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Abstract. In order to avoid ambiguity and be efficient, the con-
text in which a query is made can help to better target the relevant
pieces of information from the knowledge base to be processed by
the inference system. In this paper, we are interested in the notion
of dynamical compartmentalization where the knowledge base that
will be used for reasoning is dynamically extracted from the origi-
nal base. Compartmentalization is a selection of a sub-base which is
done according to a function, called refiner, and depending on this
function some properties are satisfied. We introduce a particular syn-
tactic refiner that uses a similarity symbol-based distance between a
context (a multiset of variable symbols) and a formula of a knowl-
edge base. We prove that the inference operator based on this refiner,
called contextual inference, satisfies a series of desirable axioms

1 Introduction

With the advent of big data came the need to integrate more and
more data sources to ensure that no aspect of a question, or query, is
missed. This however raises some important issues regarding privacy
and rights to access and process such data. A potential answer to this
would be to tailor databases for particular queries and/or users on a
use-case basis, which would ensure the notion of compartmentaliza-
tion at the cost of being tedious and having a lot of data redundancy,
and its corollary: the expensive question of storage. Another way of
managing this heterogeneous knowledge is to compartmentalize it
only when it is accessed, as proposed in this paper.

In this article, our main goal is both to handle inconsistency and
non-monotonic reasoning together with efficiency. More precisely,
we consider that a rational agent attempts to answer queries and
evaluate arguments based on what it knows. The idea is that its
knowledge results from a blind integration of everything that has
been heard, which can lead to inconsistencies. By answering a query,
we mean checking whether a formula is entailed by the knowledge
base in a given context. By assessing an argument we mean checking
whether its set of premises entails its claim in this context.

Even if the knowledge base is inconsistent it can still be exploited
by selecting consistent subbases that are contextually relevant, mim-
icking the human brain that activates pieces of information based on
their relationship to a context (see e.g. chunks in cognitive theories
such as ACT-R [2]). We propose to create the compartmentalization
on the fly when answering a query or assessing an argument: this in-
volves the notion of dynamical subbase selection where the part of
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the knowledge base that will be used to reason and answer a query is
dynamically extracted from the original base. This selection is done
according to a generic function, called refiner, and depending on this
function some properties will be satisfied.

In particular, we are interested in the notion of syntactic refiner
that will select the subbase based on the symbols appearing in the
query. Intuitively, such a selection is easier to do based on syntactic
criteria (compared with a full-blown semantic selection) but it may
miss some relevant formulas. Moreover, to the best of our knowl-
edge, there are no studies that attempt to account for the impact of the
way a formula is written, while retaining the same semantics. Nev-
ertheless, the fact that particular symbols are repeated, or that seem-
ingly irrelevant symbols appear, can be considered significant, as is
the case in marketing or politics for example, where the language
used is strategically chosen to have a greater impact. The question
is: what conditions must the refiner meet to ensure that the syntactic
selection of the subbase allows for sound and complete reasoning?

After stating the notations used in the paper, Section 2 recalls the
basics of non-monotonic reasoning. Our main contribution is pre-
sented in Section 3, where we define the notions of generic refiner
relative to a context, on which we base the definition of a new type
of inference operator. Next, we propose a specific refiner based on
syntactic similarity, we prove that given a context, this inference is
rational but in order to better characterize the impact of context on
reasoning, we propose three desirable axioms related to these opera-
tors as well as two optional axioms about the sensitivity to the syntax.
We conclude by discussing future directions.

Notations

We consider a propositional language L containing formulas denoted
by lower case Greek letters, based on a vocabulary V of variable
symbols denoted by Latin lower case letters and containing the two
constant symbols ⊥, � for denoting contradiction and tautology re-
spectively. Negation, conjunction, disjunction, material implication,
equivalence and classical inference are denoted respectively by ¬, ∧,
∨, →, ≡ and |=. Let K ⊆ L be a finite set, not necessarily consis-
tent, of consistent formulas of L representing the knowledge base of
an agent. The formulas of K can be ranked according to their impor-
tance by a complete pre-order on K denoted by 	, resulting in a pri-
oritized knowledge base denoted by P = (K,	). The pre-order 	
is supposed to be given (in case no importance order has been given,
all formulas of K are considered as equally important). For any for-
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mulas α, β ∈ K, α 	 β is read α has priority over (is at least as
plausible as) β. Since K is finite, 	 can be translated into a ranking
of the formulas of K based on the equivalence classes of � induced
by 	 (with a � b iff a 	 b and b 	 a). Given 	 and K there is a
unique index n corresponding to the set of formulas with the lowest
priority (denoted by Kn), n is called the lowest priority rank. Given
	, any subset E of K can be decomposed accordingly to the ranks
of its formulas, formulas of highest priority of E are denoted by E1

and more generally the subsets of formulas of rank i are denoted by
Ei, Ei = E ∩Ki. With these conventions, a prioritized knowledge
base (K,	) is equivalently represented by the tuple (K1, . . . ,Kn).
The strict order induced by 	 is denoted by  (with a  b iff a 	 b
and not b 	 a).

