homomorphic with
respect to the union operation.

P(S)
τ−−−→ P(S)

|=φ−−−→ P(S)yencS yencS yencS
D encT (τ)−−−−→ D

encP (|=φ)−−−−−→ D

Figure 7. Symbolic Model Checking

DDDs have several relevant properties.
For instance, their size — i.e., the num-
ber of arcs and nodes — does not depend
directly on the quantity of stored data.
This size can be exponentially smaller
w.r.t. the actual size of stored data. Be-
cause a DDD is a canonical representa-
tion of the set of data its represents, im-
plementations can represent each set of
data uniquely in memory. This is usual in DDs since ROBDDs, using the
flyweight design pattern [GHJV95] (also known as hash-consing [Got74]). Be-
cause of the canonicity and unicity of their representation, the equality of two
DDDs is checked in constant time. This property enables memoization [Mic68],
which provides efficient fixed point computation. DDDs and their extensions —
e.g.,Hierarchical Set Decision Diagrams (SDDs) [CTM05], Multi-Set Decision Di-
agrams (MSDDs) [LH09] and Σ Decision Diagrams (ΣDDs) [BH09b] — are not
limited to embedding Boolean values. Their arcs are labelled with values (DDDs),
sets of values (SDDs and MSDDs) or sets of terms (ΣDDs). Unlike Binary Deci-
sion Diagrams (BDDs), they represent sets of sequences of variable assignments.
Thus, the same variable can be repeated along a path. The only constraint is that
all paths are compatible as defined in [CTM05], i.e., there is only one possible
variable for each DD node. Henceforth, the term DD will refer to DDDs, SDDs,
MSDDs and ΣDDs alike. An extensive classification of DDs is beyond the scope
of this article and can be found in [LPAK+10].

3.3. An example. Fig. 8 along with the AADTs of Appendix A shows an example

12 HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA

Prod Cons

produce

send consume

receive

BuffPk_p Pk_c

isFull($b) = false

[$c]
[$b]

[$b]

[tail($b)]

[head($b)]

[$prod]

[pk($prod, $c)]

[$p][$p]

[getProd($p)] [getCons($p)]

[push($p, $b)]
[][] [empty]

[c0][p0, p1]

isEmpty($b)=false &
getCons(head($b))=$c

Figure 8. Algebraic Petri net of a producers/consumers model

producer-consumer model. It originates from [Jen97b] (page 58) with some slight
adjustments to use AADTs instead of colour sets. We will use this as a running
example in the remainder of the article. The model describes producers (place
Prod), who produce (transition produce) and send (transition send) a packet —
identified by a producer and a consumer — via a buffer (place Buff). Consumers
(place Cons) receive (transition receive) and consume (transition consume) packets.
Please note that we chose an extremely reduced version of this model, with only
one consumer, to ease the explanation in the following sections. Some elements of
the model should be highlighted:

• in Fig. 8, and in the rest of the examples, we used a shorthand for terms
— e.g., c0, c1, . . . instead of c0, c(c0), . . . and p0, p1, . . . instead of
p0, p(p0), . . . — for increased readability;
• the output arc of transition produce contains variable $c of sort consumer

. This is a free variable, i.e., an output variable that is not bound to
an input variable. Therefore the term pk($prod, $c) will be unified to the
input variable $prod and to any consumer. For the sake of the presentation,
this particular example has only one consumer (defined in the Consumers

AADT);
• the transition send has a guard: isFull($b)= false. This enables the firing
of send only if the input variable $b — which represents the current state
of the buffer — is not full.
The function push($p, $b) on the output arc queues packet $p in buffer $b.
On the other output arc, getProd($p) extracts the producer from packet
$p;

HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA 13

• the guard of transition receive is a conjunction of two equations: isEmpty

($b)= false that is true when the buffer is not empty and getCons(head($b

))= $c that checks that the current consumer is the actual recipient of the
packet extracted from $b (using the function head);
• the signature and semantics of functions isFull, push, head, tail, isEmpty
are defined in an AADT called Buffers.adt. The functions pk, getProd and
getCons are defined in an AADT called Packets.adt.

3.4. Encoding the State Space. The system’s state is modelled using a vector
of places representing system variables. These places contain a multiset of values,
which in APNs are terms of a sort. Let [x]P be the multiset [x] contained by the
place P. The initial state of the APN in Fig. 8 (i.e., the contents of all the multisets
in all the places) is noted as: 〈[p0, p1]Prod, [c0]Cons, []Pk_p, []Pk_c, [empty]Buff〉.

Prod ConsPk_p 1Pk_c Buff

P 1

P 1
{p0, p1}

C 1

C 1
{c0}

B 1

B 1
{empty}

0Place
(DDD)

Multiset
(MSDD)

terms
(ΣDD) CardinalityEmpty

multiset Sort

0

Figure 9. Detailed view of the encoding of the initial marking of
Fig. 8 using DDs

Fig. 9 gives an intuition of how to encode this state using a hierarchy of DDs:
• at the lower level, a DDD encodes the vector of places representing the
initial marking of Fig. 8. The DDD variables (e.g., Prod, Cons) represent
the places of the APN. Their arcs contain pointers to the representation
of their respective multisets. We say that a variable embeds the pointed
multiset;
• at the middle level, multisets are encoded by MSDDs embedded in the
DDD variables. The key characteristic of MSDDs is their support of multi-
terminals. Unlike DDDs or SDDs, MSDDs’s terminals are not limited to 0
and 1. They can take any natural number that represents the cardinality
of the value they embed. The variables in MSDDs represent the sort of the
multiset. We note encM([x]) the function encoding the multiset [x] as a
MSDD. Notice that for readability reasons, we replace the encoding of the
multisets by the encM function in Fig. 12, 13, 20 and 24;
• at the upper level, ΣDDs encode sets of terms. These are described later
in this section.

Remark 3.1. The figures in this section that represent DDs have been slightly
adjusted for readability. First, pointers to terminal structures (like {p0, p1} or
{empty} in Fig. 9) have been omitted. Second, the terminal 1 has been represented

14 HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA

once for each branch of the DD, whereas in an actual DD all branches would point
to the same shared terminal. The same stands for the empty multiset 0 . �

B 1

P 1

K
{push}

B

B 1
{empty}P 1 C 1

{p0} {c0}

CK
{pk}

Figure 10. The ΣDD that encodes the term push(pk(p0, c0), empty)

3.4.1. Encoding terms. In APNs the pre- and post-conditions of transitions are
described by terms that may contain variables. To compute transition firing, all
the possible bindings for these variables must be considered. The number of terms
obtained is often close to the size of the Cartesian product of the variable domains.
This is the motivation for pursuing efficiency in encoding and rewriting huge sets
of terms using DDs. SDDs are a good solution for this problem, because of their
inductive nature and the possibility to encode rewriting procedures using DDHoms.
However, even higher efficiency can be achieved by introducing stronger typing
constraints and specialising set operations to support order-sorting. To obtain
this, we developed an extension of the SDDs, called ΣDDs [BH09b]. Without
getting too deep in the formalisation of the ΣDDs, we will give some intuitive
examples.

Fig. 10 shows the ΣDD that encodes the singleton set {push(pk(p0,c0),empty)}.
Like in MSDDs, ΣDD nodes represent the sort of the encoded terms: B is the sort
in Buffers.adt, K is the sort in Packets.adt, P is the sort in Producers.adt and C is
the sort in Consumers.adt. Arcs either contain operations and generators — push,
pk, p0, c0 and empty — or point to other ΣDDs, i.e., subterms. The structure of
the main ΣDD follows the signature of the generator push : K, B −> B. Similarly,
the ΣDD representing the subterm pk(p0, c0), embedded as the first argument,
follows the signature pk : P, C −> K of the generator pk. Finally, the innermost
subterms of Fig. 10 represent the constants p0, c0 and empty.

Fig. 11 presents a more complex example encoding a set of nine terms, with
two producers and three consumers. Please note that in order to build such terms
the Consumers AADT should be modified to allow the definition of more than one
consumer.

(1) push(pk(p0,c0), push(pk(p1,c0)
, empty))

(2) push(pk(p0,c0), push(pk(p1,c1)
, empty))

(3) push(pk(p0,c0), push(pk(p1,c2)
, empty))

(4) push(pk(p0,c1), push(pk(p1,c0)
, empty))

(5) push(pk(p0,c1), push(pk(p1,c1)
, empty))

(6) push(pk(p0,c1), push(pk(p1,c2)
, empty))

HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA 15

(7) push(pk(p0,c2), push(pk(p1,c0)
, empty))

(8) push(pk(p0,c2), push(pk(p1,c1)
, empty))

(9) push(pk(p0,c2), push(pk(p1,c2)
, empty))

B 1

P 1

K
{push}

B

P 1 C 1
{p0} {c0,c1,c2}

CK
{pk}

B 1

P

K
{push}

B

P 1
{p1}

K
{pk}

B 1
{empty}

Figure 11. The ΣDD that encodes nine terms.

