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ABSTRACT
Default conditionals are statements that express a condition of nor-

mality, in the form ‘if ϕ then normally ψ’ and are of primary impor-
tance in Knowledge Representation. There exist modal approaches 
to the construction of conditional logics of normality. Most of them 
are built on notions of preference among possible worlds, corre-

sponding to the semantic intuition that (ϕ ⇒ ψ) is true in a situ-
ation if in the most preferred (most ‘normal’) situations in which 
ϕ is true, ψ is also true. It has been noticed that there exist nat-
ural epistemic readings of a default conditional, but this direction 
has not been thoroughly explored. A statement of the form ‘some-
thing known to be a bird, that can be consistently believed to fly, 
does fly’ involves well-known epistemic attitudes and allows the 
possibility of defining defaults within the rich framework of Epis-
temic Logic. We pursue this direction here within KBE, a recently 
introduced S4.2-based modal logic of knowledge, belief and esti-

mation. In this logic, knowledge is a normal S4 operator, belief is 
a normal KD45 operator and estimation is a non-normal operator 
interpreted as a ‘majority’ quantifier over the set of epistemically 
alternative situations. We define and explore various conditionals 
using the epistemic operators of KBE, capturing (ϕ ⇒ ψ) in var-
ious ways, including ‘it is known that assuming ϕ allows us to as-
sume ϕ ∧ ψ’ or ‘if ϕ is known and there is no reason to believe ¬ψ 
then ψ can be plausibly inferred’. Overall, we define here two weak 
nonmonotonic default conditionals, one monotonic conditional and 
two stronger nonmonotonic conditionals without axiom ID. Our 
results provide concrete evidence that the machinery of epistemic 
logic can be exploited for the study of default conditionals.
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1. INTRODUCTION
Knowledge Representation has always been concerned with ‘nor-

mality conditionals’, also called ‘defeasible conditionals’ or ‘de-

faults’. These are statements that express a condition of ‘normal-
ity’ such as ‘birds normally fly’ or ‘adults are normally employed’
(although the validity of the latter conditional is intensely disputed
in the era of the debt crisis ...). There exist other forms of expres-
sions considered to fall within this class, such as ‘most birds have

feathers’ or ‘Christos usually walks home after his class’. Default
conditionals are intimately related to the major concerns of Non-
monotonic Reasoning and have been further investigated after the
study of nonmonotonic consequence relations and the introduction
of KLM logics [19].

Default statements admit various readings. A fundamental one cor-
responds to their principal use of ascribing default properties to
individuals (‘Tweety flies since birds normally fly’), a function ac-
complished elegantly also in McCarthy’s Circumscription (via clas-
sical first-order logic) and Reiter’s Default Logic (via the rules of
inference adjoined to first-order logic). Other readings of defeasi-
ble conditionals seem closer to statements about (mostly qualita-
tive but also quantitative) probability: ‘birds generally (typically,

mostly) fly’. It has been noticed however that “the reading ‘a bird
that can be consistently assumed to fly does fly’ is clearly epistemic

in nature” [5, p. 95]. A ‘normality statement’ of the form ‘every

Tuesday afternoon, you can find Jimmy taking a beer in the cor-

ner pub’ allows one to infer that on a ‘regular’ Tuesday s/he can
meet Jimmy there and this default inference involves facts known

(‘it is a Tuesday’), facts observed and believed (’Jimmy frequents
this place on Tuesday afternoon’), facts considered to be consistent
with the belief base (‘there is no reason to believe this is an ‘irreg-
ular’ Tuesday’) and facts plausibly inferred (‘most probably I will
meet him there’). Although difficult to agree on the subtle details of
the epistemic attitudes involved, it seems that there is an agreement
on the fact that such an epistemic description is quite reasonable.
Cognitive statements of this kind are implicit in Reiter’s normal de-
faults [24] and the conditional entailment of H. Geffner and J. Pearl

[12]: ‘a rule
a : b

b
may be seen as a soft constraint for believing b

when a is known, while a conditional rule a⇒ b can be viewed as

a hard constraint to believe b in a limited context defined by a and

possibly some background knowledge’ [9, p. 220].