We associate each formula ϕ with the multi-set ms(ϕ) of variables
symbols occurring in it: it is a pair (Vϕ,mϕ) where Vϕ ⊆ V and
mϕ : V → N is the multiplicity of the symbols in the multiset. For
sake of shortness, a multiset is also represented by the tuple of its
symbols (possibly repeated) in alphabetical order, the empty multiset
is denoted by (). For instance, the formula ϕ = p ∨ (¬p ∧ f) is
associated with the multiset ms(ϕ) = ({p, f},mϕ) with mϕ such
that mϕ(x) = 0 for any symbol x ∈ V \ {p, f} and mϕ(p) =
2 and mϕ(f) = 1. This multiset can also be denoted by (f, p, p).
As a multiset intersection, � gives the multi-set (A ∩ B,m) where
m(x) = min(mA(x),mB(x)) for all x ∈ V . When there is no
ambiguity with the operation performed on it, we abuse notations
by writing the formula, e.g. ϕ, instead of its multiset: ms(ϕ). The
symbol � denotes the union between multi-sets, it is the multiset (A∪
B,m) where m(x) = max(mA(x),mB(x)). The symbols ∈ and
⊆ are naturally extended to multi-sets. |M | denotes the cardinality
of the multiset M : it is the sum of the multiplicities of its symbols.
The set of all multi-sets of symbols in V is denoted by MS.

2 Basics about non-monotonic reasoning

Inconsistency can arise from different situations: experts or sensors
providing conflicting data (differing opinions, incompatible mea-
surements), rules applicable in a context with contradictory conclu-
sions, incompatible goals of several agents, etc. In the presence of
inconsistency, classical logical deduction is unusable (it deduces any
formula and its opposite). Many approaches have been proposed to
handle this significant problem. In this paper, we focus on “syntax-
based approaches”1 that inherit from [19] who first introduced the
approaches based on maximum (for set-inclusion) consistent sub-
bases of the knowledge base. In this kind of approaches, each for-
mula of the knowledge base is considered as an independent piece of
information. The solutions proposed in this domain are introducing
non-monotonic inference relations defined by selecting “preferred”2

subbases of the knowledge base on which classical inference is ap-
plied. This preference can be based on an existing ordering of the
knowledge base as in [5]. In the following we adopt the conventions
used in [3] for recalling different classical non-monotonic inference

1 This expression comes from [16] who defined syntax-based revision pro-
cedures where two semantically equivalent knowledge bases may result in
non-semantically equivalent revisions. Note that the word syntax is used
here in a very restricted sense: it concerns rather the way formulas are sep-
arated from each other than the way they are precisely written: e.g., in these
approaches K = {a, b} is distinguished from K = {a ∧ b} but not from
K = {a ∧ (c ∨ �), b}.

2 Here as in the related literature, the word “preferred” is abusively used
to qualify the plausibility of the pieces of information for the reasoning
process (it is not related to a user’s taste, i.e. a user utility function as in
decision theory, otherwise there could be cases of wishful thinking).

relations. In these definitions, B,B′,K are subsets of formulas of L
and α, β, α′, β′, γ are formulas of L.

Definition 1. B ⊆ K is an inclusion maximal α-consistent subbase
of K iff {α} ∪ B is consistent and there is no B′ ⊆ K s.t. B′ ⊃ B
and B′ ∪ α is consistent.

Note that inclusion maximal consistent subsets were later called
maximal satisfiable subsets (MSS) in [13]. The inference based on
inclusion maximal consistent subsets is defined below.

Definition 2 (MSS inference). α |∼MSS
K β iff for all inclusion-

maximal α-consistent subbase B of K, B ∪ {α} |= β.

Hereafter, |∼MSS
K β is a shortcut for � |∼MSS

K β. We can notice that
MSS inference is non-monotonic, as illustrated on Example 1.

Example 1. Let us consider the following (typical) knowledge base
(expressing that penguins are birds that do not fly, birds fly and have
wings): K1 = {ϕ1.p → b, ϕ2.p → ¬f, ϕ3.b → f, ϕ4.b → w}, the
reader can check that f can be inferred from K1 ∪ {b}: |∼MSS

K1∪{b} f
(since there is only one subbase maximally consistent with {b}: K1∪
{b}). However, in the presence of b and p this no longer holds since
there are 3 subbases maximally consistent with {b, p}: K1 ∪ {b},
{b, p, ϕ1, ϕ2, ϕ4} and {b, p, ϕ1, ϕ3, ϕ4}, among them the bird may
fly or not: hence, it holds that |�∼MSS

K1∪{b,p} f .

2.1 System P

Non-monotonic inference relations have been particularly studied by
Kraus, Lehmann and Magidor [10], these authors have proposed a
set of inference rules called System P for augmenting an existing set
of inferences with new inferences that should follow rationally from
them.

Definition 3 (System P [10]). An operator |∼ satisfies System P if
the following properties hold ∀α, β ∈ L:
α |∼α (Reflexivity)
If α ≡ α′ and α |∼β then α′ |∼β (Left Logic. Equivalence)
If β |= β′ and α |∼β then α |∼β′ (Right Weakening)
If α |∼ γ and β |∼ γ then α ∨ β |∼ γ (Or)
If α |∼β and α |∼ γ then α ∧ β |∼ γ (Cautious Monotony)
If α ∧ β |∼ γ and α |∼β then α |∼ γ (Cut)

2.2 Prioritized inference

Apart from MSS inference, it is possible to build more refined non-
monotonic inference relations by taking into account some priorities
between formulas. Given a prioritized knowledge base P = (K,	):
three orderings between subbases were introduced in [3], namely
best-out, incl and lex, they allow us to compare subbases of K ac-
cording to different criteria. Best-out ordering compares the priori-
ties of the highest priority formulas which are out of the considered
subbases, Incl ordering compares the sets of formulas of the two sub-
bases strata by strata starting from the highest priority strata. Lex
ordering is described below.