This example demonstrates the Cartesian product reduction achieved by DDs.
Each argument of the main ΣDD is a ΣDD that represents three terms, the com-
plete encoding is the Cartesian product of these two sets. Thus, nine terms are
encoded in total. It also shows how common sets of terms are shared in the struc-
ture. The set of terms {c0, c1, c2} is encoded only once, but it is shared by both
ΣDDs at the second level. It is worth mentioning that ΣDD rewriting allows to
rewrite several terms in one rewriting step. This induces an excellent optimisation
of the computational process in favourable cases.

3.5. Symbolic State Space Generation. Before going on, let us define the
semantic function τ more precisely. Let fire(t) be the function, homomorphic
w.r.t. to the union of elements, that fires a transition t. Let + be the union of
two homomorphisms, f ∗ be the fixed-point application of a function f , and Id be
the identity morphism. We define τ through homomorphisms on sets of states as
τ = (fire(t1) + . . .+ fire(tn) + Id)∗ where T = {t1, . . . , tn}.

As illustrated in Fig. 7, to calculate symbolically the state space τ(S0) reach-
able from a set of initial states S0, it is necessary to compute encS(τ(S0)) =
encT (τ)(encS(S0)). Similarly to the overview of encS given earlier, this section
briefly introduces the encoding of τ via the encT function. Additional details can
be found in [BH09a, BH09c]. The firing of a transition is encoded by a com-
position of homomorphisms. Pre- and post-conditions based on closed terms,
i.e., those that do not contain variables, are directly encoded as a composition of
DD-Homomorphisms prior to runtime during static analysis. Pre/post-conditions
with variables, on the other hand, must be bound at runtime.

Let us first encode a transition without variables with the DD framework. A
transition can have multiple pre-conditions requesting values from different places.
Each pre-condition consumes a multisetm from a place p. Let h−m,p be the DDHom
that computes such a pre-condition. It walks through the graph and for each
variable (i.e.,DD node) and checks whether the variable corresponds to the place

16 HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA

p. If so it also tests whether there are enough tokens in the place. When there
are sufficient resources, it generates a new assignment in which it subtracts m
from the current multiset contained in p. Otherwise, h−m,p discards the branch by
returning the empty DD. The same idea applies to the post-conditions that are
only composed of closed terms. The post-condition DDHom h+p,m walks through
the graph until it finds the place p and then it adds the produced tokens m to the
current content of the place.

Pre-/post-conditions that contain variables that are still unbound after the pre-
processing phase (see Fig. 6) are bound at runtime. For that purpose, a DDHom
called genFiring selects the relevant bindings from the state space and generates a
composition of h− and h+ accordingly. The idea is, at runtime, to boil pre-/post-
conditions with variables down to their instantiated version using the selected
bindings. Therefore, the general form of the encoding of the firing of a given
transition t is:

encT (fire(t)) = h+m(t,pi),pi
◦ . . . ◦ h+m(t,pj),pj︸ ︷︷ ︸

post-conditions without variables

◦ genFiring t︸ ︷︷ ︸
dynamic bindings

◦h−m(pk,t),pk
. . . ◦ h−m(pn,t),pn︸ ︷︷ ︸

pre-conditions without variables

where pi, . . . , pj and pk, . . . , pn are places and m(p, t) (resp. m(t, p)) represents the
pre-condition (resp. post-condition) of transition t with place p.

Let genFiring t = generatePrePost t ◦ checkGuard t ◦ selectBindings t be the
DDHom that computes the bindings and generates a composition of h− and h+:

(1) selectBindings t walks through the DD and selects bindings candidates for
a given pre-condition. Namely, it selects assignments in which the num-
ber of tokens is sufficient to satisfy the pre-condition. This produces a
new DD containing binding candidates. Fig. 12a shows the bindings can-
didates for the transition produce using the marking of Fig. 9. Note that
selectBindings t does not only consider the bound variables (e.g., $prod) but
also the free variables (e.g., $c);

(2) checkGuard t traverses the DD built previously and only keeps the sequence
of assignments that do satisfy the guard. Otherwise, it discards the branch
by returning the empty DD. As the transition produce of Fig. 8 has no
guard, checkGuard t confirms all binding candidates of Fig. 12a.

(3) for each pair 〈variable, value〉 of the DD representation of the bindings,
generatePrePost t generates a h− accordingly and replaces the value of the
variable in the post-condition if necessary. Using the bindings of Fig. 12a,
it produces the following composition of DDHoms:

(1)
(h+encM ([pk(p0,c0)]),Pk_p ◦ h

−
encM ([p0]),Prod) + (h+encM ([pk(p1,c0)]),Pk_p ◦ h

−
encM ([p1]),Prod)

The application of this composition of DDHoms to the state space of Fig. 9
yields a new set of states shown in Fig. 12.

HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA 17

$Prod 1

encM([p0])

$c

encM([p1])

encM([c0])

(a)
selectBindingsproduce
on the marking of Fig. 9

Cons

Pk_p

1Pk_c Buff

encM([c0]) encM([]) encM([empty])

Prod

Pk_p
encM([pk(p0, c0)])

encM([pk(p1, c0)])

encM([p1])

encM([p0])

(b) Application of Equation (1)
on Fig. 9

Figure 12. Application of genFiringproduce on the encoding of the
initial marking of Fig. 9

Applying encT (fire(produce))+ IdDD twice to the marking of Fig. 9 produces all
states reachable from that marking by only firing the produce transition. These are
shown in Fig. 13. The places that are not impacted by the transition, i.e., Cons,
Pk_c, Buff are shared in the DD.

Instead of generating DDHoms at runtime, an alternative is to use “smarter”
versions of h+ and h− that are able to handle variables. This solution however
requires more complex DDHoms that are less efficient and consume more memory.
Indeed, a general rule of thumb is that the more complex the DDHom are, the
lower the efficiency of the cache will be. Using lot of small and fast DDHom is
usually much better than using few complex ones.

Prod Cons
Pk_p

1Pk_c Buff
encM([p0,p1])

encM([c0]) encM([empty])encM([])encM([p0])

encM([])

encM([p1])

Pk_p

Pk_p

Pk_p
encM([])

encM([pk(p0, c0)])

encM([pk(p1, c0)])

encM([pk(p0, c0)] + [pk(p1, c0)])

Figure 13. States reachable from the marking of Fig. 9 by only
firing the produce transition.

The encoding of the semantic function τ for T = {t1, . . . , tn} is encT (fire(t1) +
. . .+ fire(tn) + Id)∗ which is equivalent to (encT (fire(t1)) + . . .+ encT (fire(tn)) +
encT (Id))∗.

For the model in Fig. 8, encT (fire(produce) + fire(send) + fire(receive) +
fire(consume) + Id)∗ = (encT (fire(produce)) + encT (fire(send)) +
encT (fire(receive)) + encT (fire(consume)) + IdDD)∗.

3.6. Computing the state space in AlPiNA. The concepts explained in this
section have been implemented in AlPiNA. State space computation is performed
by clicking a button in the tool palette (shown in Fig. 4). The tool computes the

18 HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA

state space and returns either the number of states of the system, or an out-of-
memory error if the state space is too large. The model checker engine is separated
from the interface. It can be started either locally, or on a separate server to take
advantage of powerful architectures.

Fig. 14 presents what AlPiNA displays in its console after having generated the
state space of Fig. 8. It displays the static analysis, i.e., pre-processing time,
the state space generation time, the number of states of the system as well as the
number of DD necessary to encode it and finally the amount of memory required for
the process. This amount of memory can seem quite large for Decision Diagrams.
It comprises memory required for pre-processing, memory to store the Decision
Diagrams, as well as computation caches. Note that these caches contain a lot
of entries, because hierarchical Decision Diagrams require much more unions and
intersections of Decision Diagrams that flat ones. In bigger executions, useless
entries of the operation cache are cleaned regularly (using weak references).

3.7. Symbolic property verification. Symbolic state space generation has an
impact on property verification. Unlike explicit model checking, SMC computes
the symbolic complete state space of the system before checking whether properties
hold. Consequently, explicit model checkers tend to be more efficient in detecting
failures that occur early during the state space exploration, as they immediately
stop their computation and report the problem.

Another major difference resides in the symbolic encoding of the state space:
SMC checks whether a property holds on a whole set of states instead of checking
each state individually. This approach is very efficient if the property involves
one or several boolean clauses whose variables are independent, e.g., x < 3 ∧ y

= 4. However, it partially loses its efficiency if the variables in the property
are not independent, e.g., x < y. In this case, the symbolic representation has to
be “broken” to check all possible bindings. In other words, the Cartesian product
encoded by the Decision Diagram is split to compare all the permutations. Usually
such split is a very costly operation. This inefficiency can be partially avoided by

AlPiNA ’s model checker started on port 12345.
**
Compute State Space ...
Static Analysis Time : 15 ms
State space generated in : 373 ms
State Space has been fully generated.
Total Time : 388 ms
Number of states : 372
#DD : 4,343
Memory (KB) : 3,491

Figure 14. State space generation output for the model of Fig. 8

HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA 19

unfolding the domains of the property variables. With this, mutually dependent
variables become independent, e.g., x < y ≡ (x = 1 ∧ y = 2) ∨ (x = 1 ∧ y = 3)

∨. . . . Of course, total unfolding is not practical for large domains. This is one
of the optimisations explained in the next section — a pragmatic approach for
unfolding where the user specifies what to unfold.

