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Abstract. We introduce CODD, a system for solving combinato-
rial optimization problems using decision diagram technology. Prob-
lems are represented as state-based dynamic programming models
using the CODD language specification. The model specification is
used to automatically compile relaxed and restricted decision dia-
grams that are embedded inside a branch-and-bound search process.
We introduce abstractions that allow us to generically implement the
solver components while maintaining overall execution efficiency.
We demonstrate the functionality of CODD on a variety of combi-
natorial optimization problems and compare its performance to other
state-based solvers as well as integer programming and constraint
programming solvers. CODD provides competitive results and can
outperform the other solvers, sometimes by orders of magnitude.

1 Introduction

Decision diagram-based optimization (DDO) was introduced by
Bergman et al. [6] as a generic methodology for solving discrete op-
timization problems. A decision diagram provides an explicit, com-
pact, graphical representation of the set of solutions. Because such
diagrams can grow exponentially large, Bergman et al. introduce
relaxed decision diagrams of polynomial size to obtain relaxation
(dual) bounds to the problem. Likewise, restricted diagrams are used
to obtain heuristic (primal) solutions. These bounds are embedded
into a branch-and-bound style search method that branches on nodes
inside the diagram rather than discrete variables. This methodology
was shown to outperform or be competitive with the state of the art
for several application domains [5, 10, 17, 9]. We refer to [9] and
[31] for recent surveys on decision diagrams for optimization.

Decision diagrams provide a natural bridge between combina-
torial optimization, mathematical programming, state-based search,
and constraint reasoning. In particular, Bergman et al. [6] developed
their methodology to solve dynamic programming models through
branch-and-bound. This was followed by the system Ddo [14] that
offers a generic library to implement a DDO solver, and the Peel-
and-Bound DDO solver [28]. More recently, Kuroiwa and Beck [21]
introduced the domain-independent dynamic programming modeling
formalism, with the Python modeling interface DIDPPy and asso-
ciated generic state-based solvers using A* and beam search [22].
The availability of different generic solver technologies for dynamic
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programming models offers great potential for cross-fertilization be-
tween different fields, including automated planning and scheduling,
operations research, and constraint solving [4].
Contributions. We present CODD, a generic solver for combina-
torial optimization problems formulated as dynamic programming
models. It is based on decision diagram technology, using as core
principles a state definition, a state transition function, a cost transi-
tion function, and a state merging operator. We deviate from existing
DDO methodology that follows the design of ordered decision dia-
grams in which states are arranged in explicit layers each associated
with a decision variable. Instead, we propose a generalization that is
state based and does not require explicit layers. This aligns the de-
sign of CODD more closely with general dynamic programming and
state-based search methods. Our second main contribution is a speci-
fication language that uses high-level abstractions to concisely repre-
sent the components of the model. As our third contribution, we ex-
perimentally demonstrate the computational efficiency of CODD on
a number of combinatorial optimization problems. Specifically, we
show that CODD can outperform the other generic solvers DIDPPy
and Ddo, sometimes by orders of magnitude.

In the remainder of the paper we first describe related work in Sec-
tion 2. We then introduce the basic principles of DDO in Section 3,
around which our system is designed. Section 4 presents the specifi-
cations of the solver components, and our procedure to automatically
compile the associated elements of the solver. Lastly, in Section 5
we study the performance of CODD on four combinatorial optimiza-
tion applications: the knapsack problem, the Golomb ruler problem,
graph coloring, and the maximum independent set problem.

2 Related Work

Binary decision diagrams have been applied for solving (combinato-
rial) optimization problems since the mid-1990s, including branch-
and-bound for 0/1 integer programming [20, 23] and binate covering
problems [32]. While some of these earlier techniques are also used
in DDO, the main difference is that DDO is a generic state-based
paradigm that utilizes relaxed and restricted decision diagrams.

Decision diagram-based optimization is closely related to con-
straint programming, as decision diagrams can compactly represent
the explicit solutions to global constraints. In fact, relaxed decision
diagrams were first introduced in the context of multi-valued deci-
sion diagram (MDD) based constraint propagation [3]. Hoda [16]
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developed a generic decision-diagram based constraint programming
solver, with a low-level C++ interface for developing new constraint
propagators. Perez and Régin [25, 24] developed a C++ library of
algorithms for MDD-based constraint propagation. The system Had-
dock [13] provides a more abstract view of MDD-based constraint
programming, and introduces a specification language to implement
new constraint types. The system automatically compiles the asso-
ciated decision diagrams, which are embedded into the constraint
propagation process of the MiniCP solver. Haddock cannot directly
be used to solve DDO models, however, as it follows a constraint
programming formalism instead of a state-based formalism.

Decision diagrams have also been utilized for automated planning
and scheduling. In particular, Horn et al. integrate state-based search
and decision diagram methodology to solve a range of planning and
scheduling applications [18, 19]. Castro et al. [8] use relaxed de-
cision diagrams for computing admissible heuristics for the cost-
optimal delete-free planning problem. Kuroiwa and Beck [21] in-
troduced DyPDL, a high-level modeling formalism for dynamic pro-
gramming problems with several generic solvers: CABS, CAASDy,
ACPS, APPS, and LNBS [22]. The DyPDL parser is implemented in
Rust, while DIDPPy is a more recent Python interface.