Such orderings on subbases enable us to select the best consistent
subbases of a prioritized knowledge base. More precisely, an order-
ing o allows us to compare subbases of a prioritized knowledge base
and to select the preferred ones according to o, called o-preferred
subbases. The most common approach called strong inference, which
is chosen in this paper, is to define that α non-monotonically infers β
given the knowledge base K iff all the max α-consistent o-preferred
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subbases of K, together with α, classically entail β. Note that other
inference principles exist [18], such as weak principle based on the
existence of at least one max α-consistent o-preferred subbase en-
tailing β, or argumentative principle which is weak inference s.t. no
max α-consistent o-preferred subbase entails classically ¬β.

In the remainder of this work, we focus on Lex ordering [3, 12] de-
fined below, which has the benefit of being the most refined ordering.
However, our definitions could be used with any stratification-based
selection function.

Definition 4 (Lex-preference). Given a prioritized knowledge base
P = (K1, . . . ,Kn) with lowest priority rank n, given A,B ⊆ K, A
is Lex-equivalent to B given P , denoted by A ∼P B, iff ∀i, |Ai| =
|Bi|. A is strictly Lex-preferred to B given P , denoted by A P B,

iff ∃k ∈ [1, n] s.t.
{ |Ak| > |Bk| and

∀i < k, |Ai| = |Bi|
A is a Lex-preferred α-consistent subbase of P if it is an α-consistent
subbase of K s.t. any α-consistent subbase B ⊆ K is s.t. B �P A.

Notation Lex(P, α) = {B ⊆ K | B Lex-preferred α-consistent
subbase of P}.

We are now in position to recall Lexicographic entailment:

Definition 5 (Lex-entailment). Given a belief base P = (K,	)
and two formulas α and β,

α |∼lex
P β iff for any B ∈ Lex(P, α), B ∪ {α} |= β.

Note that [3] have shown that for any set K ⊂ L of formulas,
|∼MSS

K satisfies System P and for any prioritized base P = (K,	),
|∼lex

P satisfies System P.

Example 1 (continued): Let us consider the following priorities
among the formulas of K1: ϕ1 �1 ϕ2 1 ϕ3 �1 ϕ4, leading to
a prioritized base P1 = (K1,	1).

There is only one Lex-preferred subbase consistent with penguins:
Lex(P1, p) = {{ϕ1, ϕ2, ϕ4}}, hence p |∼lex

P1
¬f . The reader can

also check that p ∧ b |∼lex
P1

¬f .

What has also been shown in [3] is that from a prioritized knowl-
edge base P = (K,	), it is possible to define a complete pre-
order on interpretations (based on the Lex-preference on the max-
imally consistent subbases they satisfy), and that Lex-entailment is
a preferential entailment [14], that also satisfies the rule of Rational
Monotony described in [7]:

If α |�∼¬β and α |∼ γ then α ∧ β |∼ γ (Rational Monotony)

To sum up, from prioritized knowledge bases it is possible to de-
fine a rational non-monotonic inference relation but for this purpose
a pre-ordering of the knowledge base is required: it may come from
experts, but this information is not necessarily easy to obtain or is not
consensual; it can be computed based on specificity notions (see next
paragraph) but it is computationally costly.

2.3 Computing priorities: the System Z algorithm

In [17], Pearl defined an ordering, called “Z ordering”, induced from
a set of default rules. Indeed, in System Z, a default rule is a formula
of the form α � β where α and β are propositional formulas of
L, and � is a new connective, the intended meaning of the rule is
“α generally entails β”. More formally its interpretation is: the most
plausible, according to a set of default rules Δ, models of the formula

α satisfy β. The plausibility of interpretations given the set of de-
faults Δ are computed by considering each rule of Δ as a constraint
on the ranking of interpretations, namely the rule α � β imposes
that the interpretations satisfying α ∧ β are more plausible than the
one satisfying α ∧ ¬β (the reader can refer to [4] for a reading of
these rules in possibility theory). The Z ordering method, described
in [17], is based on the tolerance notion between rules. More pre-
cisely, a rule r = α � β is tolerated by a set of n rules R ⊆ Δ iff
α∧β∧∧

αi�βi∈R(¬αi∨βi) is consistent. The process starts by se-
lecting the rules that are tolerated by Δ, they are attributed the level
Z=0 and removed from Δ, then assign level Z=1 to the rules tolerated
by all the remaining ones and so on. This process requires to practice
O(n2) satisfiability tests in the worse case where n = |Δ|.

Apart from the computational complexity for computing the Z or-
dering, there are two other limitations of the use of System Z: first,
it is possible that a set of default rules does not admit a Z ordering,
such defeasible set is called “inconsistent” in [6], second this ranking
requires that the knowledge base is written under the form of default
rules.

In what follows we propose an approach that refines an existing
ordering (or creates one when it does not exist) without requiring ex-
tra information, this is done by filtering the formulas according to
their contextual relevance. This relevance is based on the syntax by
considering the symbols used in the formulas relatively to a given
set of symbols representing the context. Using syntax can be very ef-
ficient since no call to a SAT solver is required, however it should
be restricted in order to guarantee a rational behavior as we will
see in Section 3.3. Moreover using only variable symbols to qual-
ify the relevance of formulas to a given context can seem simplistic,
but it opens the way to more realistic extensions based on additional
knowledge of, for example, the lexical fields of the symbols.

3 Contextual inference

Non-monotonic inferential mechanisms, as the ones recalled above,
use selection functions that are independent from the query to assess.
In this paper, we are interested in defining a mechanism that takes
into account a context (a multiset of propositional variable symbols
in V). For this purpose, we propose to reduce and reorder the knowl-
edge base according to its relevance to a context, and then Lexico-
graphic inference is used on this smaller prioritized knowledge base.