The study of the connection of defeasible conditionals with the area
of Epistemic and Doxastic Logic has not been hitherto pursued in
its full entirety. In general, the ‘conditionals-via-modal-logic’ tech-
nique is known and quite successful [23, 4]; yet, the technical and



philosophical step to the construction of conditionals via Epistemic
Logic has not been fully taken. The relation of Epistemic Logic
to conditionals mainly revolves around the famous Ramsey test and
this is also apparent in the earlier works of Lamarre & Shoham [21]
or Friedman & Halpern [11] where an interesting notion of condi-

tional belief is based on the semantics of default conditionals (see
also [1, p. 107]). Modal approaches to defeasible conditionals [3,
20, 7] are mostly based on the model-theoretic intuition of ‘pref-
erence’ among possible worlds or propositions. The conditional
ϕ ⇒ ψ is true in a possible world if ψ is true in the most ‘normal’
or ‘preferred’ ϕ-worlds accessible; equivalently, given the context
of ϕ, the proposition expressed by ϕ ∧ ψ is preferred over the one
expressed by ϕ ∧ ¬ψ [7]. It is natural to consider that normality
orderings are preorders (reflexive and transitive relations) and thus
the modal approaches to defeasible conditionals usually employ the
logic S4 (or its extension S4.3) within which the defeasible con-
ditional is modally defined [3]. Another modal construction of de-
feasible conditionals employs the notion of ‘size’: in [18] (ϕ⇒ ψ)
becomes true whenever ψ is true in an ‘overwhelming majority’ of
ϕ-worlds; assuming that we work within ω (the first infinite ordi-
nal), we can interpret ‘overwhelming majority’ as a cofinite subset
ofω and proceed to define modally the conditional within K4DLZ

which is the modal logic of (ω,<).

In this paper, we amplify the epistemic interpretation of defeasi-
ble conditionals and proceed to define them directly within Epis-
temic Logic. We work inside KBE, a recently introduced epis-
temic logic [17] accounting for knowledge, belief and estimation

(as a form of weak, complete belief, interpreted as ‘truth in most

epistemic alternatives’). KBE comprises an S4.2 framework for
knowledge and belief, following the fundamental investigations of
W. Lenzen [22] and R. Stalnaker [26]. The non-normal modal op-
erator for estimation is interpreted as a ‘majority’ quantifier over
the set of epistemic alternatives of a given possible world. The for-
mal apparatus is that of a ‘weak ultrafilter’, which is an upwards-
closed collection of sets, with pairwise non-disjoint members and
such that exactly one out of a set and its complement occurs in
the collection; the notion extends the weak filters introduced inde-
pendently in [25, 15]. We define two nonmonotonic conditionals
by capturing a size-oriented version of the fundamental intuition of
normality conditionals: (ϕ ⇒ ψ) is set to mean that (ϕ ∧ ψ) is
more normal compared to (ϕ∧¬ψ), as it holds in ‘most’ epistemi-
cally alternative worlds; this is achieved by exploiting the nature of
KBE’s ‘estimation’ operator as a majority quantifier. The logics
emerging are rather weak compared to the ‘conservative core’ of
default reasoning (the system P, [19]) but this is neither surprising
nor discouraging: weak conditionals of this kind have been also
introduced in [7, system C and system Λ] under a rule-based inter-
pretation of defaults and it is well-known that conditionals based on
the plausibility structures of Friedman & Halpern do not generally
satisfy all the KLM properties [11, p. 266]. Another, very ‘natu-
ral’ (but rather strong in epistemic assumptions) translation leads to
a monotonic conditional, and two other epistemic definitions give
rise to nonmonotonic conditional logics which do not satisfy the ax-
iom ID (reflexivity), but they capture very interesting conditional
principles and one of them comes close to an ‘overwhelming ma-
jority’ conditional defined in [18]. Note that for all these definitions
a recursive translation in the language of KBE provides direct ac-
cess to the tableaux proof procedure for this logic [17], and thus a
machinery for testing theoremhood is readily available.

Our primary concern in this research is rather typical of (one of)
the way(s) Conditional Logic is used in Knowledge Representa-

tion: the main objective is to introduce epistemically-driven theo-
ries of sentences expressing defeasible conditionals and provide a
syntactic, yet intuitively justified, account of the notion of a default
conditional, and not to directly provide a framework for default
reasoning which would pin down the contingent conclusions that
can be plausibly extracted given a background conditional theory
[7, 6]. We focus on the ‘epistemic connection’ of defeasible condi-
tionals and investigate the possibility of a direct syntactic definition
within Epistemic Logic. Due to space limitations, we do not pro-
vide extended background material and the proofs are omitted or
sketched.