Compute State Space of Producers Consumers ...
Static Analysis Time : 11 ms
State space generated in : 169 ms
State Space has been fully generated.
Total Time : 180 ms

Check the properties ...
Check property : [forall(x in Buff :((isNotFull(x)) EQUALS (true)))]
Property does not hold ! Here ’s a counterexample :
< Pk_p: []; Pk_c: []; Cons: [c0]; Prod: [p(p0) + p0]; Buff: [push(pk(p(

p0), c0),
push(pk(p(p0), c0), push(pk(p(p0), c0), push(pk(p(p0), c0), empty))))] >

Property Check is finished.
Total Time : 347 ms
Number of states : 372
#DD : 3,284
Memory (KB) : 2,634
Check Complete: A property does not hold , please see the logs for more

details.

Figure 15. Console output of property check of the model of Fig. 8
using the property defined in Fig. 16

In AlPiNA, properties are expressed using a dedicated language. The satisfaction
of a property φ is expressed by |=φ. The translation homomorphism encP (|=φ) en-
codes the property satisfaction checking as a DDHom. This DD-Homomorphism
(DDHom), when applied to the DD representing the state space encS(τ(S0)), re-
turns the set of states that do not satisfy the property. Thus, if the property
holds on the whole state space, it returns an empty DD. This is illustrated in the
lower-right part of Fig. 7:

(1) encP (|=φ) translates the verification function to a DDHom. Logical con-
nectors in the property are translated to operations on homomorphisms.
For example, disjunction is converted to the union of two homomorphisms.

(2) According to the unfolding provided by the user, the formula checker
DDHom is unfolded. As explained before, this can improve the property
checking phase considerably.

20 HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA

(3) The model checker projects the state space according to the variables in-
volved in the property to check. This technique, called the “cone of influ-
ence", may dramatically shrink the size of the DD.

(4) The model checker applies the DDHom to the projection of the state space.
This results in a DD that only encodes the bindings that do not satisfy the
property.

(5) Finally, the complete state space is explored again to select the states that
contain the bindings found in the previous step. These are the states that
do not satisfy the property.

In AlPiNA, property checking is performed by clicking a button in the tool palette
(see Fig. 4). Fig. 16 presents a property for the Producer/Consumer model, ex-
pressed in AlPiNA’s language.

import "prod_consumer.apnmm"
import "Boolean.adt"
import "Buffers.adt"

Expressions
checksize : forall($x in Buff : (isNotFull($x) =

true));
Check
@checksize;

Variables
x : B;

Figure 16. A property of the Producer/Consumer
model in AlPiNA

This property checks
that there is no state in
which the buffer is full.
It is easy to verify that
it does not hold, and
Fig. 15 shows the con-
sole’s output from the
property checker. It
contains the same in-
formation as for state
space generation, plus
the property checking
statistics and a coun-
terexample. Note that
currently, AlPiNA only
returns one of the states where the property does not hold. The markings of
places that violate the property are given as a counterexample. The counterex-
ample below is an excerpt of Fig. 15. Only one faulty marking of place Buff is
returned.
Property does not hold ! Here ’s a counterexample :
< Pk_p: []; Pk_c: []; Cons: [c0]; Prod: [p(p0) + p0]; Buff: [push(pk(p(

p0), c0),
push(pk(p(p0), c0), push(pk(p(p0), c0), push(pk(p(p0), c0), empty))))] >

To get usable counterexamples, model checkers usually return a trace of the
states traversed, from the initial state to a faulty one. Currently there is no easy
way to return the trace as only the state space is memorised and not the full
transition relation. To solve this problem, we plan to implement backward firing
in AlPiNA. This operator has two benefits. First, it is usable to compute traces for
counterexamples. Starting from the faulty states, we can build iteratively the set
of predecessor states until one of the initial states is met. Iteration ensures that a

HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA 21

shortest path is returned. Moreover, backward firing would bring the computation
of CTL properties to AlPiNA.

4. Scaling up the model

Model checkers are created to check properties on industrial models. However,
these are difficult to obtain: they usually require a joint work between the re-
searchers and domain specialists. As these models can be huge, model checkers
have to handle large state spaces. Therefore, before testing the limits of a model
checker on an industrial model, one usually tests it with rather small academic
models that are parameterised. Increasing their parameters leads to a larger state
space, so it is easy to test the model checker by scaling up such models. This
brings two requirements:

• the model should be easily configurable. It should be possible to adapt the
bounds of the domains used by the model and to change the initial marking
easily;
• as the number of the states grows exponentially with the size of the model,
the state space generation and the property validation must handle the
surge gracefully.

Unfolding

Variable
ordering

ClusteringScaling up the model

optimisation meta-data

Increasing
model size

Figure 17. Expanded view of process “Scaling up the model" of Fig. 1

The first requirement is satisfied by the way systems are represented using
HLPNs. Contrary to PTs, HLPNs do not require to add places and transitions to
the model in order to increase the number of components. It is sufficient to modify
the domain bounds and to change the initial state. AlPiNA provides functions such
as definitions by intension to declare huge sets of terms symbolically (as seen in
Section 2.2) and easy ways to set the limit of the domains.

The second requirement is related to how the model checker counters the SSE.
In AlPiNA, users have a great control on how to optimise the validation. They can
affect the state space generation and property validation phases by means of meta-
data. Fig. 17 presents the different artifacts the user may produce to scale-up the
validation. As shown in Fig. 1, these optimisation meta-data are injected in the
model checker during validation. There are three types of information the user
can provide:

unfolding:: this describes how the model checker handles data types, more
specifically whether it should consider the complete domain or a subset of
it;

22 HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA

variable ordering:: this is a recurrent problem when dealing with DDs as
it has a great impact on the efficiency of the symbolic encoding;

clustering:: this is a kind of hierarchical ordering.
In AlPiNA, the user can define unfolding, variable ordering and clustering through

a dedicated optimisations language. Note that the model checker can also work
without optimisations. In this case, none are performed and big models are not
handled. This approach enables the user to test and compare easily several opti-
misations.

The remainder of this section will describe unfolding, ordering and clustering in
detail.

4.1. Unfolding. In APNs, arcs are labelled with terms that may contain variables.
Hence, as said in Section 3.5, the functions that compute the successors of a set of
states have to compute variable bindings. Computing bindings at runtime can be
very costly. It implies creating a new DD for each binding, as presented in Fig. 12.
The problem is that often the transitions in a Petri net have guards that invalidate
some or even most of the available bindings. In this situation many useless DD
are created an canonised.

We propose to unfold the domains and build specific homomorphisms for each
binding during the static analysis. However, complete unfolding is obviously not
viable for infinite (or even very large) domains. Thus, every unfolded domain has
to be bound, either structurally or by the user:

• Some domains are intrinsically finite, e.g., an enumeration, or an AADT
where a structural analysis proves that the domain is finite. This is called
a structural bound.
• If the unfolded domain is not finite, the user must set a bound. This is called
a presumed bound. Notice that, even in the case of finite domains, the user
can overrule the default bound to set a presumed bound. The presumed
bound is interpreted by the system as the number of applications of the
non-constant generators on the set of constant generators. For instance,
consider the natural numbers described in Example 2.1 and a presumed
bound set to 4. In this case, the set of unfolded values has 5 elements: zero
(constant generator), suc(zero), suc(suc(zero)), suc(suc(suc(zero))) and
suc(suc(suc(suc(zero)))).

The unfolding of a transition encoding goes through three steps:
(1) The domains of the input and output variables are unfolded — either com-

pletely if a structural bound exists, or up to the presumed bound.
(2) The system computes the bindings and only keeps those that satisfy the

guard.
(3) The computed bindings are used to instantiate a binding-specific version

of the transition encoding encT . This is used in the state space generation
instead of the original homomorphism.

HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA 23

Using the axioms between generators (c(c0)= c0 and p^4(p0)= p0) of the defi-
nitions of Appendix A, the domains P and C of example of Fig. 18 are finite (one
consumer and four producers).

Prod

Pk_p

produce

[$prod]

[pk($prod, $c)]

Pk_p

Prod

produce2produce1

[p1]

[pk(p1, c0)][pk(p0, c0)]

[p0]

Figure 18. Unfolding of a transition

Therefore, the transition
encoding of fire(produce) is
unfolded to Equation (1) but
without creating any bindings
at runtime and thus without
requiring genFiringproduce.