3.1 Generic definitions

In this section, we define a generic refiner λ which, given a knowl-
edge base P = (K,	) and a context C, returns a new prioritized
belief base.

Definition 6 (Refiner). Given a belief base P = (K,	) and a con-
text C ∈ MS, a refiner λ is a function such that:

λ(P,C) = (KC ,	C)

where KC ⊆ K and 	C is a complete pre-order on KC built from
C and 	.

This notion of refining wrt a context C will be used to answer the
question of whether “one can conclude about” a given formula in the
context determined by C.

Definition 7 (Contextual inference, query). Given a belief base P =
(K,	), two consistent formulas α and β, a context C ∈ MS and a
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refiner λ, the contextual inference based on λ, P and C is s.t.:

α |∼λ
P,C β iff for any B ∈ Lex(λ(P,C), α), B ∪ {α} |= β.

Moreover, when α = �, this inference is called query about β in
the context C, denoted by |∼λ

P,C β.

In other words, α |∼λ
P,C β iff α |∼lex

λ(P,C) β. In this work, given a
knowledge base P , what ultimately motivates us are the cases where
the context of the inference is determined by the query itself, i.e.
|∼λ

P,ms(β) β.

Proposition 1. Given a belief base P , a context C and a refiner λ,
|∼λ

P,C is a rational inference relation hence it satisfies Reflexivity,
LLE, RW, CM, Cut and Rational monotony

Proof. By definition, |∼λ
P,C is a Lexicographic entailment which is

a rational entailment [3].

Note that the previous proposition ensures that contextual infer-
ence satisfies System P and Rational monotony axioms, but they hold
when the context C is fixed, i.e., C remains the same in the left and
right parts of the if/then statements, for instance LLE becomes “For
any C ∈ MS and any prioritized knowledge base P , ∀α, α′, β ∈ L,
if α ≡ α′ and α |∼λ

P,C β then α′ |∼λ
P,C β”.

Proposition 2 (One-way deduction theorem). Given a prioritized
knowledge base P = (K,	), a refiner λ and a context C ∈ MS,
∀α, β ∈ L, α |∼λ

P,C β implies � |∼λ
P,C ¬α ∨ β.

Proof. Theorem 3 of [20] establishes that any preferential entailment
|∼ is such that from A ∧B |∼C we get A |∼B → C.

Thanks to this result, querying ¬α ∨ β (i.e. assessing
|∼λ

P,ms(α)�ms(β) ¬α ∨ β) can be done by checking whether

α |∼λ
P,ms(α)�ms(β) β. Let us recall that if we were to accept the

other way of the deduction theorem, i.e., from A |∼B → C deduce
A∧B |∼C then, due to Lemma 3 of [10], we would get monotonicity
(from |= A → B and B |∼C deduce A |∼C). Since monotonicity is
not desirable here, Prop. 2 is only a one-way deduction theorem.

Remark 1. Obviously refining P with a context C such that P is not
modified amounts to using the classical lexicographic inference on
the whole base P :

if λ(P,C) = P then |∼λ
P,C = |∼lex

P .

When the refiner operates (i.e., λ(P,C) �= P ), let us notice
that |∼λ

P,ms(β) β is neither a necessary nor a sufficient condition for

|∼lex
P β, as shown in the following example. However, for the spe-

cific refiner defined in next section, we will provide conditions on
the context (see Proposition 4) under which this contextual entail-
ment conforms to lexicographic entailment.

Example 2. Let us consider the following knowledge base with no
priority: P2 = (K2 = {b, c, c → a, a → ¬b},K2×K2). Let us take
a refiner λ0 that selects formulas with at least one common symbol
with the context and that keeps the same pre-order. The refinement
in the context (b) is P2(b) = λ0(P2, (b)) = (K2(b) = {b, a →
¬b},K2(b) ×K2(b)). We get K2(b) |= b while there is one maximal
(in cardinality) consistent subset of K2, namely {c, c → a, a →
¬b}, that entails ¬b, i.e., |∼λ0

P2,(b)
b holds, but |�∼lex

P2
b.

Let us now consider a knowledge base that allows us to deduce b
while after refining it with λ0, it is no more the case. Let P3 = (K3 =
{c, c → a, a → b},K3 × K3), P3(b) = λ0(P3, (b)) = (K3(b) =

{a → b},K3(b) ×K3(b)). We get that |�∼λ0
P3,(b)

b, but |∼lex
P3

b holds.

Now that we know that contextual entailment is a rational infer-
ence relation given a fixed context, these examples show that by con-
sidering a “bad” refinement in a precise context, some crucial infor-
mation may be lost allowing potentially undesirable inferences. This
is why it is important to define some rational properties for the refin-
ers. In the following section we propose a particular syntactic refiner
before enunciating some desirable properties and checking whether
they hold for this operator.

3.2 Syntactic similarity

In this section, we propose a new operator based on syntactic simi-
larity: the idea is to obtain a behavior close to a cognitive activation
process, i.e., first very relevant concepts come to the mind, then some
others concepts that are related to the ones last activated, and so on.
We choose to enforce that the first element that came to mind based
on the context is considered more relevant than the one that came
to the mind because of another element not directly related to the
context. For this purpose we are going to define first the distance be-
tween two multisets then we define a distance path as a tuple of dis-
tances, where each edge relates multisets that have at least one com-
mon symbol. The shorter the path between two multisets the more
relevant they are. In case of paths with the same number of edges the
distance values along the paths are compared lexicographically.

Definition 8 (Distance between multisets). The distance between
two multisets C = (V,m) and C′ = (V ′,m′) of MS is:

d(C,C′) =
∑

s∈V ∪V ′
|m(s)−m′(s)|.