2. BACKGROUND - THE LOGIC KBE
We assume that the reader has a working knowledge of Modal

Logic and Conditional Logic and is acquainted with the Scott-Monta-
gue (neighborhood) semantics and the cluster analysis of transitive
normal modal logics (see [14, 2, 6]). In this paper, we reserve
→ for the classical (material) implication and ⇒ for the normality
conditional or any other non-classical conditional constructed. The
names of the modal axioms and systems mentioned in this paper
are firmly entrenched in the literature. Less entrenched is the ter-
minology on the ‘bridge’ axioms relating knowledge to belief [13];
we follow the naming given by W. Lenzen[22] and R. Stalnaker
[26]. The axioms and rules of Conditional Logic can be found in
Table 1, last page of this extended abstract.

The logic KBE has been introduced in [17]. The language LKBE

comprises three modal operators: Kϕ read as ‘the agent knows ϕ’,
Bϕ read as ‘the agent believes ϕ’ and Eϕ read as ‘the agent es-

timates that ϕ is true’. One way to view the epistemic attitudes
involved is to consider Kϕ as an S4 operator, and Bϕ as a KD45

operator, interconnected with the bridge axioms B1.Kϕ → Bϕ,
B2.3.Bϕ → ¬B¬Kϕ and B2.4.Bϕ → KBϕ. Equivalently, fol-
lowing the work of W. Lenzen and R. Stalnaker, we consider the
logic S4.2 within which belief is just an abbreviation defined by
Bϕ ≡ ¬K¬Kϕ; this equivalent perspective is very convenient as
we are able to work within the model theory of S4.2. The es-
timation operator added on top of S4.2 is a non-normal majority
quantifier: the intended interpretation is that an agent estimates that
ϕ is true if ϕ holds in ‘most’ epistemic alternatives. Following is
the axiomatization of KBE, including the abbreviation for be-
lief: DB. Bϕ ≡ ¬K¬Kϕ (Belief definition), K. Kϕ ∧ K(ϕ →
ψ) → Kψ (Knowledge is closed under logical consequence), T.
Kϕ → ϕ (Only true things are known), 4. Kϕ → KKϕ (Posi-

tive introspection, with respect to knowledge), CB. Bϕ→ ¬B¬ϕ
(Belief is consistent), BE. Bϕ → Eϕ (Beliefs are estimations),
CCE. Eϕ ≡ ¬E¬ϕ (Estimation is consistent and complete), EK.
Eϕ∧K(ϕ→ ψ) → Eψ (Estimation can be safely inferred through

knowledge), PIE. Eϕ→ KEϕ (Introspection with respect to esti-

mation).

Several introspective properties are proved in [17], including the
following principles which are valid in KBE: Eϕ→ KEϕ, Eϕ→
BEϕ, Eϕ → EEϕ, ¬Eϕ → K¬Kϕ, ¬Eϕ → B¬Kϕ, ¬Eϕ →
E¬Kϕ (non-estimation implies introspection wrt ignorance and ‘lack

of certainty’) and Eϕ ∧ B(ϕ → ψ) → Eψ. Of particular impor-
tance is that belief can be equivalently defined in KBE as ‘estima-

tion that the agent knows’: EKϕ ≡ Bϕ and the fact that knowledge
about estimation amounts exactly to estimation itself KEϕ ≡ Eϕ.

DEFINITION 2.1. KBE is the propositional bimodal logic ax-
iomatized by K, T, 4, CB, BE, CCE, EK, PIE and closed
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Figure 1: W and R of frame F1
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The possible-worlds models of KBE. To construct the frames of
KBE we focus on the fact that one of the frame classes that deter-
mines S4.2 is the class of reflexive, transitive frames with a final

cluster FC (note that such a frame is automatically directed); this
follows from the results in [16]. These S4.2-frames are combined
with Scott-Montague semantics, in which each neighborhood is a
complete collection of large sets on the epistemic alternatives of the
world at hand, given our intention to interpret estimation as a gen-
eralized ‘most’ quantifier. To capture the notion of large sets, the
abstract notion of a weak filter has been independently introduced
in [25, 15]. A non-empty collection F of subsets of W is a weak

filter iff (i) X ∈ F and X ⊆ Y ⊆ W implies Y ∈ F (upwards

closure) and (ii) X /∈ F or (W \X) /∈ F (equivalently: X ∈ F
and Y ∈ F implies that X ∩ Y 6= ∅, pairwise non-disjointness).
We obtain a weak ultrafilter by strengthening condition (ii) to a bi-
conditional: X /∈ F ⇔ (W \ X) ∈ F (exactly one, out of a

set and its complement, is large). Genuinely weak ultrafilters ex-
ist and are of interest to ‘size’-oriented accounts of nonmonotonic
reasoning [17]. The following definition introduces the class of
KBE-frames; N is a ‘neighborhood function’ assigning to each
world a collection of large subsets of its R-epistemic alternatives
(see [17] for more details).