For stand-alone DDO solvers, Bergman et al. [5] implemented the
first such solver in C++. To develop new applications users are re-
quired to implement low-level C++ code. Likewise, the Peel-and-
Bound DDO solver [28] offers a low-level Julia interface. The system
Ddo [14] offers a generic library to implement a DDO solver more
easily for applications. It is implemented in Rust but also offers the
Python interface Py-DDO to access the library. Ddo also introduced
local bounds [15] and dominance rules [11] into the solver. The deci-
sion platform Nextmv1 is the first industrial-grade DDO implemen-
tation, and is tailored for vehicle routing and scheduling applications.
Optimization models in Nextmv are implemented in the Go program-
ming language. Nextmv provides a dedicated modeling interface to
develop routing applications.

CODD extends this line of work and integrates ideas from state-
based search into a DDO solver. Compared to prior DDO systems,
it implements a generalized state-based implementation of decision
diagrams, and offers abstractions to concisely and intuitively repre-
sent models in C++. Like the DIDPPy and Ddo solvers it integrates
local bounds (which are similar to admissible heuristics) and domi-
nance rules; CODD applies both of these during the compilation of
the decision diagrams and the branch-and-bound search.

3 Decision Diagram-based Optimization

We next describe the main elements of decision diagram-based opti-
mization (DDO). The basic principles follow the original framework
by Bergman et al. [6], but we present a generalization that does no
longer require models and solutions to proceed in a fixed number
of stages. Instead, we allow solutions to be sequences of arbitrary
length, similar to problems encountered in AI planning or general
dynamic programming.

Let U be a universe of elements, and let D be a set of ordered
sequences of elements in U , each of arbitrary but finite length. We
consider discrete optimization problems of the form

P : max f(y)
s.t. Cj(y), j = 1, . . . ,m,

y ∈ D,

1 https://www.nextmv.io/

where y represents the decision variable ranging over the domain
of sequences D, f : D → R is the objective function over y, and
Cj : D → {0, 1} is a constraint over y for j = 1 . . . ,m. If all
sequences in D are assumed to be of the same length, we obtain the
problem form considered in [6].

3.1 Dynamic Programming Model

The set of solutions to P can be modeled using a state-based dynamic
programming (DP) formulation. In dynamic programming, a solution
is represented as a sequence of state-based decisions. It uses ‘state
variables’ and ‘decision variables’, where a decision variable transi-
tions one state into another state depending on the decision value (or
‘label’). A dynamic program is defined by:

• A set of states S based on a state definition. We identify a single
initial state r and a single target state t.

• A label generation function λ : S → U representing the decisions
that can be taken from a state.

• A state transition function τ : S × U → S representing the tran-
sition out of a state using a decision label into another state.

• A state cost function c : S × U → R representing the cost of a
transition out of a state using a decision label.

• A value function v : S → R for each state. The value function is
implicit and is not specified as part of the model, except that the
value function v(r) for the initial state can be set to a constant K.

The DP model proceeds in stages, where stage i is associated with
state variable si and decision variable xi, and s1 = r. The DP for-
mulation of P has the following form:

max v(t)
s.t. v(si+1) = max

xi∈λ(si)
τ(si,xi)=si+1

v(si) + c(si, xi) ∀si ∈ S \ {t}

v(r) = K

Observe that the constraints C1, . . . , Cm are captured through ap-
propriately defining the state definitions and transition functions. In
particular, the set of possible labels for a decision xi depends on the
state si and is encoded by the label generating function λ(si).

Example 1. Given a complete weighted directed graph G = (V,E)
with vertex set V = {1, 2, . . . , n}, edge set E, and edge distance
dij for all (i, j) ∈ E, the traveling salesperson problem (TSP) asks
to find a closed tour in G of minimum total distance, visiting each
vertex exactly once. To formulate this problem as a DP, solutions are
represented as an ordered sequence of n vertices (i.e., as permuta-
tions): variable xj represents the j-th location to be visited, with
domain Dj = V for j = 1, . . . , n. We arbitrarily select vertex 1 as
the depot.

• State definition: Tuple 〈S, e〉 where S ⊆ V represents the set of
visited vertices, and e ∈ V represents the last visited location.
The initial state is defined as r = 〈{1}, 1〉 with value v(r) = 0.
The target state is defined as t = 〈V, 1〉.

• Label generating function: λ(〈S, e〉) =
{

V \ S if |S| < n,
{1} if |S| = n.

• State transition function: τ(〈S, e〉, �) = 〈S ∪ {�}, �〉.
• State cost function: c(〈S, e〉, �) = de,�.

3.2 Exact, Relaxed, and Restricted Decision
Diagrams

Given a DP model, we define a decision diagram as a weighted di-
rected acyclic graph D = (N,A) where node set N corresponds
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to the set of state variables and arc set A corresponds to the state
transition function τ . That is, each state si ∈ S has an associated
node in N (also named si). For each transition τ(si, �) = sj in the
DP model we define an arc (si, sj) ∈ A with associated label � and
weight c(si, �).2 The labels along each arc-specified path from node
r to node t correspond to a solution to P (i.e., a sequence in D) and
vice versa. Furthermore, the longest r-t path (w.r.t. the weights) cor-
responds to the optimal solution to P .

Let Sol(D) denote the set of solutions represented by the decision
diagram D, and let Sol(P ) represent the set of solutions of P . For
each arc-specified r-t path p, let w(p) denote its total weight and let
xp denote its sequence of arc labels.

Definition 1. A decision diagram D is exact w.r.t. P if Sol(D) =
Sol(P ) and w(p) = f(xp) for all r-t paths p in D.