Definition 9 (Distance path and multiset similarity). Given two dis-
tinct multisets C,C′ ∈ MS, a path from C to C′ in a universe
U ⊆ MS is a sequence of n+1 multisets E1, . . . En+1 with n ≥ 1
such that C = E1 and C′ = En+1 and ∀i ∈ [2, n] Ei ∈ U and
∀i ∈ [2, n+1], Ei−1�Ei �= (). When such a path exist the multisets
are said syntactically connected (or s-connected) in U . The distance
path associated to this path is the n-tuple (d1, d2, · · · , dn) such that
di = d(Ei−1, Ei).

Let d = (d1, . . . , dk) and d′ = (d′1, . . . , d
′
l) be two distance paths

where k, l ≥ 1, d is lex-shorter than d′ iff k < l or k = l and
∃i0 ∈ [1, k] s.t. ∀i ∈ [1, i0], di = d′i and di0+1 < d′i0+1

Given three multisets C,C′, C′′ ∈ MS, C′ is strictly syntacti-
cally more similar to C in the universe U ⊂ MS than C′′ is, de-
noted by C′ >syn

U,C C′′, iff (C′ = C and C′′ �= C) or there is a
distance path from C to C′ in U lex-shorter than every distance path
from C to C′′ in U .

In the following when U is omitted, it means that we consider
the universe made of all the multisets of the formulas of the current
knowledge base. The universe associated to a knowledge base K is
UK =

⋃
ϕ∈K{ms(ϕ)}

Example 3. Let us consider the universe U1 of multisets:
C1 = (a, a, b, c) C2 = (a, a, a, b) C3 = (a, b, c)
C4 = (a, a, a, b, c) C5 = (c, d) C6 = (d, d, f)
Figure 1 shows the graph associated to U1. There are several dis-

tance paths in U1 from C1 to C6: for instance (4,3) corresponding to
(C1, C5, C6) and (1,3,3) corresponding to (C1, C3, C5, C6).

The lex-shortest distance path from C1 to C6 in U1 is (4, 3). Let
us compare the syntactic similarity of C1 and C2 to C6, we have
C1 >syn

U1,C6
C2 since there is a two edges path from C1 to C6 while

all paths from C2 to C6 have at least 3 edges.
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Figure 1. Paths between the six multisets of Example 3.

Definition 10 (λsyn operator). The syntactic refiner, denoted by
λsyn, is defined as follows: given a prioritized knowledge base P =
(K,	) of formulas and C a context

λsyn(P,C) = (KC ,	C)

with KC = {ϕ ∈ K s.t. ϕ is s-connected to C in UK} and 	C=
{(α, β) | α, β ∈ KC and α >syn

C β or (α �>syn
C β and β �>syn

C

α and α 	 β)}.

In other words, the λsyn refiner selects first the most relevant for-
mulas of the base K wrt a context C (according to >syn

C ) and, in
case of equal relevance, the initial ordering (	) of P is used. In the
following the non-monotonic inference |∼λsyn based on the refiner
λsyn will be denoted by |∼syn.
Example 3 (continued): Let us consider the formulas:
ϕ11. a ∧ (a → b ∨ c) ϕ12. a ∨ (¬a → ¬a → b)
ϕ13. (a ∧ (b → c)) ϕ14. a ∨ (¬a → ¬a → b ∨ c)
ϕ15. c ∧ d ϕ16. d ∧ (d → f)
Note that their respective associated multisets are the ones of Ex-

ample 3. Let P4 = (K4 = {ϕ11, . . . , ϕ16},	4= K4 × K4). Let
us consider the context C1 of Example 3, the respective distances of
ϕ11, ϕ12, ϕ13, ϕ14 and ϕ15 to C1 are: 0, 2, 1, 1 and 4 (see Figure 1).
Note that d(ϕ16, C1) is not defined since the intersection of symbols
is empty. However, λsyn(P4, C1) = (K4C1 ,	4C1) with K4C1 =
K4: all the formulas are selected since the graph is connected. 	4C1

is s.t. ϕ11 4C1 ϕ13 �4C1 ϕ14 4C1 ϕ12 4C1 ϕ15 4C1 ϕ16.

Example 4. We consider a knowledge base K5 which results from
the aggregation of another famous example (Nixon Diamond) to the
four formulas of Example 1:
ϕ5. r → ¬pa Republicans are not pacifists
ϕ6. q → pa Quakers are pacifists
ϕ7. q → a Quakers are Americans
ϕ8. a → bb Americans love baseball
ϕ9. q → ¬bb Quakers do not love baseball
ϕ10. q ∧ r Nixon is a Quaker and republican

Let P5 = (K5 = {ϕ1, . . . ϕ10},	5= {(ϕx, ϕy) s.t. x ≤ y})
with C7 = (q, r), then the filtered base with λsyn is K5C7 =
{ϕ5, ϕ6, ϕ7, ϕ8, ϕ9, ϕ10} with the ordering ϕ10 5C7 ϕ5 5C7

ϕ6 5C7 ϕ7 5C7 ϕ9 5C7 ϕ8 because the distance paths from
(q, r) to ϕ5, ϕ6, ϕ7,ϕ8,ϕ9,ϕ10, are respectively (2), (2), (2), (2,2),
(2), (0). Then among the equivalently distant formulas the initial or-
der applies.

3.3 Context-based desirable axioms

In Section 3.1, we have shown that when the context is fixed contex-
tual inference is a rational non-monotonic inference, in this section
we study the impact of changing the context on the inference relation.
One benefit of taking into account the syntax relevance is the ability
to impose that the context and the inferred conclusion are related as
shown in the following example.