To set presumed bounds,
users must make a guess at
a “good” value for the bound.
This guess may have a dra-
matic impact on the model

checking. If the presumed bound is too low, the tool may not explore the state
space completely. This makes the results inconclusive. On the other hand, if the
presumed bound is too high, then the system will waste CPU time and memory3.
Moreover, a lot of the unfolded bindings will not be used during the state space
generation:

• many will be discarded because they do not satisfy the transition guards;
• others will not be explored because their pre-conditions are never satisfied.

This means the bound has to be chosen with great care. AlPiNA can partially assist
the users in avoiding undesirable unfoldings by using partial unfolding.

4.2. Partial unfolding. In some cases, it may be difficult or not desirable to set
a bound for certain domains. This is for example the case when:

(1) the maximal used value of a domain is not easily predictable;
(2) the domain is a structured type such as lists or buffers. The unfolding of

such highly inductive types quickly becomes intractable, especially when
lists embed other structured types;

(3) the domain is sparse, i.e., only few values are used and they are scattered.
An example could be the domain of the natural numbers when only the
values {1, 15257, 1154587} are used.

To assist users, we introduce partial unfolding : an unfolding of the model in
which not all domains have to be unfolded. For instance, in the model of Fig. 8,
the domain of the buffers should not be unfolded. In such a case, the encoding
of the transition function is a mix of unfolded and non-unfolded DDHoms. The
choice of what to unfold is a trade-off between the reduction in complexity of
the state space generation and the cost of the unfolding operation itself, which is
polynomial with respect to the size of the algebras. From a user perspective, the

3the unfolding complexity is O(nc) where n is the size of the largest domain and c the largest
number of input arcs

24 HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA

novel aspect of this feature resides in the fact that for each data type, users can
choose whether they want the engine to unfold it (partial net unfolding) and, if
so, whether the unfolding should be bound.

Fig. 19 presents the unfolding applied to the AADTs used in Fig. 8 and shown
in the appendix. The P, C, K and bool domains are totally unfolded (using the
modifier TOTAL). The domain nat of the natural numbers is bound to 5. Finally,
the domain of the buffers B is not unfolded.

Unfolding
P : TOTAL;
C : TOTAL;
K : TOTAL;
bool : TOTAL;
nat : 5;
B : NONE;

Figure 19. Unfolding of the domains for the
model in Fig. 8

AlPiNA is able, to a certain
extent, to prevent combina-
tions that may lead to incom-
plete state space coverage or
infinite computations:

• If a data type is infi-
nite, it cannot be to-
tally unfolded (e.g., B
and nat).
• If the engine cannot
determine whether an
inductive data type is
infinite, then a warning against total unfolding is displayed (e.g., P and C).

Although not implemented yet, it is possible to detect that a post-condition
generates a value that is greater than its domain bound. In such case, it would
be interesting to pause the model checking activity and to ask whether the user
wants to raise the domain bound. If so, he could resume model checking with the
new bound.

Cons

Pk_p

Pk_c Buffenc([p1])

enc([c0]) enc([]) enc([empty])Prod

enc([p0])

Pk_p enc([pk(p0, c0)])

enc([pk(p1, c0)])Cons

1

Pk_c Buff

Figure 20. The state of Fig. 12b with a different ordering

4.3. Ordering. The choice of a variable ordering is a common problem for DDs
as it critically impacts the size of the graph. Ordering traditionally refers to
the structural description of the DD. This includes the order in which the vari-
ables appear in the DD and also their hierarchical organisation. For exam-
ple, Fig. 20 presents the same state as Fig. 12b but with a different variable
ordering: Prod > Cons > Pk_c > Buff > Pk_p for Fig. 20, versus Prod > Pk_p > Cons

> Pk_c > Buff for Fig. 12b. It is easy to see that the sharing in Fig. 12b is higher
and thus the number of nodes is lower.

HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA 25

In general, finding an optimal variable ordering is infeasible. Even checking
whether a particular ordering is optimal is NP-Complete [CGP99]. Various heuris-
tics have been developed to find a good variable ordering either statically —
i.e., prior to the state space generation — or at runtime — i.e., by reorganising
the DD encoding the states on the fly. Most of the efforts on static ordering are
centered on the concept of minimum variable span. For a survey on static ordering
see [RK08]. It can be observed that usually DDs are more compact when related
variables are close to each other in the ordering. For instance, variables represent-
ing related places of the APN are usually put together in the DD. This limits the
number of nodes impacted by the computation of the transitions’ application.

In the example of Fig. 8, places Prod and Pk_p are clearly related as all the
transitions that involve Prod also involve Pk_p. Because of this they are near in the
ordering. The same can be said of Cons and Pk_c. Place Buff instead is not really
linked either to the first or to the second group. It is thus put at the end. Fig. 21
shows how the ordering is defined using AlPiNA’s ordering language. If a place is
not mentioned in the ordering, it is automatically put at the end of the DD.

Places order
Prod > Pk_p > Cons > Pk_c > Buff;

Figure 21. Variable ordering for the model
in Fig. 8

As SDDs and their derivations
support hierarchy, the concept
of hierarchical ordering naturally
comes to mind. This extension is
treated in the next paragraph, and
is called clustering as it organises
and manipulates clusters of vari-
ables.

4.4. Clustering. The ordering discussed in Section 4.3 is flat: there is a total
order on the variables. However, consider the case where a transition requires to
update variables at the end of the DD. In this case, the algorithm must still walk
through all the previous nodes of the DD. Moreover, each modification of a single
variable induces the re-canonisation of the entire DD. To solve this particular
problem, Couvreur and Thierry-Mieg proposed clustering [CTM05]. This, put
simply, is a hierarchical ordering. Not only the variables are ordered, but clusters
of variables are in their turn ordered hierarchically. There are two advantages to
this approach:

• it reduces the size of the state space encoding, because it leverages the
Cartesian product effect induced by DDs. Indeed, the state space of a
model with independent components is often close to the Cartesian product
of the state space of each component;
• it speeds up the state space computation, because actions that are local to
a cluster do not impact other clusters.

4.4.1. Topological clustering. Clustering was initially developed for PTs. Cluster-
ing in a PT can only be based on the topology of places and transitions. Fig. 22

26 HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA

shows an example of topological clustering for the model of Fig. 8. Related parts
of the net are clustered together. The Prod and Pk_p places are grouped in the
clProd cluster. The Cons and Pk_c places are in the clCons cluster. Finally, Buff,
which is not related to other places, is put in a default cluster called clDef.

Prod ConsPk_p 1Pk_cBuff

encM([p0,p1]) encM([c0])encM([empty]) encM([])encM([])

11

clDef clProd clCons 1

Figure 22. Topological clustering of the encoded marking of Fig. 9

Using this clustering, a function that modifies Cons and Pk_c does not affect the
other variables, as it only operates in the embedded DD of the clCons cluster. From
an operational point of view, homomorphisms that act on clusters are embedded
in a localisation homomorphism. The localisation homomorphism that applies a
homomorphism h on a cluster c is noted Lc(h). The projection of a homomorphism
encT (fire(t)) on a cluster c is noted proj c(encT (fire(t))).

4.4.2. Saturation. An inherent issue to SMC is the so-called “peak effect” problem.
The state space generation produces many intermediate DDs that are not part of
the final state space. For instance, this happens when computing pre-conditions
or guards. This consumes a lot of memory and may hamper the state space
generation. Saturation as introduced by Ciardo et al. in [CLS01] aims at reducing
these intermediate structures by applying events in a more efficient manner. It is
empirically several orders of magnitude better than the usual symbolic state space
generation, because saturated nodes have better chances to be a part of the final
state space. The idea is to compute the local fixed-points, starting from the leaves
of the DD and going back to the root while re-saturating the nodes. Whenever
a node is modified, the process starts over from the leaves. This dramatically
reduces the number of costly re-canonisation operations.

Other saturation techniques have also been proposed. For instance, [GV01]
computes iteratively subsets of the reachable states. A smart choice of the subsets
leads to smaller intermediary DDs. Even if this technique requires more iterations,
it gives good results, as the memory is usually the problem when using DDs.
Moreover, memoization usually also improves computation time when sharing is
increased.

Another adaptation of saturation to SDD has been defined by Couvreur &
Thierry-Mieg [CTM05] and later improved by Hamez et al. [HTMK09]. In this
case, because of the hierarchy, it is necessary to distinguish local transitions from
synchronisation transitions. Local transitions only impact one cluster, i.e., all the
variables used by that transition are within the same cluster. Synchronisation
transitions modify several clusters, i.e., the variables are distributed over many

HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA 27

clusters. For instance, in the model of Fig. 8 with the clustering of Fig. 22, the
produce transition is local to the clProd cluster. The send transition instead is a
synchronisation transition between the clDef and clProd clusters. In essence, DD
saturation is based on two principles:

• identifying local transitions;
• computing local fixed-points before the global fixed-point.