Exact decision diagrams can be compiled in a ‘top-down manner’
starting at the initial state, by recursively expanding the state space
according to the transition function, while maintaining a unique rep-
resentation of states that are equal. If the exact decision diagram fits
into computer memory, we can directly solve P by computing the
longest path. In most practical cases, the exact decision diagram is
exponentially large in n. The crucial element of decision-diagram
based optimization is to utilize relaxed decision diagrams of polyno-
mial size to obtain a relaxation bound on P .

Definition 2. A decision diagram D is relaxed w.r.t. P if Sol(D) ⊇
Sol(P ) and w(p) ≥ f(xp) for all r-t paths p in D such that xp ∈
Sol(P ).

Relaxed decision diagrams are obtained by merging states that are
not equivalent. This is accomplished by applying a merge operator
⊕(·) to a set of states S ⊂ S, resulting in a new ‘merged’ state
⊕(S). In order to define a relaxed decision diagram, we must take
care that the merged state does not exclude feasible solutions. The
merge operator is iteratively applied until the size of the diagram
meets a maximum size limit, typically defined as a maximum width,
i.e., the maximum number of nodes at each layer.

Note that the merge operator changes the definition of the dynamic
program: the newly merged states need to be added to S if they were
not defined recursively before by the DP model. Also, in some cases
the DP model may need to be adapted to be a useful basis for a re-
laxed decision diagram, as shown in the following example.

Example 2. We continue the TSP from Example 1. Given two states
〈S1, e1〉, 〈S2, e2〉, we restrict the merge operator to be defined only
if e1 = e2, as ⊕(〈S1, e1〉, 〈S2, e2〉) = 〈S1 ∩ S2, e1〉. By taking the
intersection of S1 and S2 we ensure that no solutions are excluded.
The benefit of only defining (and allowing) the merge operator when
e1 equals e2 is that the cost function remains exact. The relaxation
will, however, allow for possible repetitions. Therefore we may no
longer reach the target state 〈V, 1〉 after n decisions. To correct this,
we introduce a ‘counter’ state variable h that is increased by 1 after
each decision. The updated DP model is as follows:

• State definition: Tuple 〈S, e, h〉. The initial state is defined as
〈{1}, 1, 0〉, and the target state as 〈V, 1, n〉.

• Label generating function:

λ(〈S, e, h〉) =
{

V \ S if h < n− 1,
{1} if h = n− 1.

2 We note that D is acyclic because the DP model is assumed to represent the
sequences D in problem P . In general DP models could however lead to
cyclic graphs; in this work we assume that all DP models are acyclic.

• State transition function: τ(〈S, e, h〉, �) = 〈V, �, n〉 if � = 1 and
τ(〈S, e, h〉, �) = 〈S ∪ {�}, �, h+ 1〉 otherwise.

• State cost function: c(〈S, e, h〉, �) = de,�.
• Merge operator: ⊕(〈S1, e1, h1〉, 〈S2, e2, h2〉) = 〈S1 ∩ S2, e1,

h1〉 if e1 = e2 and h1 = h2.

Observe that we choose to restrict the merge operator to be applied
only if the states have the same last vertex e and counter h.

To find primal (heuristic) solutions, we can use restricted decision
diagrams that represent a subset of the feasible solutions:

Definition 3. A decision diagram D is restricted w.r.t. P if Sol(D) ⊆
Sol(P ) and w(p) ≤ f(xp) for all r-t paths p in D such that xp ∈
Sol(P ).

Restricted decision diagrams are easier to compile than relaxed
decision diagrams. Given a priority of the nodes and a maximum
size limit (typically defined per layer), a restricted decision diagram
is obtained by simply discarding the lowest priority nodes beyond
the maximum size limit. The longest r-t path, if it exists, is a primal
solution to P .

3.3 Branch-and-Bound Search

To obtain an exact solution to P , DDO solvers follow a branch-and-
bound search process. Initially a relaxed and restricted decision di-
agram are compiled, resulting in a dual and primal bound. We then
identify an exact cutset of nodes L ⊂ N in the relaxed decision dia-
gram. Typically L is selected to correspond to decision stage i where
no nodes are the result of the merge operator, while decision stage
i+ 1 contains at least one merged node.

Because of the Markovian property of the states in the DP model
we can independently consider the nodes in L and use them to de-
fine new subproblems, where the state of each node in L corresponds
to the initial state of the subproblem. This preserves optimality be-
cause the optimal solution must pass through one of the nodes in L.
Each subproblem will again compile a relaxed and restricted deci-
sion diagram, as well as a last exact layer. We recursively continue
this process until each subproblem is either exact or proven subop-
timal because of the optimization bounds. Given enough time, this
process terminates with the optimal solution to P . Otherwise, it pro-
vides a lower and upper bound on the optimal solution.
Remark. We note that our generalization changes several fundamen-
tal assumptions of decision diagram-based optimization. Most im-
portantly, we no longer rely on explicit layers such that layer i cor-
responds to decision xi. Instead, we define layers implicitly as the
set of nodes that have the same length to the root. As a consequence,
we can define state-dependent label generation functions, and even
state-dependent decision variable selection. However, our framework
is a true generalization in that the decision diagram definitions from
the DP model carry over without any change, and that we recover
the original architecture from [6] when all solution sequences are as-
sumed to be of equal length.