Example 5. Let P6 = (K6 = {a, a → b},	6= K6 × K6) with
a context c (a fresh symbol), it holds that |�∼λ0

P6,(c)
b and |�∼syn

P6,(c)
b

indeed there is no syntax relevance between the context c and b. It
would not be the case with lexicographic inference based on P6,
namely, it holds that |∼lex

P6
b. Even in classical logic, we would have

P6∪{c} |= b which might be deemed irrelevant (à la relevance logic
[1], but in a weaker form).

Moreover, syntactic inference imposes that the pieces of knowl-
edge of K that are used should be relevant with the context even
indirectly as shown with P7 = ({a, a → b, d → a, d → c},	7=
K7 ×K7), we have |∼syn

P7,(c)
b which is conform to |∼lex

P7
b.

Concerning classical logic, the previous example highlights that
in the case of a consistent knowledge base, the contextual inference
based on the refiner λsyn recovers the results of classical inference
for any query whose symbols are in the context.

Proposition 3 (Classical logic recovery). Given a consistent knowl-
edge base K ⊆ L, a formula ϕ ∈ L and a context C ∈ MS such
that ms(ϕ) ⊆ C,

K |= ϕ iff |∼syn
(K,K×K),C ϕ.

Proof. Since Lexicographic inference from a stratified consistent
knowledge base K amounts to take all the formulas from each stra-
tum (thus to ignore the stratification) and reason with classical infer-
ence from K, then it is enough to reason about the classical infer-
ences from the compartment of K selected in the context C, namely
KC = {ψ ∈ K s.t. ψ is s-connected to C in UK}.

(⇒) Let us assume (1) that K |= ϕ but (2) that |�∼syn
(K,K×K),C ϕ,

i.e., KC �|= ϕ. Note that ϕ �≡ ⊥ since K is consistent and (1), note
also that ϕ �≡ � because of (2). Now due to the deduction theorem
of propositional logic, (1) translates into Cl(K) ∪ Cl({¬ϕ}) � ⊥
and (2) into Cl(KC) ∪ Cl({¬ϕ}) � ⊥ where Cl(E) is the set
of clauses (disjunction of literals) equivalent to the set of proposi-
tional formulas E and “�⊥” means that the empty clause can be
obtained by resolution. Now the fact that (1) holds together with
(2) means that there is a subset A ⊆ K with A ∩ KC = ∅ such
that Cl(KC) ∪ Cl(A) ∪ Cl({¬ϕ}) � ⊥. In order to obtain the
empty clause by resolution, A should contain at least a formula with
a common symbol either with a clause of Cl(KC) or with a clause of
Cl({¬ϕ}), in both cases this formula is s-connected with C. Hence
this formula should have been in KC : contradiction.
(⇐) Assume now that KC |= ϕ it means that K |= ϕ since classical
inference is monotonic.

We are now going to state conditions on the relation between the
context and the conclusion in order to recover plain lexicographic
entailment. The next proposition follows from the result established
in [8] stating that lexicographic inference satisfies syntax splitting
and in particular the (Rel) axiom. The (Rel) axiom defined in [9]
states that if the knowledge base can be divided in two compartments
with different vocabularies and α and β are on the same compartment
then the inference from α to β is equivalent whether or not the other
compartment of the knowledge base is taken into account. In our
approach, this corresponds to the case where the knowledge base is
split into a compartment of formulas s-connected to the context C
and another regrouping the remainder of the knowledge base.

Proposition 4. Under the conditions that C s-connected to β and α
s-connected to β in UK , it holds that α |∼syn

P,C β iff α |∼lex
P β.

Proof. The proof is similar to the one of [8], by considering formulas
that are connected to C as belonging to the same sub-language. Using
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(Rel), α and β are both s-connected to C, hence the entailment only
needs formulas s-connected to C: α |∼lex

P β iff α |∼lex
λ(P,C) β. Due to

the fact that |∼syn
P,C = |∼lex

λ(P,C), we get the result.

In the following, we define three axioms relative to the context.
The first definition imposes a syntactic relevance between the con-
text and the conclusion. Note that in [9] no context was taken into
account to compute syntactic relevance. However, as seen in Prop.
4’s proof, considering the s-connected component associated with
the context, allows us to compartmentalize the knowledge base into
two parts. With this in mind, our definition of context relevance is
different from the (Rel) axiom of [9] which is more related with our
two other axioms.

Definition 11 (Context relevance). A contextual inference relation
|∼λ

P based on a prioritized knowledge base P = (K,	) and a re-
finer λ is context relevant iff for any context C ∈ MS, and any
consistent formulas α, β ∈ L s.t. α �|= β

if α |∼λ
P,C β then C is s-connected to β in UK .

Here is a variant of (Ind) defined in [9] where independence was
used in order to extend a premise while here it concerns a context
to extend. More precisely, it expresses that when there is no syntac-
tic path from a conclusion β to a formula, then this conclusion is
also obtained from the same premise in a context extended with the
symbols of this formula.

Definition 12 (Context independence). A contextual inference re-
lation |∼λ

P based on a prioritized knowledge base P = (K,	)
and a refiner λ satisfies context independence iff for any context
C ∈ MS and any formulas α, β, ϕ ∈ L such that α is connected
to β in UK , if ϕ is not s-connected to β in UK and α |∼λ

P,C β then
α |∼λ

P,C�ms(ϕ) β.

Next definition considers that if the syntactic similarity induced
from C is the same that the one induced from C′, then inference
based on these two contexts should be the same.