DEFINITION 2.2. Consider the triple F = 〈W,R,N〉, where
W is a non-empty set, R ⊆ W × W , N : W → P(P(W )),
R is a reflexive, transitive relation with a nonempty final cluster

FC = {v ∈ W | (∀w ∈ W ) wRv}. N is such, that ∀w ∈
W (nr) N (w) ⊆ P(R(w)), (be) FC ∈ N (w), (pie) ∀X ⊆
R(w) ∀u ∈ W

(

X ∈ N (w) & wRu =⇒ X ∩ R(u) ∈ N (u)
)

,

(cce) ∀X ⊆ R(w)
(

X ∈ N (w) ⇐⇒ R(w) \X /∈ N (w)
)

, and

(ek) ∀X,Y ⊆ R(w)
(

X ∈ N (w) & Y ⊇ X =⇒ Y ∈ N (w)
)

.
F is called a kbe-frame. M = 〈F, V 〉 is called a kbe-model, if
it is based on a kbe-frame and V : Φ → P(W ) (Φ is the set of
propositional variables) is a valuation.

The class of all kbe-frames is nonempty. The reader can verify that
the frame of Figure 1, is a kbe-frame: W = {w, u1, u2, u3}, R is
the relation shown in Figure 1, N (w) =

{

X ⊆ W | |X| ≥ 3
}

∪
{

{u1, u2}, {u1, u3}, {u2, u3}
}

, N (u1) = N (u2) = N (u3) =
{

{u1, u2}, {u1, u3}, {u2, u3}, FC
}

, where FC = {u1, u2, u3}
is the final cluster of the structure 〈W,R〉. KBE is determined by
the class of kbe-frames [17].

DEFINITION 2.3. Consider the model M = 〈W,R,N , V 〉
for the language LKBE. The function V : LKBE → P(W )

is defined recursively as follows: V (p) = V (p), (∀p ∈ Φ),
V (⊥) = ∅, and (∀ϕ,ψ ∈ LKBE) V (ϕ → ψ) = (W \ V (ϕ)) ∪
V (ψ), V (Kϕ) = {w ∈ W | R(w) ⊆ V (ϕ)}, V (Eϕ) = {w ∈
W | R(w) ∩ V (ϕ) ∈ N (w)}. As usual, we will write M, w |= ϕ
instead of w ∈ V (ϕ).

3. AN EPISTEMIC RECONSTRUCTION OF

CONDITIONAL LOGIC

3.1 The role of epistemic operators in defining
default conditionals

One important topic in Epistemic Logic is the relation between
the various epistemic and doxastic attitudes or cognitive states:
knowledge, belief, weak belief, disbelief, ignorance, plausible judge-

ment, there exist a lot indeed. The deep and influential analysis of
W. Lenzen [22] and R. Stalnaker [26] has revealed a minimal set
of principles that an epistemologist should accept on the properties
of knowledge, belief and their ‘bridging’ relations, resulting in the
fundamental role of S4.2. The logic KBE builds on these results
to accommodate an operator of plausible estimation, tailored for
cases when necessarily either ϕ or ¬ϕ - but not both - should be
‘estimated’.