4 Components of the CODD System

4.1 Language

CODD is implemented as a C++ library.3 The design of the CODD
modeling layer closely follows the concepts from the previous sec-
tion. As an illustration, Figure 1 shows the CODD model for the

3 See https://github.com/ldmbouge/CODD.
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1 struct TSP { GNSet S;int e;int h; }; // state definition
2 const auto w = 64; // maximum DD width
3 auto [depot,n,V,d] = readInstance(fName); // file I/O
4 auto init= []() { return TSP { GNSet{depot},depot,1 };};
5 auto target=[n,&V]() { return TSP { V,depot,n };};
6 auto lgf =[n,&V](const TSP& s) { // label generator
7 return (s.h >= n-1) ? GNSet {depot} : (V-s.S);
8 };
9 auto stf = [depot,n,&V,&d](const TSP& s,int label) {

10 if (label==depot)
11 return TSP {V,depot,n};
12 else
13 return TSP {s.S | GNSet{label},label,s.h+1};
14 };
15 auto scf = [&d](const TSP& s,int label) { // cost
16 return d[s.e][label];
17 };
18 auto smf = [](const TSP& s1,const TSP& s2) { // merge
19 if (s1.e == s2.e && s1.h == s2.h)
20 return TSP {s1.S & s2.S, s1.e, s1.h};
21 else return std::nullopt; // empty optional
22 };
23 auto eqs = [depot,n](const TSP& s) { // target equality
24 return s.e == depot && s.h == n;
25 };
26
27 BAndB engine(DD<TSP,Minimize<double>,...>
28 ::makeDD(init,target,lgf,stf,scf,smf,eqs,V),w);
29 engine.search(bnds);

Figure 1. CODD model for the Traveling Salesperson Problem. A GNSet
is a set of natural numbers of arbitrary size.

TSP in Example 2. The state is modeled via a struct type. For the
TSP, the structure on line 1 holds three attributes to model the visited
vertices (S), the last visited vertex (e) and the counter (h) matching
exactly the definition in Example 2.

The dynamic programming concepts introduced earlier as well as
the merge operator ⊕ are all captured with first order functions (i.e.,
lambda in C++). The elements of the CODD language are:

• Initial state: the init lambda on line 4,
• Target state: the target lambda on line 5,
• λ: the label generating lgf lambda on lines 6-8,
• τ : the state transition stf lambda on lines 9-14,
• c: the state cost scf lambda on lines 15-17,
• ⊕: the merge smf lambda on lines 18-22,
• Target equality: the equality to t eqs lambda on lines 23-25,
• Objective: (defined as Minimize or Maximize) on line 27.

We added the optional eqs lambda to implement a more efficient
test for whether a state is the target. Observe that the DP defini-
tions in Example 2 are perfectly mirrored by the C++ fragment in
Figure 1. For instance, line 13 returns the output state (an instance
of TSP) with the first attribute set to be equal to s.S | GNSet
{label}, the second attribute set to label and the third to s.h+1,
i.e., τ(〈S, e, h〉, �) = 〈S ∪ {�}, �, h + 1〉. Indeed, GNSet creates a
singleton with the provided value label and the binary operator |
implements set union.

CODD offers a lightweight domain specific layer (DSL) atop C++.
This choice confers to the DSL a familiarity that makes it convenient
and compact. Note how lines 27-28 instantiate the solver with all
the required lambdas and then invokes the branch-and-bound search
(line 29). The last argument in makeDD is the set of possible labels,
which is V in the case of the TSP.

Extensions It is possible to augment the core CODD model with
state dominance rules as well as local bounding procedures.4 We dis-
cuss here the local bounds and provide details on the dominance rules
in Section 5 in the context of the knapsack problem.

A local bound is defined on a state and provides an approximation
of the remaining value to reach the target, similar to an admissible
heuristic in AI planning. Local bounds are helpful to quickly discard

4 These functions are also present in the Ddo and DIDPPy solvers.

states that cannot improve upon the incumbent solution. As an il-
lustration for the TSP, for a given state s the weight of a minimum
spanning tree (MST) that connects unexplored vertices to the current
partial solution (a path from the depot to s.e) provides a local
bound. The C++ API is:

1 auto local = [depot,&d,&V](const TSP& s) -> double {
2 return mst(d,V,s.S,depot,s.e,s.h);
3 };

The C++ lambda captures the depot as well as references to the
distance matrix d and the full set of vertices V. It then calls an imple-
mentation of Kruskal’s MST algorithm using the approximation of
the set of visited vertices s.S as well as its true cardinality: s.h. The
complete implementation, including all the IO code to read instances
is less than 150 lines of code with the model itself not exceeding 30
lines. While one should not expect a naive 30-line model devoid of
any sophisticated bound to compete with state-of-the-art dedicated
solvers, it exhibits notable behaviors. When tested on the asymmet-
ric TSP instance br17 from TSPLIB, one observes the value that re-
laxed and restricted decision diagrams bring to the branch-and-bound
search:

1. The 30-line model based on decision diagrams finds the optimum
and proves it in under 2 seconds (with local bounding).

2. Decision diagrams deliver dramatic reductions in the size of the
branch-and-bound tree and the runtime as width is increased,
going from 20 millions nodes at width=2 to 4,594 nodes at
width=16,384.

3. The local bound used within the diagram acts as an amplifier.
When used, the number of nodes drops to 136,407 at width=2
and to 181 at width=512. Increasing the maximum width from 2
to 512 delivers a branch-and-bound tree 753 times smaller.