Based on these localities, the transition relation is rewritten to saturate the local
components before firing the synchronisation transitions. Following [HTMK09],
AlPiNA uses a set of rewriting rules based on the localisation homomorphism to
rewrite the transition relation automatically. Moreover, if two or more bindings
happen to have common parts (and thus to generate similar h− or h+) their appli-
cation will be factorized thanks to automatic saturation. This enables to share the
effect of the pre- or post-condition of different bindings among different transitions.

Example 4.1. Following the topological clustering of Fig. 22, the transitive closure
is rewritten as:

encT (τ) = (LclDef(proj clDef(encT (fire(send) + fire(receive))))+

LclProd(proj clProd(encT (fire(produce) + fire(send))))+

LclCons(proj clCons(encT (fire(consume) + fire(receive)))) + Id)∗

�

4.4.3. Algebraic clustering. As stated previously, clustering for PTs is based on
topological information: related places are clustered together. For instance, if
a model represents a set of identical processes, each process’s places can be put
in a separate cluster. The expressiveness of APNs allows to represent the same
structure with fewer places, thus losing this explicit separation between the model
components. The same place can contain values for different components. Because
of this, clustering in APNs cannot be derived from topological information alone.
To support this change of paradigm we propose an extension of the topological
clustering approach that also considers the domains of the places, that is called
Algebraic clustering.

This approach sees clustering as a function that associates a place and a value to
a cluster. In order to exploit the inductive nature of values defined with AADTs,
algebraic clustering can use an inductive definition itself. Criteria for choosing
clusters are generally based on the structure of the model and the properties to be
verified.

In general, the best results are obtained when independent elements are put
in separate clusters. A heuristic is to put processes in the same cluster as their
internal resources, while resources shared among several processes are put in a
separate independent cluster. In AlPiNA, clusters are naturally ordered because
they are inductively defined using the next operator. A clustering always contains
at least a default cluster. Fig. 23 shows how to apply the previous heuristic on

28 HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA

the model of Fig. 8 using a domain-specific language for clustering. It inductively
assigns each producer, starting from p0 to its own cluster along with the packets
from that producer. Any combination of place and value that is not explicitly
specified using the clustering language is automatically assigned to the default
cluster. This is the case for any value in the places Cons, Pk_c and Buff. Fig. 24
shows the resulting encoding for the clProd cluster of Fig. 22.

Prod Pk_p
encM([p0]) encM([])

1

cl0 cl1

Prod Pk_p
encM([p1]) encM([])

1

1

clProd 1

Figure 24. The algebraic clustering of Fig. 23 applied to the clProd
topological cluster of Fig. 22

Clustering
Clusters 2∗cl0;

Rules
cluster of p0 in Prod is cl0;
cluster of p($p) in Prod is next(cluster of $p);
cluster of pk($p, $c) in Pk_p is cluster of $p;

Variables
p : prod;
c : cons;

Figure 23. Algebraic clustering for the model of Fig. 8

Prod Pk_p encT (fire(produce))
p0 cl0 -

}
h+[pk(p0,c0)],Pk_p ◦ h

−
[p0],Prodpk(p0,c0) - cl0

p1 cl1 -
}
h+[pk(p1,c0)],Pk_p ◦ h

−
[p1],Prodpk(p1,c0) - cl1

Figure 25. Clustering function and dispatching among
clusters of the encoding of the transition produce

From a user perspec-
tive, choosing the gran-
ularity of algebraic clus-
tering is a trade-off be-
tween the independence
of the components and
the size of the clus-
ter. A too fine or too
coarse clustering will
lead to sub-optimal per-
formance. Still, unlike unfolding, sub-optimal clustering will not hamper complete
state space exploration. Fig. 25 details the clustering function defined in Fig. 23.
Each line refers to a value and the columns refer to the two places. The light-grey
cells represent the first cluster (cl0) and the dark-grey cells represent the second

HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA 29

cluster (cl1). The produce transition is unfolded into two local transitions, one
for each cluster. Thus we obtain the following composition of homomorphisms
corresponding to the firing of produce:

Lcl0(h+[pk(p0,c0)],Pk_p ◦ h
−
[p0],Prod) + Lcl1(h+[pk(p1,c0)],Pk_p ◦ h

−
[p1],Prod)

In AlPiNA, optimisation meta-data are clearly separated from the model and
specified using a Domain Specific Language (DSL). This separation of concerns
helps the user to focus on the model first, and to tweak the validation in a second
phase if necessary. This optimisation phase may be difficult for the system designer
as it requires to understand the underlying techniques. However, the optimisation
meta-data are described using a textual language and hence it is easy to use ex-
ternal tools, such as PNXDD [HKPAE10] to generate and inject them automatically
in the engine. It is also possible to automatically infer APNs models and opti-
misation information from models expressed using DSLs. A DSL that integrates
enough meta-data can be transformed to equivalent instances of APNs as well as
instances of the optimisation DSL (e.g., clustering, variable ordering, unfolding).
For instance, a DSL that integrates the notions of tasks and resources can lever-
age some of the heuristics presented above (group processes and their resources
together). Therefore, the system designer can focus on the model and does not
have to learn the arcane knowledge of formal verification.

5. Benchmarks

AlPiNA took part in the Model Checking Contest at the Petri Nets 2011 confer-
ence. This contest was organised inside the “Scalable and Usable Model Checking
for Petri nets and other models of concurrency” workshop (SUMo2011)4.

Participating tools were compared on several parameterised models, expressed in
Place/Transition nets or Symmetric nets. The models are described in their respec-
tive articles, referenced in [KLB+11]: Flexible Manufacturing System (FMS), Kan-
ban system, mitogen-activated protein kinase cascade (MAPK), Peterson’s mutual
exclusion algorithm, the Dining Philosophers with deadlock, Shared Memory, and
Token Ring. For each model, three examinations are performed, state space gener-
ation, deadlock detection, and reachability formulae. The Model Checking Contest
report [KLB+11] analyses the evolution of the execution time and memory con-
sumption when the parameter of each model increases. It also shows the highest
parameter reached by the tools for each model.

In this section, we comment the results of this contest for state space generation.
Deadlock detection in AlPiNA depends on the full state space generation. The
maximum parameter reached and computation time for deadlocks are similar to
the ones of state space generation. AlPiNA did not take part in the reachability
formulae examination.

4AlPiNA models submitted to the Model Checking contest can be found at:
http://alpina.unige.ch/misc/MCC-AlPiNA.zip

30 HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA

We argue the results of the contest are more reliable than home-made bench-
marks. The drawback is that we do not compare to tools that did not take part
to the contest, for instance SMART [CLS00]. During the contest, benchmarks were
executed on the same environment for each tool. Each tool developer submitted
its own tool, with the best settings for each model. Moreover, the tool developers
could enrich models with information used to increase the performance of their
tools. For instance, we provided only the models in APNs, together with their
clustering and unfolding optimisations.

Explicit DD-based

Static
structures ACTIVITY_LOCAL

ACTIVITY_LOCAL

Crocodile

ITS−Tools
PNXDD

YASPA

Dynamic
structures Helena AlPiNA

Figure 26. Classification of the compared tools
(referenced in [KLB+11])

Raw data are available
at http://sumo.lip6.
fr/MCC-2011-report/
MCC-results-data.zip.
The compared tools are classi-
fied in Fig. 26 according to the
model structures they handle
and their state space repre-
sentation. ACTIVITY−LOCAL
appears as both explicit and
DD-based, because it mixes
both representations.
Static or Dynamic model struc-
tures. Some modelling formalisms, like High-level Petri nets and Algebraic Petri
nets allow to use dynamic data structures, such as queues, lists, etc. Others,
like PTs or Symmetric Petri nets (SNs), only handle static data structures, e.g.,
vectors, arrays, bounded integers, etc. As all presented tools only generate fi-
nite state spaces, dynamic data structures can be converted into static ones by
manually setting bounds. However, this may be difficult for the user.
Explicit or DD-based state space representation. We compare here two main types
of state space representation. Explicit state space representation stores a set of
elements, each representing one state. The state encoding can be non-trivial. The
set can also use non-trivial element indexing or ordering.

A DD-based state space is represented by a Decision Diagram. As seen in Sec-
tion 3.5, operations to compute the state space from the initial state are adapted
to the DD structure. They compute the successor states for a whole set of states
in one step. Most tools in the benchmark use Decision Diagrams, as it seems to
be the most interesting technique for state space computation.

5.1. Maximum parameter reached. Fig. 27 shows the highest parameter
reached by the competing tools, for each model. It shows one diagram for each
model. Every diagram is divided into sectors that represent tools. The size of
the radius for a particular tool shows the maximum parameter reached by the
tool when doing state space generation, before a time or memory limit is reached.
Scale is logarithmic. Dashed circles represent parameter steps (10, 100, . . .). The

HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA 31

dotted circles mark the results obtained by tools. For this benchmark, we ex-
clude the Kanban and Shared Memory models. Kanban is very similar to Flexible
Manufacturing System, and Shared Memory to the Dining Philosophers.