From the discussion in the introductory section 1 and the quota-
tions therein, it should be clear that there exist important forms
of the normality conditional that can - or should - be read epis-
temically. But, when it comes to a careful formal definition of a
default conditional within an epistemic logic, the question arises:
which ‘attitude’, in which ‘place’ of the default conditional? In
the first place, drawing inspiration from the ‘archetypical’ normal

default from Reiter’s logic:
ϕ : ψ

ψ
, it seems natural to consider an

epistemic translation of a normality conditional (ϕ⇒ ψ) (if ϕ then
normally ψ) in the form: Kϕ∧¬B¬ψ → Eψ, interpreting the jus-

tification ψ of the normal default (whose meaning in Default Logic
is ‘it is consistent to assume ψ’, usually denoted as Mψ) as ‘I have

no reason to believe ¬ψ’, the prerequisite as ‘I know ϕ’ and the
conclusion of the default as ‘I estimate that ψ is the case’. This def-
inition gives rise to an interesting conditional, which is not a default
conditional: it satisfies the principle of monotony (alias strengthen-

ing the antecedent); see Section 3.3. Our experimentation revealed
that this is due to the strong influence of the knowledge operator in
the ‘prerequisite’, a phenomenon partly persisting when knowledge

is replaced with belief. Other definitions of the conditional which
exhibit the same behaviour include Kϕ ∧ ¬B(ϕ → ¬ψ) → Eψ
and Kϕ ∧ ¬B(ϕ ∧ ¬ψ) → Eψ while other definitions, including
(Kϕ ∧ ¬E(ϕ → ¬ψ) → Eψ) and (Kϕ ∧ ¬E¬ψ → Eψ) lead to
triviality as they are valid KBE principles (check with the axiom-
atization in Section 2), indicating clearly that given knowledge in
the ‘prerequisite’, estimation cannot replace belief in the ‘justifica-
tion’.

However, once we replace knowledge by estimation (which is a
much weaker operator) defining (ϕ ⇒ ψ) as Eϕ ∧ ¬B(ϕ →
¬ψ) → E(ϕ∧ψ) we obtain a weak defeasible conditional, whose
properties we discuss in Section 3.2. Another, perhaps more in-
teresting defeasible conditional arises when the interplay between
the antecedent (the ‘prerequisite’) and the consequent (the ‘conclu-
sion’) is ‘controlled’ through knowledge and ‘computed’ via esti-

mation as K(Eϕ → E(ϕ ∧ ψ)), read as ‘I can plausibly conclude

‘normally ψ assuming ϕ’ iff I know that estimating ϕ allows me



to estimate ϕ ∧ ψ’. This view comes close to the intuition that
(ϕ ∧ ψ) seems more ‘normal’ than (ϕ ∧ ¬ψ); note also that given
the interpretation of estimation in KBE, (ϕ ∧ ψ) holds in ‘most’
situations.

Finally, we proceed to define conditionals by imposing epistemic
operators on the antecedents of rule Modus Ponens. We define
(ϕ ⇒ ψ) as Kϕ ∧ E(ϕ → ψ) and K(ϕ → ψ) ∧ Eϕ. These
two definitions introduce stronger nonmonotonic conditional log-
ics than the previous ones, but they do not satisfy axiom ID (re-

flexivity). This is not very convenient as ‘reflexivity seems to be

satisfied universally by any kind of reasoning based on some no-

tion of consequence’ [19, p. 177] and defeasible conditionals are
designed to incarnate some form of defeasible consequence. How-
ever, as observed also in [19], conditionals that do not satisfy it
‘probably express some notion of theory change’. The latter defini-
tion introduces a conditional logic which comes close to the logic
⇒

Ω introduced in [18] as a modally-defined, ‘majority’ default con-
ditional logic, imposing the validity of (ϕ ⇒ ψ) iff (ϕ ∧ ψ) is true
in a cofinite subset of the ω many possible worlds available.

3.2 Default conditionals, epistemically defined
We are now going to provide in detail the results about the logic
arising when the normality conditional is defined as K(Eϕ→ E(ϕ∧
ψ)). The logic is called EC1 (for Epistemic Conditional). A recur-
sive translation unpacks any conditional formula in the language of
KBE, giving access to the proof procedures of the logic. In the
rest of the paper, CKBE will denote the class of all kbe-frames.

DEFINITION 3.1 (CONDITIONAL LOGIC EC1). We recursively
define the following translation ()∗ : L⇒ → LKBE: (i) (p)∗ = p ,
if p ∈ Φ (p is a propositional variable), (ii) (ϕ◦ψ)∗ = (ϕ)∗ ◦ (ψ)∗

for ◦ ∈ {∧,∨,→,≡}, (iii) (¬ϕ)∗ = ¬(ϕ)∗ and (iv) (ϕ⇒ ψ)∗ =
K(Eϕ∗ → E(ϕ∗ ∧ ψ∗)). The logic EC1 consists of all formulae
ϕ ∈ L⇒, such that: ϕ ∈ EC1 iff CKBE |= ϕ∗ iff ⊢KBE ϕ∗

Let us proceed to check the properties of EC1. Throughout the
proofs, F refers to an arbitrary kbe-frame 〈W,R,N〉 and M to an
arbitrary kbe-model 〈W,R,N , V 〉.