4.2 Implementation

The implementation of CODD leverages features found in modern
C++. In particular it embraces the standard template library, generic
types (aka “Templates”) and the now ubiquitous first-order functions
adopted from functional languages. This bestows a declarative and
functional style for creating models. The CODD library provides
generic functionality which, when instantiated with model-specific
state description and manipulation functions produces a full-blown
implementation. Several design choices are reviewed in this section.
Those were governed both by the desire to retain elegant models and
to deliver excellent performance.

State Genericity A CODD state is represented by a generic type.
The library does not know anything about state representation and
operates on states through user-provided operations (e.g., transi-
tion or cost functions). Two requirements exist for a type to rep-
resent a decision diagram state. First, it must support equality test-
ing to recognize a state and to ensure a unique representation. Sec-
ond, it must support hashing to be efficiently looked up and im-
plement uniqueness. The STL provides the necessary interfaces:
std::equal_to<T> and std::hash<T>.

Rich Data Types Attributes of a state in CODD can be values of
any legitimate C++ data type (as long as they are immutable). That
includes scalars of any type, enumerated types, structure (compound
types), generic arrays (i.e., FArray<T>) or sets of values. Sets of
natural numbers can be heap-allocated and of arbitrary size (GNSet)
or embedded and of fixed size (NatSet). The TSP example illus-
trated the use of dynamically allocated sets of naturals. The data
structures themselves are mutable, but once encapsulated in a CODD
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state, they can no longer change as the state itself is immutable. One
can even use any STL type to define attributes. Given their useful-
ness, the set types GNSet and NatSet provide constant time oper-
ations (for a fixed number of 64-bit words) for set intersection, union,
difference as well as the vanilla membership tests or the construction
via insertions or removals.

First-Order Function All state operations use first-order functions.
CODD models use exclusively first order functions (C++ lambdas)
to create states (initial state, target state, transitions) and assess their
cost. Those functions are bona fide functional closures that capture
ambient states in the program to refer to data structures holding dis-
tance matrices, graphs, or any other artifacts part of the model. Re-
stricting modelers to adhere to state and functional transitions is key
to discourage convoluted models (e.g., with side-effects). It compels
end-users to adhere to the mathematical definition of their problem
when designing the model.

Immutability A CODD state never changes after its creation. The
requirement makes it possible to conform to a strictly functional
world view. States never change. If a merge occurs, it creates a new
state that replaces those that spawned it. It permits the implemen-
tation to use a simple hashing scheme to hold onto states and pre-
serve a unique representation at all times, allowing to leverage simple
pointer equality for equality testing afterwards.

Layer-free Design State layers are implicit in CODD. Decision di-
agrams are usually presented (and implemented) as stratified graphs
where nodes are organized in n + 1 layers and arcs connect states
from layer Li to layer Li+1. The initial state belongs to L1 and the
target to Ln+1, and layer Li has an associated decision xi for each
of its nodes. This design is adopted in most decision diagram-based
systems mentioned in Section 2. Yet, dynamic programming does not
mandate such a strict organization. CODD creates diagrams as a di-
rected graphs where layers are implicit and rather resemble ‘stages’
as in dynamic programming: We define a layer (or stage) i to be all
states that are i steps away from the initial state, and we restrict these
to be of a maximum width when building relaxed and restricted deci-
sion diagrams. In CODD one can transition out of states that appear
in the same “layer” by making decisions about different variables if
one so chooses. However, modelers are free to impose a layer struc-
ture if they so decide by choosing a suitable state representation that
encodes, in an attribute, the layer of a state (that monotonically in-
creases with transitions). As an illustration, the counter h in the state
definition for the TSP in Example 2 can serve this purpose.

Explicit Diagrams All states are kept until a diagram is discarded.
CODD derives diagrams by holding onto an explicit representation
of all the nodes in the diagram. CODD keeps the entire diagram in
memory when processing a sub-problem. This choice allows to easily
compute both forward and backward bounds (from the initial state
and from the target) that are essential for states to be transferred to
the branch and bound or even compute local bounds.

4.3 Discussion

The layer-free design decision matches dynamic programming and is
a departure from traditional decision diagrams that associate a deci-
sion variable to each layer. When processing layer i, all arcs leaving
states are related to values in the domain of decision variable xi. In
a layer-free design, which variable to branch on next is a function of
the parent state. It means that paths from r to t can have different
lengths. Indeed, in a layer-free setup, a decision may entail jumping
multiple layers in a classic setup. The adoption of layers is a decision

entirely left to the modeler. They can choose to stratify their diagram
with an additional attribute in the state to track a layer number, or
they can go layer-free.

Care must be taken in the definition of the diagram to prevent cy-
cles. In a layered graph, arcs always proceed from layer i to layer
i + 1 and the question does not arise. CODD refuses to create arcs
that link a state s1 that is i steps from r to a state s2 that is j steps
from r if j < i, to prevent the creation of cycles. Nonetheless, se-
quences of decision in CODD always have a bounded length.

5 Applications and Empirical Evaluations

We next study the performance of CODD on several combinato-
rial optimization problems: knapsack, Golomb ruler, graph coloring,
and maximum independent set. The details of all CODD models are
available on the GitHub repository. All experiments we conducted
with all solvers were carried out on the same Macbook Pro with an
M1Pro Processor and 32G of RAM.