ActivityLocal

AlPiNA

Crocodile

ITSTools

PNXDD

YASPA

HELENA

(a) FMS

ActivityLocal

AlPiNA

Crocodile

ITSTools

PNXDD

YASPA

HELENA

(b) MAPK

ActivityLocal

AlPiNA

Crocodile

ITSTools

PNXDD

YASPA

HELENA

(c) Philosophers

ActivityLocal

AlPiNA

Crocodile

ITSTools

PNXDD

YASPA

HELENA

(d) Peterson

ActivityLocal

AlPiNA

Crocodile

ITSTools

PNXDD

YASPA

HELENA

(e) TokenRing

Figure 27. Highest parameter reached by the tools for state space
generation (logarithmic scale)

Generality of AlPiNA. We can remark that PNXDD and AlPiNA are the only two tools
that were able to generate the state space for all models. This includes both
models that are not shown in Fig. 27. Even if models were restricted to Petri nets
with no dynamic structures, the other tools could not handle all of them. YASPA

only worked on Place/Transition Petri nets and did not unfold the models given
as Symmetric Petri nets. ITS−Tools and ACTIVITY−LOCAL use different formalisms,
thus requiring to rewrite the models. They did not provide the conversion for some
models.
Efficiency on Place/Transition Petri nets. AlPiNA reaches rather low parameters for
Flexible Manufacturing System. Two tools are far less effective, namely Crocodile

and helena. Crocodile uses Decision Diagrams, but is not intended for PTs. helena

is explicit and its abstractions are disabled for the state space generation, thus the
decreased efficiency.
Efficiency on Symmetric Petri nets. On Symmetric Petri nets models, AlPiNA is
much more efficient. It has results similar to those of PNXDD on all models. The
major difference in the results of these two tools is for Peterson’s algorithm. In this
model, AlPiNA reaches parameter 3, whereas PNXDD handles 5. In the other cases,
AlPiNA is slightly behind by PNXDD because the latter uses a DD technique that is

32 HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA

still not implemented in AlPiNA, namely anonymisation of the DD variables. Using
this technique, all DD nodes are labelled with the same variable. This consistently
provides a reduction of the size of the DDs.

ITS−Tools is much more efficient than the other tools on state space generation
for SN. It applies a technique called “recursive folding” where the DD hierarchy is
combined with anonymisation to get a better sharing in the DD representations of
the components in the modelled system. The drawback of this technique is that
ITS−Tools requires to completely rewrite the model. The modeller has to design
himself a recursively folded model.

The performance of helena vary. It behaves very poorly for highly symmetric
systems such as the Dining Philosophers. But it is also as good as AlPiNA for the
Token Ring. This model has few states compared to the others. For instance,
it has ∼ 104 states for the maximum parameter reached by AlPiNA and helena,
whereas the Dining Philosophers have ∼ 10238 states for the maximum parameter
reached by AlPiNA. An explicit model checker cannot represent a state space of
this size without reduction techniques, that were disabled for helena.
Comparison between Place/Transition Petri nets and Symmetric Petri nets. All
PT models are nonsafe, whereas all SN ones are safe. When compared to PNXDD,
this benchmark shows that AlPiNA is currently less efficient than expected on non-
safe PNs. Both tools rely on rather similar techniques, so their results should be
closer for PT models. The explanation of the poor performance of AlPiNA on PTs
is that the MSDDs are only well-adapted to small cardinalities in markings. When
cardinalities grow, the MSDDs can do less sharing, and thus generate more DD
nodes and more operations on them. We are currently working on their replace-
ment.

From these benchmarks, we see that AlPiNA lacks several interesting DD tech-
niques. Still, AlPiNA is already an efficient state space generator. We are currently
working on the integration of the missing techniques with APNs through enhance-
ments of the optimisation language.

5.2. Computation time. Fig. 28 presents the computation time for some models.
AlPiNA is executed on the Java Virtual Machine (JVM), with a fixed amount of
memory. This is a good configuration for model checkers, which are typically run
on a dedicated computer. When the available memory is exhausted, the JVM does
a lot of garbage collections and the process does not terminate. Thus, we do not
provide memory measurements, and only time is measured with a fixed amount
of memory. Note that the Model Checking Contest ran tools with less than 2GB
of memory. We also provide time measurements for AlPiNA with 6GB of memory.
These measurements have been taken outside of the Model Checking Contest to
provide more observations on the behaviour of AlPiNA.

In Fig. 28 we can observe that AlPiNA follows more or less the time curve of
PNXDD. On high parameters for the Dining Philosophers, AlPiNA has a greater slope,
because is does not implement anonymisation contrary to PNXDD. The difference

HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA 33

1E−02

1E−01

1E+00

1E+01

1E+02

1E+03

1E+04

5E+00

1E+01

2E+01

5E+01

1E+02

2E+02

5E+02

1E+03

2E+03

T
im

e
 (

s
e

c
o

n
d

s
)

Scaling parameter

(a) Philosophers

1E−02

1E−01

1E+00

1E+01

1E+02

1E+03

1E+04

5E+00

1E+01

2E+01

5E+01

1E+02

T
im

e
 (

s
e

c
o

n
d

s
)

Scaling parameter

(b)
Shared
Memory

1E−02

1E−01

1E+00

1E+01

1E+02

1E+03

1E+04

5E+00

1E+01

2E+01

2E+01

T
im

e
 (

s
e

c
o

n
d

s
)

Scaling parameter

(c) Token Ring

1E−02

1E−01

1E+00

1E+01

1E+02

1E+03

1E+04

5E+00

1E+01

2E+01

5E+01

1E+02

2E+02

5E+02

1E+03

2E+03

T
im

e
 (

se
co

n
d

s)

Scaling parameter

Tools
AlPiNA

Crocodile
ITS−Tools

PNXDD
helena

AlPiNA (6GB)

Figure 28. Time required to compute the state space of some models

for Shared Memory is very high, because AlPiNA uses a bad clustering compared to
the one of PNXDD. With more memory, AlPiNA has a smaller slope than PNXDD on the
Token Ring. As AlPiNA uses a subset of the techniques used in PNXDD, this difference
in slope is caused by a better clustering in AlPiNA. In Shared Memory and Dining
Philosophers, ITS−Tools performs far better than the other tools, because it uses
recursive folding, a technique the other tools do not implement, but that requires
a special encoding of the model.

AlPiNA, as a standalone model checker, has an initial cost of almost 30 seconds
(on a rather slow computer). This time is spent in loading all the required libraries,
reading the model, validating it and converting it to the internal representation of
the model checker. When the model checker is used within the modelling environ-
ment, this initial cost is greatly reduced to only a few seconds.

5.3. Conclusion of benchmarks. From these benchmarks, it can be argued
that AlPiNA is an efficient state space generator. It handles very well models of
distributed systems where most operations are local to each process, i.e.,most
resources are consumed and produced within the same process. This is not the
case in Peterson’s mutual exclusion algorithm.

As for the DD-based tools in this comparison, AlPiNA is comparable to PNXDD

when using optimisations. The performance difference with PNXDD for the Dining
Philosophers and the Token Ring is due to AlPiNA lacking some optimisations, such
as DD anonymisation. Besides, it has a high initial memory footprint (≈400MB)
because of the Eclipse Eclipse Modeling Project (EMP) infrastructure. Future
work will bring such improvements to our tool.

AlPiNA is not optimised for Place/Transition Petri nets or Symmetric Petri nets
(as PNXDD). On the contrary, it is based on Algebraic Petri nets, which are more
expressive than the Petri net classes used in the Model Checking Contest. This ex-
pressiveness, that enables AlPiNA to handle structured types that are not bounded

34 HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA

at modelling time, has an overhead during pre-computation (for the unfolding)
and during computation. Thus, the rather good results obtained by AlPiNA on SNs
are promising.

6. Architecture

Graphical User Interface Model Checker Engine

AlPiNA GUI

Meta-Model

Graphical + Textual Concrete Syntax

EMF/GMF/Xtext Metamodeling Tools RMI
Decision Diagrams (JDD, ∑DD)

Data structures

Property Checker

Algebraic Petri Nets Engine

Figure 29. AlPiNA’s architecture

One of AlPiNA’s goals is providing a synergy between usability and performance.
To provide a good user interface we leverage the Eclipse platform. It provides
a well-known user interface model as well as very efficient tools to develop new
software. The most natural way to create a model is using a language that is specif-
ically tailored to the domain of the model — a DSL. The Eclipse platform provides
several tools to develop DSLs, one of the most relevant being the EMP [Ecl], which
follows a meta-modelling approach and provides tools for both the graphical and
the textual editors.