Definition 13 (Context equivalence). A contextual inference relation
|∼λ

P based on a prioritized knowledge base P = (K,	) and a re-
finer λ satisfies context equivalence iff for any contexts C,C′ ∈ MS
such that ∀ϕ,ϕ′ ∈ K, ϕ >syn

UK ,C ϕ′ iff ϕ >syn
UK ,C′ ϕ′, then

α |∼λ
P,C β iff α |∼λ

P,C′ β

The following proposition shows that the syntactic entailment
|∼syn is well behaved wrt our three axioms.

Proposition 5. Given a prioritized knowledge base P , |∼syn
P satisfies

context relevance, context independence and context equivalence.

Proof. (context relevance) Let α, β ∈ L be consistent formulas s.t.
α �|= β and C ∈ MS, assume that α |∼syn

P,C β then it means that
every Lex-preferred α-consistent subbase B of λ(P,C) is s.t. (1) B∪
{α} |= β where PC = (KC ,C) and KC contains only formulas
s-connected to C in UK . (1) is equivalent to B ∪ {α} ∪ {¬β} is
inconsistent. Since α �|= β it means that {α} ∪ {¬β} is consistent,
hence B should contain at least one formula that shares some variable
with β, it means that β is s-connected to a formula in B, since all
formulas in B are s-connected with C.

(context independence) The proof is based on Proposition 4 by
considering the knowledge base KC�ms(ϕ) which can be split into
KC and the rest since ϕ is not s-connected to β.

(context equivalence) If C and C′ induce the same ranking on the
formulas of K, then the Lex-preferred α-consistent subbases based
on 	C and 	C′ are the same.

3.4 Optional syntax-based axioms

Due to the fact that the context is a multiset of symbols, refiners
are naturally designed to take into account the syntax of the context.
Hence, assuming that the context can be represented by a formula,
different semantically equivalent ways to write this formula may in-
fluence the result since each can have a different associated multiset.

Definition 14 (Sensitivity to context syntax). A contextual inference
relation |∼λ

P based on a prioritized knowledge base P = (K,	) and
a refiner λ is sensitive to context syntax iff there exist two contexts
expressed by the formulas ϕ,ϕ′ and two formulas α, β ∈ L such
that ϕ ≡ ϕ′ and α |∼λ

P,ms(ϕ) β but α |�∼λ
P,ms(ϕ′) β.

Proposition 6. λ0 and λsyn are sensitive to context syntax.

Proof. See Example 2 (continued).

Example 2 (continued): Let us consider P2 of Example 2, we have
seen that the context ϕ = b leads to λ0(P2, (b)) = ({b, a →
¬b},K2(b)×K2(b)) so � |∼λ0

P,(b) b. Now considering the context cor-
responding to ϕ′ = b∧(c∨¬c) whose multiset is ms(ϕ′) = (b, c, c),
λ0(P2, (b, c, c)) = K2,K2 ×K2) hence � |�∼λ0

P,(b,c,c) b. The follow-
ing table shows the distance paths from the contexts (b) and (b, c, c)
to each formula of K2.

C

K2 (b) (b, c, c)

b (0) (2)
c (1, 2, 1) (2)
c → a (1, 2) (3)
a → ¬b (1) (3)

Hence λsyn(P2, (b)) = ({b}, {a → ¬b}, {c → a}, {c}) and
λsyn(P2, (b, c, c)) = ({b, c}, {a → ¬b, c → a}) which results in
� |∼syn

P2,(b)
b ∧ ¬c and � |∼syn

P2,(b,c,c)
b ∧ c. In both cases ϕ ≡ ϕ′

but entailment in the context of their respective multisets ms(ϕ) and
ms(ϕ′) leads to different conclusions.

Obviously the void refiner λvoid (such that for any prioritized
knowledge base and for any context λvoid(P,C) = P ) is not sen-
sitive to context syntax. Recall that a void refiner is equivalent to
the plain lexicographic entailment. Another interesting subject is to
check whether the way each formula of the knowledge base is written
may influence inference.

Definition 15 (Sensitivity to knowledge syntax). A contextual infer-
ence relation |∼λ

P based on a prioritized knowledge base P = (K,	
) and a refiner λ is sensitive to knowledge syntax iff there exist a con-
text C and four formulas ϕ,ϕ′, α, β ∈ L such that ϕ ∈ K, ϕ ≡ ϕ′

and α |∼λ
P,C β but α |�∼λ

P ′,C β where P ′ is P in which ϕ′ replaces ϕ.

Proposition 7. λ0 and λsyn are sensitive to knowledge syntax.

Proof. See Example 6.

Example 6. Let P8 = (K8 = {a → b, a ∧ c → ¬b},	8= K8 ×
K8) and let us define P ′

8 as the variant of P8 where a → b is replaced
with the equivalent formula a ∧ (c ∨ ¬c) → b, then λ0(P8, (c)) =
({a ∧ c → ¬b}) and λ0(P

′
8, (c)) = ({a ∧ (c ∨ ¬c) → b, a ∧ c →

¬b}). Thus, a∧ c |∼λ0
P8,(c)

¬b but a∧ c |�∼λ0

P ′
8,(c)

¬b. Let us now define

P ′′
8 as the variant of P8 where a → b is replaced with the equivalent

formula a ∧ a → b. The path distances from (a) to the formulas
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a → b, a∧ c → ¬b, a∧a → b are respectively (1),(2),(2) leading to
λsyn(P8, (a)) = ({a → b}, {a ∧ c → ¬b}) and λsyn(P

′′
8 , (a)) =

P ′′
8 which means that a |∼syn

P8,(a)
b while a |�∼syn

P ′′
8 ,(a)

b.