Knapsack Given a set of N items I = {0, . . . , N − 1} each with
a weight wi ∈ N and profit pi ∈ N and a capacity C, the knapsack
problem is to select a subset of items with total weight at most C
while maximizing the total profit. This problem is well suited for
dynamic programming and models for Ddo [14] and DIDPPy [21]
are available. We use a collection of 29 standard benchmarks used
by both Ddo and DIDPPy that scale in size and hardness, with some
instances featuring correlated items.

The CODD specification for knapsack is as follows. We assume
that the items I are sorted by decreasing profit-to-weight ratios. Let
the state be a tuple 〈n, c〉 where n ∈ I is the index of the next item
to consider and c is the remaining capacity. The model is:

• The initial and target states are r = 〈0, C〉 and t = 〈N,−〉.
• λ(〈n, c〉) = {0, 1} if c ≥ wn and {0} otherwise.
• τ(〈n, c〉, �) = 〈n+1, c−� ·wn〉 if n < N−1 and τ(〈n, c〉, �) =

〈N,−〉 otherwise.
• c(〈n, c〉, �) = pn · �.
• The merge operator is ⊕(〈n1, c1〉, 〈n2, c2〉) = 〈max(n1, n2),

max(c1, c2)〉 if |c1 − c2| ≤ 2·C
100

. The intent is to reject state
merges when the capacities are too dissimilar (more than 2%).

• The target equality is eqs(〈n, c〉) = (n = N).

Two optional functions can improve model performance. First,
one can use a straightforward local bound that fills the remainder
of the knapsack with the most profitable items per unit of weight and
finish with a fractional item. Second, the knapsack problem exploits
a dominance rule to avoid exploring states that are dominated (its so-
lutions being necessarily inferior). This capability is also present in
Ddo and DIDPPy. In CODD it is conveyed with a simple function:

dom(〈n1, c1〉, 〈n2, c2〉) = c1 ≥ c2

that returns True when the capacity of the first state exceeds or
matches that of the second state. CODD automatically uses the pri-
mal bound for a state and calls its dominance rule (if given) only
if the state is of a higher quality. The C++ implementation of this
dominance rule is:

1 auto dom = [](const SKS& a,const SKS& b) -> bool {
2 return a.c >= b.c;
3 };

where SKS is the C++ structure holding the knapsack state. The en-
tire CODD model with the optional functions is just 40 lines of code,
including the C++ functions for state hashing and equality testing.
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Width #B&B Nodes Dom Time Proof (s)

2 42 6/1 0.278
4 9 0/0 0.083
8 21 0/0 0.062

16 18 1/1 0.048
32 30 10/7 0.051
64 53 24/17 0.088

128 201 87/162 0.162
256 701 293/481 0.344
512 1 0/0 0.609

Table 1. CODD behavior on knapPI_1_1000_1000.

Impact of Width We first study the impact of the maximum width
on the performance of CODD. Larger widths results in stronger
decision diagrams with better bounds, but are also more costly to
compute. Table 1 shows the behavior of CODD when the width in-
creases from 2 to 512, on instance knapPI_1_1000_1000 that
uses 1000 items. First, CODD finds the optimum (and proves it) at
all widths. Note that the number of nodes in the branch-and-bound
search (#B&B Nodes) is not monotonically increasing or decreasing
with the width. This is problem dependent, and inherent in the de-
sign of DDO solvers. Second, past width=512, the problem is solved
at the root node (in 609ms). Third, the dominance rule (column Dom)
can discard a meaningful number of nodes. At width 256 for in-
stance, 293 new nodes are discarded since some other nodes in the
queue dominate them, while newly added nodes prune 481 domi-
nated nodes that were in the branch-and-bound queue. Lastly, the
best runtime happens to be at width=16 with just 48ms demonstrat-
ing that extensive use of the merge operator at lower width does carry
a cost.

Solver Comparison We next compare the performance of CODD
with Ddo and DIDPPy (using the recommended default solver
CABS), using their default settings. We note that Ddo uses a dynamic
maximum width, based on the number of decision variables (items)
in the remaining subproblem. For CODD we fixed the width to an ar-
bitrary value of 64. We ran all 29 benchmark instances with all three
solvers and present the results in Table 2. Dashes indicate that the
solver could not run at all, while italics indicate that the solver ran
up to its default timeout (of 30 seconds)5. Column B&B reports the
number of nodes in the branch-and-bound tree for CODD at the spec-
ified width. For the PI:3 instances with 5,000 and 10,000 items, the
width had to be raised to 4096 and 8192, respectively, to close the
instance at the root (and always under 3 seconds). Unsurprisingly,
the solvers are virtually indistinguishable on the small instances (f1
through f10). The situation changes for the 3 PI families where the
size of the instances (number of items, column N ) has a major im-
pact. CODD solves all instances, even with a small width. While
competing at a width of 64, it delivers a speedup ranging from 1 to
3 orders of magnitude against DIDPPy and 1 to 2 orders of mag-
nitude against Ddo. Because Ddo uses a dynamic width, we report
additional rows for large instances solved with CODD with simi-
larly large widths (namely, 1024, 2048, 4096 and 8192). When wide
enough, CODD finds the optimum and proves it with about 3 seconds
even on the largest instances.