THEOREM 3.2. The logic EC1: (i) is closed under the rules
RCEA, RCEC and RCE and (ii) contains the axioms ID, CUT,
Loop and CM.

PROOF. Due to space limitations we provide only the proof for
CUT. We have to show that F |= (ϕ ∧ ψ ⇒ z) ∧ (ϕ ⇒ ψ) →
(ϕ ⇒ z). Assume an arbitrary world w ∈ W , such that M, w |=
(ϕ ∧ ψ ⇒ z) ∧ (ϕ ⇒ ψ), where M is a model of F. Obviously,
M, w |= (ϕ ∧ ψ ⇒ z) and M, w |= (ϕ ⇒ ψ). By Def. 3.1
M, w |= K(E(ϕ ∧ ψ) → E(ϕ ∧ ψ ∧ z)) and M, w |= K(Eϕ →
E(ϕ ∧ ψ)). Let u ∈W be such that wRu. Then, we have that:

M, u |= E(ϕ ∧ ψ) → E(ϕ ∧ ψ ∧ z) (1)

M, u |= Eϕ→ E(ϕ ∧ ψ) (2)

If M, u |= ¬Eϕ then M, u |= Eϕ→ E(ϕ ∧ z) trivially.

Let M, u |= Eϕ. Then by (2) we have M, u |= E(ϕ∧ψ) and by (1)
we derive that M, u |= E(ϕ∧ψ∧z). By definition, this means that
R(u)∩‖ϕ∧ψ∧z‖ ∈ N (u). But ‖ϕ∧ψ∧z‖ ⊆ ‖ϕ∧z‖ and thus
by the definition of N we also have that R(u)∩ ‖ϕ∧ z‖ ∈ N (u).
By definition then, M, u |= E(ϕ ∧ z).

So, if M, u |= Eϕ, then M, u |= E(ϕ ∧ z), which gives that
M, u |= Eϕ→ E(ϕ∧z). The world u ∈W was arbitrarily chosen
such thatwRu, so M, w |= K(Eϕ→ E(ϕ∧z)). By Def. 3.1 again,
M, w |= (ϕ⇒ z). So, if M, w |= (ϕ ∧ ψ ⇒ z) ∧ (ϕ⇒ ψ), then
M, w |= (ϕ⇒ z), which gives that M, w |= (ϕ∧ψ ⇒ z)∧(ϕ⇒
ψ) → (ϕ ⇒ z). Since the world w and model M were arbitrarily
chosen, the proof is complete.

The following theorem presents the rules and axioms not present in
EC1. The counterexample constructed is based on the kbe-frame
of Figure 1.

THEOREM 3.3. The logic EC1: (i) is not closed under the rule
RCK, (ii) does not contain the axioms AC, CC, OR, CV,
CSO, MP, MOD, CA, CS, CEM, SDA, Transitivity, Mono-

tonicity and Contraposition.

PROOF. We provide only the proof for axiom OR. Consider
the kbe-frame F1 and the model M1 of F1 based on the following
valuation: V (ϕ) = {u1}, V (ψ) = {u2} and V (z) = ∅. It suffices
to show that M1, w 6|= (ϕ ⇒ z) ∧ (ψ ⇒ z) → (ϕ ∨ ψ ⇒ z).
Indeed, we have that ∀v ∈W , R(v)∩‖ϕ‖ 6∈ N (v) and thus ∀v ∈
W : M1, v |= ¬Eϕ. This also gives ∀v ∈ W : M1, v |= (Eϕ →
E(ϕ ∧ z)) and M1, w |= K(Eϕ → E(ϕ ∧ z)) follows trivially.
Similarly, M1, w |= K(Eψ → E(ψ∧z)), as R(v)∩‖ψ‖ 6∈ N (u),
∀v ∈W . By Def. 3.1 M1, w |= (ϕ⇒ z) and M1, w |= (ψ ⇒ z).