3.5 Complexity discussion

Let us end this section with a comment about complexity. Unfortu-
nately, there is no theoretical worse-case complexity gain with the
contextual inference approach because in the worst case (when the
knowledge base is consistent and contains only formulas relevant to
the query) the refiner will return the entire initial knowledge base.
However, in the particular case where the knowledge base contains
several distinct parts, a context could concern only some of these
parts. In this case, by definition, contextual inference will be less (or
equally) costly than a classical lexicographic inference since compu-
tations would involve a compartment of formulas smaller or equal to
the whole knowledge base.

Concerning the computation of the compartmentalization, it is not
negligible but polynomial, as shown below.

Proposition 8. Given a knowledge base K = {ϕ1, . . . , ϕn} with
formulas of maximum size k (∀i ∈ [1, n], |ms(ϕi)| ≤ k) where
k � n, and a context C ∈ MS s.t. |C| � n, the complexity of
the extraction with λ0 is linear in n while the extraction with λsyn is
polynomial in n.

Proof. Both operators need to work on the multisets of symbols as-
sociated to the formulas of the knowledge base, building these mul-
tisets is done in linear time wrt k and can be done once and for all.
• λ0 operator only requires to perform n multisets intersection be-
tween the formulas and the context, each intersection being linear in
max(k, |C|). Hence the worse case complexity of compartmentaliz-
ing K with the refiner λ0 is in Θ(n).
• λsyn operators require to compute n distances: from C to each for-
mula of the knowledge base. Theses distances are comparisons of
multisets of maximum size max(k, |C|), hence the distance compu-
tation is in linear time with max(k, |C|) � n. Next, λsyn requires
to find the shortest paths from the context C to each formula of K
(e.g. using Dijkstra’s algorithm, computing one shortest path requires
n log n operations). This leads to a complexity of the compartmen-
talization with λsyn in Θ(n2 log n).

While arguably reasonable, compartmentalization still has a cost,
it should be noted that it can be computed once and for all in the case
where the context remains the same during several queries, in which
case we could benefit from low amortized complexity.

4 Conclusion

The present paper deals with how to assess arguments and answer
queries given an inconsistent or not, prioritized or not, knowledge
base, using a kind of compartmentalization. This compartmentaliza-
tion is based on the relevance with a context, which is performed
by a selection function called refiner. This proposal is a first step in
the general goal of simulating a rational agent and trying to explain
how this agent can exploit a knowledge base built incrementally with
no moderation. This paper aims at introducing a new notion, which
we think was not exploited enough in the literature, namely to take
into account the way formulas are written in order to select more
efficiently the accurate pieces of knowledge for answering queries.
Indeed, in order to build systems that can help human to reason, it is
important to take into account the form, in addition to the meaning.

This “syntax-dependent by design” approach, where e.g. (a∧ a) can
be managed differently from a if wanted, is a proposal in that way.

One first benefit of the proposed approach is to determine, on the
fly, specific preferences on the formulas of the knowledge base. Com-
pared to other approaches that do not take preferences as input, con-
textual inference is able to make more decisions.

Coming back to the initial question: “what conditions must the re-
finer meet to ensure that the syntactic selection of the subbase allows
for sound and complete reasoning”, we stress that, when the knowl-
edge base is consistent, there is no risk of over-sensitivity (Prop. 3).
Indeed, the conclusion obtained on a filtered subbase will be the same
as the one obtained by classical inference on the whole base.

In addition, our approach allows for a form of relevance in a propo-
sitional setting (presented in Section 3.3), by providing three desir-
able axioms to characterize relevant refiners. There is a huge amount
of work about relevance logic [1] were the idea is to redefine clas-
sical logic in a way that relevance is obtained by design. Quoting
[15]: “the variable sharing principle says that no formula of the form
A → B can be proven in a relevance logic if A and B do not have
at least one propositional variable [...] in common and that no infer-
ence can be shown valid if the premises and conclusion do not share
at least one propositional variable.” In our work, A → B translates
into A |∼P,C B (where P is a possibly empty knowledge base) and
|∼ is based on classical inference |= from a subset of P according to
C. An extension of this work would be to replace |= with an infer-
ence operator from relevance logic.

A long term objective of the “syntax-dependent by design” ap-
proach is to be able to quantify the effect of using some words for
rhetoric and persuasion, for instance by comparing the conclusions
obtained with syntactic sensitivity to the one obtained without it.
Similarly, a perspective would be to quantify the redundancies and
repetitions in a discourse. The proposed approach would need to be
extended since it does not yet take into account the connectors. In-
deed, when a variable appears twice, connectors seem necessary to
know if there is indeed a redundancy: namely a ∧ (a → b) is not
as redundant as (a ∧ a) → b. One way of quantifying redundancies
would be to compare the formula with one of its canonical form (as
in e.g. [11]).

Moreover, it is worth noticing that the idea to take into account
the variable symbols in order to focus on the relevant pieces of in-
formation can be extended to not only check whether exactly the
same variable symbol is present, but also to check whether another
symbol that belongs to the same lexical field is present (given extra-
knowledge about lexical fields or ontological relations between sym-
bols, or chunks). This would be particularly useful when considering
formulas directly translated from English sentences, as the notions
behind the words are meaningful. For instance, words such as scent,
aroma, fragrance and smell are all related to the concept of odor, but
their connoted meanings are quite different and oftentimes specific to
the person hearing them. The ability to handle connoted meanings of
symbols, e.g. by integrating positive or negative emotions associated
with them, is a promising perspective for which the syntax-sensitive
inference operator could be adapted.
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