Golomb Ruler Problem Given an integer n, the Golomb Ruler
Problem asks for integer locations of n marks along a ruler of min-
imum length such that no two pairs of marks are the same distance
apart. The first mark is assumed to be at location 0. CODD models

5 Though we note that the solver received up to 120 seconds but always
aborted after 15 seconds.

Benchmarks CODD DiDPPy Ddo

N Width Opt B&B T (s) T (s) T (s)

f1 10 64 295 1 0.000 0.025 0.000
f2 20 64 1024 1 0.000 0.033 0.000
f3 4 64 35 1 0.000 0.024 0.000
f4 4 64 23 1 0.000 0.023 0.000
f6 10 64 52 1 0.000 0.022 0.000
f7 7 64 107 1 0.000 0.024 0.000
f8 23 64 9767 1 0.001 0.041 0.006
f9 5 64 130 1 0.000 0.024 0.000
f10 20 64 1025 1 0.000 0.032 0.000
PI:1 100 64 9147 1 0.000 0.095 0.004
PI:1 200 64 11238 1 0.000 0.155 0.011
PI:1 500 64 28857 1 0.001 1.759 0.196
PI:1 1000 64 54503 53 0.088 9.286 1.039
PI:1 2000 64 110625 80 0.287 43.160 5.804
PI:1 5000 64 276457 104 1.189 314.370 15.068
PI:1 10000 64 563647 88 18.818 - 15.048
PI:2 100 64 1514 8 0.004 0.167 0.002
PI:2 200 64 1634 29 0.010 0.135 0.010
PI:2 500 64 4566 66 0.016 1.474 0.137
PI:2 1000 64 9052 59 0.060 7.479 0.804
PI:2 2000 64 18051 305 0.567 36.850 5.243
PI:2 5000 64 44356 143 3.125 229.670 15.082
PI:2 10000 64 90204 139 18.646 - 15.066
PI:3 100 64 2397 1 0.000 0.071 0.002
PI:3 200 64 2697 47 0.019 0.131 0.011
PI:3 500 64 7117 65 0.016 1.445 0.087
PI:3 1000 64 14390 222 0.152 6.516 0.563
PI:3 1000 1024 14390 1 0.022 6.516 0.563
PI:3 2000 64 28919 4093 464.119 31.129 4.157
PI:3 2000 2048 28919 1 1.484 31.129 4.157
PI:3 5000 64 72505 3321 3167.840 212.59 -
PI:3 5000 4096 72505 1 2.062 212.59 -
PI:3 10000 64 146919 760 1711.000 - -
PI:3 10000 8192 146919 1 3.166 - -

Table 2. Knapsack results for CODD, DIDPPy, and Ddo.

the states as tuples 〈M,D, k, e, s〉, where M is the set of marks al-
ready placed, D is the set of pairwise distances induced by M , k is
the number of marks placed, e is the location of the most recently
placed mark and s is the smallest unused distance.

• The initial and target states are r = 〈{0},∅, 1, 0, 1〉 and t =
〈∅,∅, n, 0, L+1〉 where L is a given upper bound on the position
of the last mark (e.g., we use n2).

• λ(〈M,D, k, e, s〉) returns a subset of values drawn from
{1, . . . , L} that are legal. The legality condition uses the small-
est unused distance s (see [12] and the model on GitHub).

• τ(〈m,D, k, e, s〉, �) = t if k = n − 1, and 〈M ∪ {�}, w, k +
1, �, s′〉 otherwise (adding a mark at position �). Here, s′ is the
smallest value that does not appear in the new distance set {� −
m|m ∈ M} ∪D.

• c(〈M,D, k, e, s〉, �) = �− e, modeling the ruler length increase.
• ⊕(〈M1, D1, k1, e1, s1〉, 〈M2, D2, k2, e2, s2〉) = 〈M1 ∩ M2,

D1 ∩D2, k1, e1,min(s1, s2)〉 if k1 = k2 and e1 = e2.
• The target equality is eqs(〈M,D, k, e, s〉) = (k = n).

The total CODD model is less than 140 lines of C++.

Impact of Width Whereas the knapsack problem favors dynamic-
programming style solvers (a large enough width can solve the prob-
lem at the root node), the Golomb ruler problem is a much more
challenging computational problem. Figure 2 shows the behavior of
CODD on the representative instance with 12 marks, for widths from
2 to 8192. As expected, the runtime does decrease as the maximum
width increases, up to width 2048. After that, the cost incurred for
a wide diagram overtakes the marginal benefits in the branch and
bound effort. Indeed, in this case a larger width alone does not suf-
fice to solve the instance at the root node.

Solver Comparison We next compare the performance of CODD
with Ddo and the Comet constraint programming (CP) system, for
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Figure 2. Golomb Ruler (12 marks). Time to find and prove the optimum.

Comet Ddo CODD width=64

n T (s) B&P T (s) TU (s) Opt TO (s) TP (s)

7 0.0 104 0.0 0.1 25 0.0 0.0
8 0.0 595 0.1 0.8 34 0.0 0.0
9 0.1 3149 0.9 6.6 44 0.1 0.1

10 0.6 19938 7.3 53.0 55 0.2 0.3
11 12.3 0.3M 908.8 1693.9 72 1.1 5.5
12 124.0 2.6M - - 85 24.7 29.0
13 40,285.0 459M - - 106 480.4 615.6
14 - - - - 127 839.2 2567.7

Table 3. Solver comparison on Golomb Ruler with 7-14 marks.