The meta-modelling approach allows the integration with other projects that use
the same technology. As an example, we are currently working on the integration
of the Petri Net Markup Language (PNML) [WK03]. PNML’s goal is to become
a standard for defining different types of Petri nets. It can be used as an exchange
platform between different PN tools.

As a research project, AlPiNA tries to be as modular as possible in order to
support the rapid evolution of technologies as well as new ideas. Fig. 29 describes
the layered architecture of AlPiNA. The left block represents the structure of the
graphical user interface (GUI). The first layer manages the user interface itself.
It leverages the code that has been produced by the tools on the second layer,
which presents the meta-modelling tools used in AlPiNA. The concrete syntaxes
are defined with EMP.

The right block of Fig. 29 represents AlPiNA’s model checking engine, which
performs the actual computations. The first two layers are the property checker
and the APN engine. These two layers act as an interface to the engine: the
input is an APN and some properties to be checked; the output is the result of the
property checks and some information about the APN’s state space, such as the

HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA 35

computation time and the number of states. These two layers are based on the
DDs, used to calculate and represent the state space and properties check.

Communication between the blocks of Fig. 29 is done through Java Remote
Method Invocation(RMI). This ensures a strong independence between the GUI
and the engine, and allows experienced users to extend the tool easily. Both the
interface and the engine can be substituted by different components or re-used in
other projects.

7. Conclusion and perspectives

This article provided an overview of AlPiNA [BHMR10], an Algebraic Petri nets
model checker. We showed its user-friendly interface and its modelling and opti-
misation languages. We also explored the main model checking techniques used in
AlPiNA:

• Symbolic techniques based on ΣDDs, a new variant of Decision Diagrams.
We explained their power especially with respect to sharing of information;
• Advanced optimisations, namely ordering, unfolding (partial or total) and
clustering (topological and algebraic). They are specified in a clear and
abstract way by means of dedicated languages. This also accomplishes a
clear separation between the model and the optimisations.

Benchmarks from the Model Checking Contest [KLB+11] at the Petri Nets 2011
conference show that AlPiNA clearly outperforms explicit model checkers for state
space generation. Its performance is comparable to other symbolic model checkers.
Even if there is ongoing work on AlPiNA’s optimisations, its execution time curves
are similar to the ones of tools that use DDs in state space generation of Petri
nets. This is a good result, as AlPiNA manages more expressive models, expressed
in Algebraic Petri net.

AlPiNA is under active development. There is ongoing work on the following
improvements:

• support for modular, object-oriented and hierarchical [BG00] models, as
they simplify the modelling activity. Moreover, optimisation meta-data will
be automatically extracted from such richer models. Symmetries inherent
to object-oriented models can be automatically discovered and used for
further optimisation;
• support for CTL. Currently, AlPiNA verifies invariant properties, which are
enough for many industrial applications. CTL will enable to check proper-
ties on execution trees rather than states;
• improvement of the property checking phase. Encoding the state space
using DDs presents new challenges for checking properties. We will improve
this using techniques such as parallelisation;
• application of the Domain Specific Language approach to model checking.
We propose in [SBH+11] a language dedicated to the description of gene

36 HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA

regulatory networks. This DSL covers both the network model and prop-
erties to check, for instance the presence of a given molecule. Work on
this language continues to extract optimisations from the gene regulatory
network.

We actively pursue the use of AlPiNA in a concrete environment. For this, we will
combine it with our previous work on DSML definition [Ris10], testing [BBP96]
and prototyping [ASBB+03] to achieve automatic test case generation [BLC09]
and verification of DSML languages [PRBA10].

AlPiNA, its source code and meta-models are available under the GPL license as
an Eclipse plug-in or a complete Eclipse package at http://alpina.unige.ch.

References

[ASBB+03] Ali Al-Shabibi, Didier Buchs, Mathieu Buffo, Stanislav Chachkov, Ang Chen, and
David Hurzeler. Prototyping object oriented specifications. In Wil van der Aalst
and Eike Best, editors, Applications and Theory of Petri Nets 2003, volume 2679 of
Lecture Notes in Computer Science, pages 473–482. Springer Berlin / Heidelberg,
2003.

[BBP96] Stéphane Barbey, Didier Buchs, and Cécile Péraire. A theory of specification-based
testing for object-oriented software. In Andrzej Hlawiczka, João Silva, and Luca Si-
moncini, editors, Dependable Computing — EDCC-2, volume 1150 of Lecture Notes
in Computer Science, pages 303–320. Springer Berlin / Heidelberg, 1996. Also avail-
able as Tech. Report (EPFL-DI-LGL No 96/163).

[BCM+92] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and
Lucius J. Hwang. Symbolic model checking: 1020 states and beyond. Information
and Compututation, 98(2):142–170, 1992.

[BE93] Jon Barwise and John Etchemendy. The Language of First-Order Logic (Windows
Program, Tarski’s World), 3rd Ed., Revised & Expanded. Center for the Study of
Language and Information, Standford University, April 1993.

[BG00] Didier Buchs and Nicolas Guelfi. A formal specification framework for object-
oriented distributed systems. IEEE Transactions on Software Engineering,
26(7):635–652, july 2000.

[BH09a] Didier Buchs and Steve Hostettler. Managing Complexity in Model Checking with
Decision Diagrams for Algebraic Petri Net. In Daniel Moldt, editor, Pre-proceedings
of the International Workshop on Petri Nets and Software Engineering, pages 255–
271, 2009. Available at http://www.informatik.uni-hamburg.de/TGI/events/
pnse09/pnse09-proceedings-firstpages.pdf.

[BH09b] Didier Buchs and Steve Hostettler. Sigma Decision Diagrams. In Andrea Cor-
radini, editor, TERMGRAPH 2009: Preliminary proceedings of the 5th Inter-
national Workshop on Computing with Terms and Graphs, number TR-09-05 in
TERMGRAPH workshops, pages 18–32. Università di Pisa, 2009. Available at
http://compass2.di.unipi.it/TR/Files/TR-09-05.pdf.gz.

[BH09c] Didier Buchs and Steve Hostettler. Toward Efficient State Space Generation of
Algebraic Petri Nets. Technical Report 206, CUI, Université de Genève, http:
//archive-ouverte.unige.ch/unige:12332, January 2009.

[BHMR10] Didier Buchs, Steve Hostettler, Alexis Marechal, and Matteo Risoldi. Alpina: An
algebraic petri net analyzer. In Javier Esparza and Rupak Majumdar, editors, Tools

HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA 37

and Algorithms for the Construction and Analysis of Systems, volume 6015 of Lec-
ture Notes in Computer Science, pages 349–352. Springer Berlin / Heidelberg, 2010.

[BLC09] Didier Buchs, Levi Lucio, and Ang Chen. Model checking techniques for test genera-
tion from business process models. In Fabrice Kordon and Yvon Kermarrec, editors,
Reliable Software Technologies – Ada-Europe 2009, volume 5570 of Lecture Notes in
Computer Science, pages 59–74. Springer Berlin / Heidelberg, 2009.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. In
Transactions on Computers, C-35, pages 677–691. IEEE, 1986.

[CDE+02] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and J. F. Que-
sada. Maude: specification and programming in rewriting logic. Theoretical Com-
puter Science, 285(2):187–243, 2002.

[CE82] Edmund M. Clarke and E. Allen Emerson. Design and Synthesis of Synchronization
Skeletons Using Branching-Time Temporal Logic. In Logic of Programs, Workshop,
pages 52–71, London, UK, 1982. Springer.

[CEPA+02] Jean-Michel Couvreur, Emmanuelle Encrenaz, Emmanuel Paviot-Adet, Denis
Poitrenaud, and Pierre-André Wacrenier. Data decision diagrams for petri net anal-
ysis. In Javier Esparza and Charles Lakos, editors, Application and Theory of Petri
Nets 2002, volume 2360 of Lecture Notes in Computer Science, pages 129–158.
Springer Berlin / Heidelberg, 2002.

[CGP99] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model checking. MIT
Press, Cambridge, MA, USA, 1999.

[CLS00] Gianfranco Ciardo, Gerald Lüttgen, and Radu Siminiceanu. Efficient symbolic state-
space construction for asynchronous systems. In Mogens Nielsen and Dan Simpson,
editors, Application and Theory of Petri Nets 2000, volume 1825 of Lecture Notes
in Computer Science, pages 103–122. Springer Berlin / Heidelberg, 2000.

[CLS01] Gianfranco Ciardo, Gerald Lüttgen, and Radu Siminiceanu. Saturation: An effi-
cient iteration strategy for symbolic state-space generation. In Tiziana Margaria
and Wang Yi, editors, Tools and Algorithms for the Construction and Analysis
of Systems, volume 2031 of Lecture Notes in Computer Science, pages 328–342.
Springer Berlin / Heidelberg, 2001.