Furthermore, R(w)∩‖ϕ∨ψ‖ ∈ N (w) and thus M1, w |= E(ϕ∨
ψ). But M1, w 6|= E((ϕ∨ψ)∧z) because R(w)∩‖(ϕ∨ψ)∧z‖ 6∈
N (w). It follows that M1, w 6|= E(ϕ ∨ ψ) → E((ϕ ∨ ψ) ∧ z)
and thus M1, w 6|= K(E(ϕ ∨ ψ) → E((ϕ ∨ ψ) ∧ z)), as wRw.
We get M1, w 6|= (ϕ ∨ ψ ⇒ z). So M1, w |= (ϕ ⇒ z) and
M1, w |= (ψ ⇒ z), but M1, w 6|= (ϕ ∨ ψ ⇒ z) and the proof is
complete.

We are going now to investigate an alternative definition of defea-
sible conditional within KBE. Namely, we define the conditional
as Eϕ∧¬B(ϕ→ ¬ψ) → E(ϕ∧ψ); see also the comments at Sec-
tion 3.1. For the rest of this section, we omit the obvious recursive
translation of the conditionals into KBE and proceed directly to
the results. The logic EC2 corresponding to the definition above is
rather weak and the details are provided in the following theorems
whose proof is omitted.

THEOREM 3.4. The logic EC2: (i) is closed under the rules
RCEA, RCEC and RCE, (ii) contains the axiom ID.

THEOREM 3.5. The logic EC2: (i) is not closed under the rule
RCK, (ii) does not contain the axioms CUT, AC, CC, Loop,
OR, CV, CSO, CM, MP, MOD, CA, CS, CEM, SDA,
Transitivity, Monotonicity and Contraposition.

3.3 A monotonic conditional within KBE

This section investigates a Reiter-style conditional: (ϕ ⇒ ψ) is
defined as Kϕ∧¬B¬ψ → Eψ. The following two theorems verify
that the logic EC3 of this conditional misses some of the principles
found in the ‘conservative core’ of Default Reasoning (the system
P, see Table 1) but otherwise possesses the axioms CA, CV, the
‘conditional excluded middle’ axiom CEM and axiom SDA.

THEOREM 3.6. The logic EC3: (i) is closed under the rules
RCEA, RCEC and RCE, (ii) contains the axioms ID, AC,
CV, CA, CEM, SDA and Monotonicity.



THEOREM 3.7. The logic EC3: (i) is not closed under the rule
RCK, (ii) does not contain the axioms CUT, CC, Loop, OR,
CSO, CM, MP, MOD, CS, Transitivity and Contraposition.

3.4 Two default conditionals without Reflex-
ivity

The last two conditionals actually investigate the possibility of en-
forcing epistemic values on the antecedents of the classical infer-
ence rule Modus Ponens.

DEFINITION 3.8. [Logics EC4 and EC5]. Let the logics EC4

and EC5 consist of all formulae ϕ ∈ L⇒ defined, in the same
way as the previous definitions, accordingly as: EC4 : (ϕ ⇒
ψ) as Kϕ ∧ E(ϕ → ψ), and EC5 : (ϕ ⇒ ψ) as K(ϕ →
ψ) ∧ Eϕ.

THEOREM 3.9. The logic EC4: (i) is closed under the rules
RCEA and RCEC, (ii) contains the axioms CUT, Loop, OR,
CSO, CM, MOD, CA and Transitivity.

PROOF. We provide only the proof for Transitivity. Observe
that in kbe-models M, w |= Kϕ∧E(ϕ→ ψ) iff M, w |= Kϕ∧Eψ.
We have to show that F |= (ϕ ⇒ ψ) ∧ (ψ ⇒ z) → (ϕ ⇒ z).
Assume an arbitrary world w ∈W , such that M, w |= (ϕ⇒ ψ)∧
(ψ ⇒ z), where M is a model of F. Obviously, M, w |= (ϕ⇒ ψ)
and M, w |= (ψ ⇒ z). Then, M, w |= Kϕ ∧ Eψ and M, w |=
Kψ ∧ Ez. So M, w |= Kϕ ∧ Eψ ∧ Kψ ∧ Ez, which also gives
M, w |= Kϕ ∧ Ez. Then, we have that M, w |= Kϕ ∧ E(ϕ → z)
and thus M, w |= (ϕ⇒ z).

THEOREM 3.10. The logic EC4: (i) is not closed under the
rules RCK and RCE, (ii) does not contain the axioms ID, AC,
CC, CV, MP, CS, CEM, SDA, Monotonicity and Contra-

position.