which we use the available models from their respective distribu-
tion. Table 3 shows a comparison of the three solvers, all using the
same machine. Column n identifies the instance size, the columns
T and B&P for Comet report the runtime (in seconds) and branch-
and-prune tree size (suffix M is for millions of nodes). Under Ddo,
column T reports the runtime while TU reports user CPU time (cu-
mulative across all cores). Indeed, Ddo uses all the machine’s cores
to speed up the branch and bound. The time for instance n=11 is
italicized to convey that the solver aborted with a time limit before
producing an optimality proof. Under the CODD heading, Opt is the
optimum, TO is the time to find the optimum and TP is the time to de-
liver the optimality proof. First, CODD is the only solver that scales
to instance size 14 in a reasonable runtime. Second, the speed differ-
ence w.r.t. Ddo is remarkable (165 times faster at size 11), especially
as we compare a strictly sequential solver (CODD) against a parallel
one (Ddo). Third, the Comet [29] model includes symmetry-breaking
and provides results that exceeded those from Chuffed [1] and OR-
Tools [26, 27] on the canned MiniZinc model [2] for the Golomb
ruler. In summary, CODD solves instances up to size 14, on a single
core in under 2600 seconds. It outperforms CP as well as IP and QP
models described in a prior computational study [7].

Graph Coloring We present the performance of CODD on graph
coloring problems in Table 4, using instances from the DIMACS
graph coloring benchmark that CODD can solve in 120s. We com-
pare CODD with the approach in [30] that also uses decision dia-
grams to solve graph coloring problems. In that work, the diagram
represents the independent sets of the graph, and a solution is a col-
lection of r-t paths in the diagram found by solving an integer net-
work flow problem. Some instances allow for a small enough exact
diagram to be solved (IPDD-exact). Otherwise, a relaxed diagram
is used that is iteratively refined (IPDD-relaxed). We can see that a
pure DDO approach using CODD outperforms the IPDD approach
on most of these instances. The IPDD results were obtained on an
Intel Xeon E5345@2.33GHz CPU with a 1-hour timeout (TO) [30].

Maximum Independent Set Lastly, we compare the performance
of CODD with Ddo on the maximum independent set problem. Ta-
ble 5 reports on a set of 15 DIMACS independent set benchmark
instances. For this problem, the Ddo solver uses an advanced layer-

CODD IPDD-relaxed IPDD-exact

Instance Obj B&B T (s) Obj T (s) Obj T (s)

myciel3 4 1 0.001 4 0.04 4 0.02
myciel4 5 549 0.163 5 7.03 5 0.85
2-Insertions_3 4 20526 8.746 [3,4] TO 4 930.37
1-FullIns_3 4 1 0.002 4 0.06 4 0.09
2-FullIns_3 5 13043 24.328 5 0.83 5 2.73
r125.1 5 1 0.032 5 0.02 5 0.05
r125.1c 46 878 0.041 46 2.08 46 0.13
anna 11 1 0.151 11 0.01 - TO
jean 10 37 1.303 10 0.01 10 0.73
david 11 1 0.037 11 0.01 11 5.07
queen5_5 5 1 0.001 5 0.01 5 0.03
queen6_6 7 2386 0.056 7 2.35 7 0.36
queen7_7 7 15184 0.381 7 2.77 7 0.88
DSJC125.1 5 22755 111.626 [5,6] TO - TO
miles250 8 1 0.063 8 0.01 8 0.46
miles500 20 1 0.247 20 0.04 20 1.71
miles750 31 58 25.794 31 0.12 31 0.96
school1 14 20 0.844 14 1.67 - TO
school1_nsh 14 2494 10.016 14 15.59 - TO

Table 4. Coloring instances solvable by CODD in under 120s (width=64).
TO stands for time-out (1 hour).

Benchmark CODD (w=128) Ddo

Name Opt TO (s) TP (s) T (s)

johnson8-2-4 4 0.001 0.001 0.000
johnson8-4-4 14 0.005 0.005 0.004
johnson16-2-4 8 0.011 0.692 0.835
keller4 11 0.016 14.796 3.113
hamming6-2 32 0.005 0.005 0.004
hamming6-4 4 0.003 0.003 0.001
hamming8-2 128 0.051 0.051 0.049
hamming8-4 16 0.028 14.476 15.543
hamming10-2 512 0.474 0.475 0.666
brock200_1 21 929.975 1214.000 241.432
brock200_2 12 0.689 1.425 0.538
brock200_3 15 5.737 11.556 3.667
brock200_4 17 9.551 43.478 12.112
p_hat300-1 8 0.111 0.588 0.157
p_hat300-2 25 0.949 179.711 10.841

Table 5. Maximum Independent Set Problem. CODD uses width=128.

based variable selection heuristic while CODD follows a simple
static ordering. Both solvers use 1 thread. While this CODD model
performs reasonably well, it is apparent that the advanced variable se-
lection heuristic pays off. Yet, this heuristic is layer-based and does
not have a direct analogue in CODD due to its state-based design.

6 Conclusion

We introduced CODD, a modeling interface and solver for decision
diagram-based optimization (DDO). Based on the principal DDO
concepts of states, transition functions, and a state merging operator,
CODD is an intuitive domain specific modeling layer and library in
C++. It offers the ability of state-based modeling, thus complement-
ing both integer programming and constraint programming modeling
styles. We showed how CODD integrates elements from state-based
search into the DDO solving paradigm, as it generalizes the compi-
lation of decision diagrams to be state based rather than layer based.
We demonstrated the flexibility and performance of the system on
four combinatorial optimization problems, showing that CODD is
competitive with, or outperforms, other generic exact solvers based
on decision diagrams, state-based search, and constraint program-
ming. CODD is implemented in 9,000 lines of pure C++. Its high-
level specifications allow CODD to be easily be embedded in a high-
level language like Python or Julia.
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