[CTM05] Jean-Michel Couvreur and Yann Thierry-Mieg. Hierarchical decision diagrams to
exploit model structure. In Farn Wang, editor, Formal Techniques for Networked
and Distributed Systems - FORTE 2005, volume 3731 of Lecture Notes in Computer
Science, pages 443–457. Springer Berlin / Heidelberg, 2005.

[DIPVM02] Claude Dutheillet, Jean-Michel Ilié, Denis Poitrenaud, and Isabelle Vernier-
Mounier. State-Space-Based Methods and Model Checking. In Claude Girault and
Rudiger Valk, editors, Petri Nets for Systems Engineering, A Guide to Modeling,
Verification, and Applications, chapter 14, pages 201–276. Springer, July 2002.

[Ecl] Eclipse. Eclipse Modeling Project. http://www.eclipse.org/modeling/.
[EM85] Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Specification 1: Equa-

tions and Initial Semantics. Monographs in Theoretical Computer Science. An
EATCS Series. Springer, 1985.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns –
Elements of Reusable Object-Oriented Software. Professional Computing. Addison-
Wesley, 1995.

[GM92] Joseph A. Goguen and José Meseguer. Order-Sorted Algebra I: Equational De-
duction for Multiple Inheritance, Overloading, Exceptions, and Partial Operations.
TCS: Theoretical Computer Science, 105(2):217–273, 1992.

[God91] Patrice Godefroid. Using partial orders to improve automatic verification methods.

38 HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA

In Edmund Clarke and Robert Kurshan, editors, Computer-Aided Verification, vol-
ume 531 of Lecture Notes in Computer Science, pages 176–185. Springer Berlin /
Heidelberg, 1991.

[Got74] Eiichi Goto. Monocopy and associative algorithms in extended lisp. Technical Re-
port TR-74-03, University of Toyko, 1974.

[GV01] Jaco Geldenhuys and Antti Valmari. Techniques for Smaller Intermediary BDDs. In
CONCUR’01: 12th International Conference on Concurrency Theory, volume 2154
of Lecture Notes in Computer Science, pages 233–247, 2001.

[HKPAE10] Silien Hong, Fabrice Kordon, Emmanuel Paviot-Adet, and Sami Evangelista. Com-
puting a Hierarchical Static Order for Decision Diagram-Based Representation from
P/T Nets. ToPNoC: Transactions on Petri Nets and Other Models of Concurrency,
2010. Submitted.

[HML+11] Steve Hostettler, Alexis Marechal, Alban Linard, Matteo Risoldi, and Didier Buchs.
High-Level Petri Net Model Checking with AlPiNA. Fundamenta Informaticae,
113(3-4):229–264, 2011.

[HTMK09] Alexandre Hamez, Yann Thierry-Mieg, and Fabrice Kordon. Building Efficient
Model Checkers using Hierarchical Set Decision Diagrams and Automatic Satu-
ration. Fundamenta Informaticae, 94(3-4):413–437, 2009.

[Jen97a] Kurt Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use. Volume 1. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, 1997.

[Jen97b] Kurt Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use: Volume 2. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, 1997.

[KLB+11] Fabrice Kordon, Alban Linard, Didier Buchs, Maximilien Colanage, Sami Evan-
gelista, Jonas Finnemann Jensen, Kai Lampka, Niels Lohmann, Emmanuel Paviot-
Adet, Yann Thierry-Mieg, and Harro Wimmel. Report on the Model Checking Con-
test at Petri Nets 2011. ToPNoC: Transactions on Petri Nets and Other Models of
Concurrency, 2011. Proposed by the conference organizers, will be submitted before
August 2011.

[LH09] Levi Lucio and Steve Hostettler. Multi-Set Decision Diagrams. Technical Re-
port 205, CUI, Université de Genève, http://smv.unige.ch/technical-reports/
pdfs/TR205-MSDD.pdf, January 2009.

[LPAK+10] Alban Linard, Emmanuel Paviot-Adet, Fabrice Kordon, Didier Buchs, and Samuel
Charron. polyDD: Towards a Framework Generalizing Decision Diagrams. In Inter-
national Conference on Application of Concurrency to System Design, pages 124–
133, Los Alamitos, CA, USA, 2010. IEEE Computer Society.

[MB10] Alexis Marechal and Didier Buchs. Properties specification language for algebraic
petri nets. Technical Report 216, Université de Genève, http://smv.unige.ch/
technical-reports/pdfs/ApnProperties.pdf, October 2010.

[Mic68] Donald Michie. “Memo” functions and machine learning. Nature, 218(218):19–22,
1968.

[Mur89] Tadeo Murata. Petri nets: Properties, analysis and Applications. Proceedings of the
IEEE, 77(4):541–580, April 1989.

[PE09] Christophe Pajault and Sami Evangelista. High LEvel Net Analyzer, 2009. http:
//helena-mc.sourceforge.net/.

[Pnu77] Amir Pnueli. The Temporal Logic of Programs. In 18th Annual Symposium on Foun-
dations of Computer Science, 31 October-2 November, Providence, Rhode Island,
USA, pages 46–57. IEEE, 1977.

HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA 39

[PRBA10] Luis Pedro, Matteo Risoldi, Didier Buchs, and Vasco Amaral. Developing Domain-
Specific Modeling Languages by Metamodel Semantic Enrichment and Composition:
a Case Study. In Proceedings of the 10th workshop on Domain-Specific Modeling
(DSM’10), pages 97–102. Aalto University School of Economics, 2010.

[Rei91] Wolfgang Reisig. Petri Nets and Algebraic Specifications. In Theoretical Computer
Science, volume 80, pages 1–34. Elsevier, 1991.

[Ris10] Matteo Risoldi. A Methodology For The Development Of Complex Domain Specific
Languages. PhD thesis, University of Geneva, 2010. Number 4230.

[RK08] Michael Rice and Sanjay Kulhari. A Survey of Static Variable Ordering Heuristics
for Efficient BDD/MDD Construction. Technical report, University of California,
Riverside, 2008.

[SBH+11] Nicolas Sedlmajer, Didier Buchs, Steve Hostettler, Alban Linard, Edmundo Lopez,
and Alexis Marechal. GReg: a Domain Specific Language for the Modeling of Ge-
netic Regulatory Mechanisms. In Monika Heiner and Hiroshi Matsuno, editors,
BioPPN 2011: International Workshop on Biological Processes & Petri Nets, vol-
ume 724, pages 21–35. CEUR, 2011.

[Ter03] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2003.

[Val92] Antti Valmari. A stubborn attack on state explosion. Form. Methods Syst. Des.,
1(4):297–322, 1992.

[Val98] Antti Valmari. The State Explosion Problem. In Wolfgang Reisig and Grzegorz
Rozenberg, editors, Lectures on Petri Nets I: Basic Models, Advances in Petri Nets,
pages 429–528. Springer, London, UK, 1998.

[Vau87] Jacques Vautherin. Parallel systems specifications with coloured petri nets and al-
gebraic specifications. In Grzegorz Rozenberg, editor, Advances in Petri Nets 1987,
volume 266 of Lecture Notes in Computer Science, pages 293–308. Springer Berlin
/ Heidelberg, 1987.

[WK03] Michael Weber and Ekkart Kindler. The Petri Net Markup Language. In Hartmut
Ehrig, Wolfgang Reisig, Grzegorz Rozenberg, and Herbert Weber, editors, Petri
Net Technology for Communication-Based Systems, volume 2472 of Lecture Notes
in Computer Science, pages 124–144. Springer Berlin / Heidelberg, 2003.

40 HIGH-LEVEL PETRI NET MODEL CHECKING WITH ALPINA

Appendix A. The AADTs used by the model of Fig. 8

import "Boolean.adt"
import "Naturals.adt"
import "Packets.adt"

Adt Buffers
Sorts B;

Generators
empty : B;
push : K, B −> B;

Operations
size : B −> nat;
head : B −> K;
tail : B −> B;
isFull : B −> bool;
isEmpty : B −> bool;

Axioms
size(empty) = zero;
size(push($p, $b)) = suc(size($b));

//head(empty) and tail(empty) undefined.

head(push($p, $b)) = $p;

tail(push($p, $b)) = $b;

//Buffer with capacity 4, full if it
//has strictly more than 3 elements
isFull($b) = gt(size($b),suc^3(zero));

isEmpty(empty) = true;
isEmpty(push($p, $b)) = false;

Variables
p : K;
b : B;

import "Consumers.adt"
import "Producers.adt"

Adt Packets
Sorts K;

Generators
pk : P, C −> K;

Operations
getProd : K −> P;
getCons : K −> C;

Axioms
getProd(pk($p, $c)) = $p;
getCons(pk($p, $c)) = $c;

Variables
p : P;
c : C;

Adt Consumers
Sorts C;

Generators
c0 :C;
c : C −> C;

Axioms
c(c0) = c0; //1 consumer

Adt Producers
Sorts P;

Generators
p0 :P;
p : P −> P;

Axioms
p^4(p0) = p0; //4 producers