THEOREM 3.11. The logic EC5: (i) is closed under the rules
RCEA, RCK and RCEC, (ii) contains the axioms CUT, AC,
CC, Loop, OR, CSO, CM, MP, MOD and Transitivity.

THEOREM 3.12. The logic EC5: (i) is not closed under the
rule RCE, (ii) does not contain the axioms ID, CV, CA, CS,
CEM, SDA, Monotonicity and Contraposition.

PROOF. (SDA) Consider the kbe-frame F1 and the model M1

of F1 based on the following valuation: V (ϕ) = {u1}, V (ψ) =
{u2} and V (z) =W . It suffices to show that M1, w 6|= (ϕ∨ψ ⇒
z) → (ϕ⇒ z)∧(ψ ⇒ z). Indeed, we have that R(w)∩‖ϕ∨ψ‖ ∈
N (w) and thus M1, w |= E(ϕ ∨ ψ). Furthermore, ∀v ∈ W ,
M1, v |= z and thus ∀v ∈W , M1, v |= (ϕ∨ψ → z). This means
that M1, w |= K(ϕ∨ψ → z). So M1, w |= K(ϕ∨ψ → z)∧E(ϕ∨
ψ). Using Definition 3.8 then, we get M1, w |= (ϕ ∨ ψ ⇒ z).

But M1, w 6|= Eϕ because R(w) ∩ ‖ϕ‖ 6∈ N (w). It follows that
M1, w 6|= K(ϕ → z) ∧ Eϕ. Using Definition 3.8 then, we get
M1, w 6|= (ϕ ⇒ z). So M1, w |= (ϕ ∨ ψ ⇒ z), but M1, w 6|=
(ϕ⇒ z) and the proof is complete.

Table 1 summarizes our results and allows the reader to compare
the relative strength of the conditional logics epistemically defined
in this paper. A ‘tick’ implies that the system has the corresponding
rule or axiom, a shaded box implies that the system does not have
it and an empty box means that we have not checked this for the
logics found in the literature. The last column describes logics ECi

of this paper, CE is from [23], CT4 from [3] and logic
⇒

Ω from
[18].

4. CONCLUSIONS
In this paper, we have pursued the possibility of defining defea-
sible conditionals syntactically, employing the machinery of Epis-

temic and Doxastic Logic. As argued in the introductory section,
the epistemic reading of some forms of normality statements has
been noticed within the KR community but the fine interplay be-
tween the epistemic attitudes and the default conditionals has not
been thoroughly investigated up to now. We believe that our re-
sults have demonstrated the feasibility and the merits of such an
approach which opens the possibility of employing a very fertile
area and its modern extensions (like Dynamic Epistemic Logic) for
the study of defeasible conditionals. One thing unique in this treat-
ment of default conditionals is a kind of reverse engineering: which

‘species’ of knowledge and ‘doxastic attitudes’ (belief, weak be-

lief, disbelief, estimation, etc.) do we need in order to describe

the phenomenon of ‘jumping to conclusions by default’? This
question is important for defining the ‘correct’ translation of de-
faults in epistemic logic, yet, answering this will shed more light
on the very ‘nature’ of default statements. Needless to say, this
question has important philosophical repercussions and hinges on
the delicate relation between epistemic and doxastic notions which
is still debated in Philosophy.

The approach we have taken is qualitative. A quantitative approach
will probably prove harder to design but more flexible in its use. A
prime candidate for a quantitative epistemic treatment of defeasible
conditionals is the area of epistemic probabilistic logic [8]. In gen-
eral, one can imagine of an epistemic language that would combine
epistemic operators with the ability of direct handling of statements
about the probability of certain facts, along the lines of Fagin and
Halpern [10]. It is conceivable that a language allowing statements
of the form K(p(ϕ) ≥ p1) → E(p(ψ) ≥ p2) would allow for
explicit reasoning about epistemic attitudes and probability, giving
alternative ways for defining default conditionals. It seems that we
are still far form understanding the cognitive process triggered and
the epistemic attitudes involved in the procedure of Reasoning by

Default. In hindsight, it is interesting to observe that the body of
work in KR that relates knowledge and belief with nonmonotonic
reasoning practically does not differentiate between the two notions
and relies mainly on introspection. Yet, we believe that the connec-
tion of epistemic logic to default reasoning is much deeper and -
for the time being - hardly known.
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